Press "Enter" to skip to content

Spherical Ensemble

This post is about the spherical ensemble of random matrices, and some of its properties in potential theory, geometry, and probability.

Coulomb gas. The spherical or Forrester-Krishnapur random matrix ensemble is \[ M=AB^{-1} \] where $A$ and $B$ are two independent $n\times n$ complex Girko matrices, namely ${(A_{jk})}_{1\leq j,k\leq n}$ and ${(B_{jk})}_{1\leq j,k\leq n}$ are iid standard complex normal random variables of law $\mathcal{N}(0,\frac{1}{2}\mathrm{Id}_2)$.

The law of $M$ is invariant by inversion : $M$ and $M^{-1}$ have the same law. The law of $M$ inherits the biunitary invariance of the complex Ginibre ensemble : invariance by multiplication from the left and from the right by deterministic unitary matrices.

The random matrix $M$ is a.s. nonnormal and its entries are dependent.

The spectrum of $M$ is a Coulomb gas on $\mathbb{C}$ with density $\varphi_n:\mathbb{C}^n\mapsto(0,+\infty)$ given by \[ \varphi_n(z_1,\ldots,z_n) =c_n\frac{\prod_{i < j}|z_i-z_j|^2}{\prod_{i=1}^n(1+|z_i|^2)^{n+1}} =c_n\mathrm{e}^{-(n+1)\sum_{i=1}^nQ(|z_i|)}\prod_{i < j}|z_i-z_j|^2, \] where $c_n$ is a normalizing constant, and $Q(|z|)=\log(1+|z|^2)$.

By putting this gas in a diagonal matrix and using conjugacy with an independent Haar unitary matrix, this can also be seen as the spectrum of a random normal matrix model, which should not be confused with the random non-normal matrix model $M$.

Determinantal structure. The planar Coulomb gas above is also a determinantal point process of $n$ particles on $\mathbb{C}$ endowed with the Lebesgue measure with kernel \[ (z,w)\in\mathbb{C}^2\mapsto K_n(z,w)=\sqrt{\kappa(z)\kappa(w)} n\Bigr(\frac{1+z\overline{w}}{\sqrt{(1+|z|^2)(1+|w|^2)}}\Bigr)^{n-1} \] where \[ \kappa(z)=\frac{1}{\pi(1+|z|^2)^2}. \] The function $\kappa$ is a density on $\mathbb{C}$ with respect to the Lebesgue measure and the law \[ \mathrm{d}\nu(z)=\kappa(z)\mathrm{d}z \] is known as a bivariate Student t distribution in Statistics and as a Barenblatt profile in Analysis of PDE (fast diffusion equation). It is heavy tailed.

Contrary to certain references, we use here as a background the uniform distribution on the sphere in stereographic coordinates. This means that the joint density writes \[ \varphi_n(z_1,\ldots,z_n)=\det\bigr[K_n(z_i,z_j)\bigr]_{1\leq i,j\leq n}. \] The naming comes from the fact that for all $1\leq k\leq n$, the marginal density \[ (z_1,\ldots,z_k)\in\mathbb{C}^k \mapsto\varphi_{n,k}(z_1,\ldots,z_k)=\int_{\mathbb{C}^{n-k}}\varphi_n(z_1,\ldots,z_n)\mathrm{d}z_{k+1}\cdots\mathrm{d}z_n \] can be expressed using the kernel as \[ \varphi_{n,k}(z_1,\ldots,z_k) =\frac{(n-k)!}{n!}\det\bigr[K_n(z_i,z_j)\bigr]_{1\leq i,j\leq k}. \] In particular \begin{align*} \varphi_{n,n}&=\varphi_n\\ \varphi_{n,1}(w)&=\frac{1}{n}K_n(w,w)=\kappa(w)\\ \varphi_{n,2}(u,v)&=\frac{1}{n(n-1)}(K_n(u,u)K_n(v,v)-|K_n(u,v)|^2). \end{align*} This provides formulas for the mean and variance of linear statistics of the form $L_n(f)=\sum_{k=1}^nf(\lambda_k(M))$, namely \begin{align*} \mathbb{E}(L_n(f)) &=\int_{\mathbb{C}} f(w)K_n(w,w)\mathrm{d}w=n\int_{\mathbb{C}}f(w)\kappa(w)\mathrm{d}w\\ \mathrm{Var}(L_n(f)) &=\int_{\mathbb{C}}f(w)^2K_n(w,w)\mathrm{d}w -\iint_{\mathbb{C}^2}f(u)f(v)|K_n(u,v)|^2\mathrm{d}u\mathrm{d}v\\ &=n\int_{\mathbb{C}}f(w)^2\kappa(w)\mathrm{d}w -\frac{n^2}{\pi^2}\iint_{\mathbb{C}^2}f(u)f(v)\frac{|1+u\overline{v}|^{2(n-1)}}{(1+|u|^2)^{n+1}(1+|v|^2)^{n+1}}\mathrm{d}u\mathrm{d}v. \end{align*}

