Branching processes, nuclear bombs, and a polish american

June 30th, 2016 No comments

Ulam - Adventures of a MathematicianI have read recently again the auto-biography of Ulam entitled Adventures of a Mathematician. Stanislaw Marcin Ulam (1909 – 1984) is a famous Polish – American mathematician, just like Mark Kac (1914 – 1984). Ulam’s auto-biography gives many informations and anecdotes on the personalities of several great scientists of the twentieth century, such as Stefan Banach, Hugo Steinhaus, and Stanisław Mazur, from Lwów, but also Kazimierz Kuratowski, from Warsaw, and later on Paul Erdős, George David Birkhoff, John von Neumann, Richard Feynman, Niels Bohr, and Enrico Fermi. Many of the last ones were involved, like Ulam, in the Manhattan project in Los Alamos. Among other things, Ulam played an essential role in the design of the hydrogen nuclear bomb together with Edward Teller. Ulam’s work on nuclear chain reactions led him to the study of what we call now branching processes, and the discovery of the generating function method. Here is below an excerpt taken from pages 159-160. [I forgot to mention this interesting historical fact at the end of the chapter on branching processes in my recent book Recueil de modèles aléatoires with my old friend Florent Malrieu – A shame!]

We discussed problems of neutron chain reactions and the probability problems of branching processes, or multiplicative processes, as we called them in 1944.

I was interested in the purely stylized problem of a branching tree of progeny from one neutron which may multiply, into zero (that is, the death of a neutron by absorption), or one (that just continues itself), or two or three or four (that is, causes the emergence of new neutrons), each possibility with a given probability. The problem is to follow the future course and the chain of possibilities through many generations.

Very early Hawkins and I detected a fundamental trick to help study such branching chains mathematically. The so­ called characteristic function, a device invented by Laplace and useful for normal “addition” of random variables, turned out to be just the thing to study “multiplicative” processes. Later we found that observations to this effect had been made before us by the statistician Lotka, but the real theory of such processes, based on the operation of iteration of a function or of operators allied to the function (a more general process), was begun by us in Los Alamos, starting with a short report. This work was strongly generalized and broadened in 1947, after the war, by Everett and myself after he joined me in Los Alamos. Some time later, Eugene Wigner brought up a question of priorities. He was eager to note that we did this work quite a bit before the celebrated mathematician Andrei N. Kolmogoroff and other Russians and some Czechs had laid claim to having obtained similar results.

In modern terms, if $Z_n$ is the number of neutrons at generation $n$, with $Z_0:=1$, then the branching process ${(Z_n)}_{n\geq0}$ modeling the neutron chain reaction can be written as $$Z_{n+1}=\sum_{k=1}^{Z_n}X_{n+1,k}$$ where ${(X_{n,k})}_{n,k\geq1}$ are independent and identically distributed random variables with offspring distribution $P:=p_0\delta_0+p_1\delta_1+\cdots$. For any discrete random variable $X$, we denote by $$g_X(s):=\mathbb{E}(s^X)=\sum_{k=0}^\infty\mathbb{P}(X=k)s^k$$ its generating function at point $s\in[0,1]$. We have then, with $X\sim P$ and $g:=g_X$, $$g_{Z_{n+1}}(s)=\mathbb{E}(\mathbb{E}(s^{X_1+\cdots+X_{Z_n}})\mid Z_n))=\mathbb{E}(\mathbb{E}(s^X)^{Z_n})=g_{Z_n}(g_X(s))=\cdots=g^{\circ (n+1)}(s).$$ It remains to use fixed point analysis to get the behavior of the extinction probability $$\mathbb{P}(\exists n:Z_n=0)=\lim_{n\to\infty}\mathbb{P}(Z_n=0)=\lim_{n\to\infty}g^{\circ n}(0).$$

But you may prefer the aristocratic British families of Francis Galton and Henry William Watson.

Black and white photo: von Neumann, Feynman, and Ulam on the porch of Bandelier lodge in Frijoles Canyon, New Mexico, during a picnic, ca 1949 (Nicholas Metropolis)

John von Neumann, Richard Feynman, and Stan Ulam on the porch of Bandelier lodge in Frijoles Canyon, New Mexico, during a picnic, ca 1949 (Nicholas Metropolis). Both photo and legend appear in Ulam’s auto-biography.

Share

EJP-ECP : Project Euclid

May 31st, 2016 No comments

EJP www logo designed by PKP

Thanks to many efforts, all of Electronic Journal of Probability (EJP) and Electronic Communications in Probability (ECP) is now freely accessible on Project Euclid. This transition is facilitated by the Digital Object Identifier system. In Europe, the analogue of Project Euclid is the European Digital Mathematical Library (EuDML) which includes the French Numdam.

Project Euclid Logo

Project Euclid was developed and deployed by the Cornell University Library, with start-up funding provided by The Andrew W. Mellon Foundation, and is now jointly managed by the Cornell Library and Duke University Press. It was originally created to provide a platform for small scholarly publishers of mathematics and statistics journals to move from print to electronic in a cost-effective way. Through a combination of support by subscribing libraries and participating publishers, Project Euclid has made 70% of its journal articles openly available. As of 2015, Project Euclid provides access to over 1.2 million pages of open-access content.

Share
Categories: Probability

Recueil de modèles aléatoires

April 1st, 2016 No comments
Categories: Books, Probability, Teaching

Intégration – alpha