Spherical coordinates. Geometrically, the law $\nu$ is the image of the uniform probability measure on the sphere $\mathbb{S}^2$ by the (north pole) stereographic projection \[ T:\mathbb{S}^2\subset\mathbb{R}^3\to\mathbb{C}\cup\{\infty\}. \] More precisely, for all $x=(x_1,x_2,x_3)\in\mathbb{S}^2\setminus\{(0,0,1)\}$ and $z\in\mathbb{C}$, \[ T(x)=\frac{x_1+\mathrm{i}x_2}{1-x_3} \quad\text{and}\quad T^{-1}(z) =\frac{(2 \Re z, 2 \Im z,|z|^2-1)}{|z|^2+1}. \] In other words, this measure is the uniform probability distribution on the sphere written in stereographic coordinates. The image of the spherical ensemble by the inverse stereographic projection $T^{-1}$ is the gas on $\mathbb {S}^2$ with density with respect to the uniform measure given, up to a multiplicative normalizing constant, by \[ (x_1,\ldots,x_n)\in(\mathbb{S}^2)^n \mapsto\prod_{i < j}\|x_i-x_j\|^2_{\mathbb{R}^3}, \] hence the name of the spherical ensemble! This can be seen as a perfect two or three dimensional analogue of the circular unitary ensemble (CUE), proportional to \[ (x_1,\ldots,x_n)\in(\mathbb{S}^1)^n\subset\mathbb{C}^n\mapsto\prod_{i < j}|x_i-x_j|^2, \] that describes the spectrum of $n\times n$ Haar unitary random matrices.

Möbius transforms. This gas on $\mathbb{S}^2$ is invariant by the isometries of $\mathbb{S}^2$. When $R$ runs over the rotations of $\mathbb{S}^2$, then $T\circ R\circ T^{-1}$ runs over the maps of $\mathbb{C}\cup\{\infty\}$ of the form \[ z\mapsto\frac{\alpha z+\beta}{-\overline{\beta}z+\overline{\alpha}}, \quad (\alpha,\beta)\in\mathbb{C}^2\setminus \{(0,0)\}. \] As a consequence, if $Z$ the gas seen on $\mathbb{C}$, then for all $(\alpha,\beta) \in \mathbb C^2 \setminus \{(0,0)\}$, \[ \frac{\alpha Z+\beta}{-\overline{\beta}Z+\overline{\alpha}} \overset{\mathrm{d}}{=} Z. \] The invariance by scaling suggest to assume that $|\alpha|^2+|\beta|^2=1$, and to identify $\mathbb C \cup \{\infty\}$ with the projective line $\mathbb CP^1 = (\mathbb C^2\setminus \{(0,0)\})/\sim$ where $\sim$ is the complex colinearity equivalence relation. The geometry of this object leads to the Fubini-Study metric on $\mathbb CP^1$ induced from the Hermitian product of $\mathbb C^2$.

Quaternions, SO(3), SU(2), and PSU(2). Algebraically, the group $\mathrm{SO}(3)$ is isomorphic, by conjugacy by $T$, to the projective subgroup $\mathrm{PSU(2)}$ of $\mathrm{SU}(2)$ obtained by taking the quotient by the relation $(\alpha,\beta)\sim(-\alpha,-\beta)$, with respect to the parametrization \[ \begin{pmatrix}\alpha & \beta\\ -\overline{\beta} &\overline\alpha \end{pmatrix} \] of $\mathrm{SU}(2)$. Note that $\mathrm{SU}(2)$ is isomorphic to the unit sphere of the quaternions $\mathbb{S}^3\subset\mathbb{R}^4$ via $|\alpha|^2+|\beta|^2=1$, which leads to another way to link $\mathrm{SO}(3)$ with $\mathrm{SU}(2)$. \[ z\mapsto\frac{\alpha z+\beta}{-\overline{\beta}z+\overline{\alpha}}, \quad \alpha,\beta\in\mathbb{C},\quad |\alpha|^2+|\beta|^2=1. \] In particular, for all $z_0\in\mathbb{C}$, a Möbius transform that maps $z_0$ to $0$ is \[ z\mapsto M_{z_0}(z)=\frac{z-z_0}{\overline{z_0}z+1}. \] As a consequence, if $Z$ is the gas seen on $\mathbb{C}$, then for all $z_0\in\mathbb{C}$, \[ M_{z_0}(Z)=\frac{Z-z_0}{\overline{z_0}Z+1} \overset{\mathrm{d}}{=} Z. \] Since $M_{z_0}(z_0)=0$ and $M'_{z_0}(z_0)=\frac{1}{1+|z_0|^2}$, a version of the delta method for random point processes gives that the local behavior of $\frac{Z-z_0}{1+|z_0|^2}$ near $z_0$ is equal to the one of $Z$ near $0$.

Kostlan observation and spectral radius. If $Z_n=(Z_{n,1},\ldots,Z_{n,n})$ is the gas seen as a random vector of $\mathbb{C}^n$, then the determinantal structure and rotational invariance give \[ \{|Z_{n,1}|,\ldots,|Z_{n,n}|\}\overset{\mathrm{d}}{=}\{\xi_{n,1},\ldots,\xi_{n,n}\} \] where $\xi_{n,1},\ldots,\xi_{n,n}$ are independent and $\xi_{n,k}$ has density proportional to \[ x\geq0\mapsto x^{2k-1}\mathrm{e}^{-(n+1)Q(x)}=\frac{x^{2k-1}}{(1+x^2)^{n+1}}. \] The random variable $\xi_{n,k}^2$ has density proportional to \[ x\geq0\mapsto\frac{x^{k-1}}{(1+x)^{n+1}}. \] We recognize a Beta prime (or inverse Beta or Beta of the second kind) law of density \[ x\geq0\mapsto\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\frac{x^{a-1}}{(1+x)^{a+b}}, \] with $a=k$ and $b=n-k+1$, which is also the law of $B/(1-B)$ when $B\sim\mathrm{Beta}(a,b)$, and also the law of $G_a/G_b$ were $G_a\sim\mathrm{Gamma}(a,\lambda)$ and $G_b\sim\mathrm{Gamma}(b,\lambda)$ are independent and $\lambda > 0$ is an arbitrary scale parameter. We have \[ \frac{n}{\xi_{n,n-k}^2} \xrightarrow[n\to\infty]{\mathrm{d}} \mathrm{Gamma}(k,1), \] and more generally, the fluctuations of the spectral radius are given by \[ \frac{1}{\sqrt{n}}\rho(M) =\frac{1}{\sqrt{n}}\max_{1\leq k\leq n}|Z_{n,k}| \overset{\mathrm{d}}{=} \frac{1}{\sqrt{n}}\max_{1\leq k\leq n}\xi_{n,k} \xrightarrow[n\to\infty]{\mathrm{d}} \mathrm{Law}\Bigr(\max_{k\geq1}\frac{1}{\sqrt{\gamma_k}}\Bigr) \] where ${(\gamma_k)}_{k\geq1}$ are independent with $\gamma_k\sim\mathrm{Gamma}(k,1)$.

Equilibrium measure. Regarding high dimensional asymptotic analysis, a.s. \[ \mu_{M} \overset{\mathrm{d}}{=}\frac{1}{n}\sum_{k=1}^n\delta_{Z_{n,k}} \xrightarrow[n\to\infty]{\text{weak}} \frac{\Delta Q(\left|\cdot\right|)}{2\pi}\mathrm{d}z =\frac{\mathrm{d}z}{\pi(1+|z|^2)^2} =\mathrm{\nu}, \] The average version is easy to check using logarithmic potential and remains valid non asymptotically. Indeed, for all $z\in\mathbb{C}$, $B$ and $A-zB$ are correlated, but by Gaussianity, \[ (M-z\mathrm{Id})B =A-zB \overset{\mathrm{d}}{=} \sqrt{1+|z|^2}A. \] Therefore, for all $z\in\mathbb{C}$, in $[-\infty,+\infty)$, \[ \mathbb{E}\log|\det(M-z\mathrm{Id})|+\mathbb{E}\log|\det(B)| =n\log\sqrt{1+|z|^2}+\mathbb{E}\log|\det(A)|. \] Finally, by applying the operator $\frac{1}{2\pi}\Delta$ in the sense of distributions, we obtain the stunning non-asymptotic formula \[ \mathbb{E}\mu_M=\frac{\Delta\log(1+|z|^2)}{4\pi}\mathrm{d}z=\frac{\mathrm{d}z}{\pi(1+|z|^2)^2}=\mathrm{\nu}. \] Alternatively, this formula can be extracted from the determinantal structure, namely \[ \mathbb{E}\mu_M=\frac{1}{n}K_n(z,z)\mathrm{d}z=\kappa(z)\mathrm{d}z=\nu. \] Alternatively, we could simply use the fact that the uniform distribution on $\mathbb{S}^2$ is the unique distribution on $\mathbb{S}^2$ invariant by all rotations, together with the fact that its image by the stereographic projection $T$ is precisely $\nu$ !

More generally, if $A$ and $B$ are Girko matrices, then $A-zB=\sqrt{1+|z|^2}C_z$ where $C_z$ is a Girko matrix, but with a law that depends on $z$ in general, except in the Gaussian case. Also the argument above works only in the Ginibre case.

Coulomb kernel. Let is consider $g:\mathbb{C}\times\mathbb{C}\mapsto(-\infty,+\infty]$ defined for $z,w\in\mathbb{C}$ by \[ g(z,w)=\log|z-w|-\tfrac{1}{2}\log(1+|z|^2)-\tfrac{1}{2}\log(1+|w|^2). \] It is the Coulomb kernel of the two-sphere $\mathbb{S}^2$ in stereographic coordinates since \[ \Delta g(\cdot,w)\overset{\mathcal{D}'}{=}2\pi(\delta_w-\nu). \] Since $2\langle z,w\rangle_{\mathbb{R}^2}=\bar{z}w+z\bar{w}$ for all $z,w\in\mathbb{C}^2\equiv\mathbb{R}^2$, we get, when $T(x)=z$ and $T(y)=w$, \begin{align*} 1-\langle x,y\rangle_{\mathbb{R}^3} &=1-\langle T^{-1}(z),T^{-1}(w)\rangle_{\mathbb{R}^3}\\ &=1-\frac{2(\bar{z}w+z\bar{w})+(|z|^2-1)(|w|^2-1)}{(1+|z|^2)(1+|w|^2)}\\ &=\frac{2|z-w|^2}{(1+|z|^2)(1+|w|^2)}. \end{align*} Also, a natural alternative definition of the Coulomb kernel of $\mathbb{S}^2$ is, for $x,y\in\mathbb{S}^2\subset\mathbb{R}^3$, \begin{align*} \mathfrak{G}(x,y) &= 2\log\|x-y\|_{\mathbb{R}^3}\\ &=\log\bigr(1-\langle x,y\rangle_{\mathbb{R}^3}\bigr)+\log(2)\\ &=2g(z,w)+2\log(2). \end{align*} It is symmetric $\mathfrak{G}(x,y)=\mathfrak{G}(y,x)$, exhibits logarithmic divergence on the diagonal, and \[ \Delta_{\mathbb{S}^2} \mathfrak{G}(\cdot,y) \overset{\mathcal{D}'}{=} 4\pi\Bigr(\delta_y -\frac{\mathrm{d}x}{4\pi}\Bigr) \] for $y\in\mathbb{S}^2$, where $\Delta_{\mathbb{S}^2}$ is the Laplace-Beltrami operator on $\mathbb{S}^2$. Moreover, we have \[ \int g(z,w)\mathrm{d}\nu(w) =-\int\frac{1}{2}\log(1+|w|^2)\mathrm{d}\nu(w) =-\frac{1}{2}, \] for $z\in\mathbb{C}$ which gives, in particular, for $x\in\mathbb{S}^2$, \[ \int\mathfrak{G}(x,y)\mathrm{d}y =2\log(2)-1. \]

Central Limit Theorem. Since \[ \log|\det(M)|=\log|\det(A)|-\log|\det(B)| \] and since $A$ and $B$ are independent and can be Hermitized into complex square Wishart matrices or factorized using the Choleski-Bartlett decomposition, a CLT for $\log|\det(M)|$ boils down to a CLT for independent $\chi^2$ variables. It can also be obtained using the Kostlan observation. More precisely, we get \[ \frac{\log|\det(M)|}{\sqrt{\frac{1}{2}\log(n)}} \xrightarrow[n\to\infty]{\mathrm{d}} \mathcal{N}(0,1). \] We have $\mathbb{E}\log|\det(M)|=0$ since the law of $M$ is invariant by inversion.

Further reading.

  • D. Chafaï and S. Péché
    A note on the second order universality at the edge of Coulomb gases on the plane
    J. Stat. Phys., 156(2) (2014)
  • P. J. Forrester
    Log-gases and random matrices
    Princeton University Press (2010)
  • P. J. Forrester and A. Mays
    Pfaffian point process for the Gaussian real generalised eigenvalue problem
    Probab. Theory Relat. Fields 154(1-2) (2012)
  • I. M. Gel’fand, R. A. Minlos, and Z. Y. Shapiro
    Representations of the rotation and Lorentz groups and their applications
    Translated from the Russian by G. Cummins and T. Boddington
    Oxford University Press (1963)
  • A. Hardy
    A note on large deviations for 2D Coulomb gas with weakly confining potential
    Electron. Commun. Probab. 17:19 (2012)
  • J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág
    Zeros of Gaussian analytic functions and determinantal point processes
    American Mathematical Society (2009)
  • D. Huybrechts
    Complex geometry. An introduction
    Universitext Springer (2005)
  • E. Kostlan
    On the spectra of Gaussian matrices
    Linear Algebra Appl. 162/164 (1992)
  • M. Krishnapur
    From random matrices to random analytic functions
    Ann. Probab. 37(1) (2009)
  • T. Needham
    Visual complex analysis. 25th anniversary edition, with a new foreword by Roger Penrose
    Oxford: Oxford University (2023)
  • B. Rider
    A limit theorem at the edge of a non-Hermitian random matrix ensemble
    J. Phys. A, Math. Gen. 36(12) (2003)

    Leave a Reply

    Your email address will not be published.

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Syntax · Style · .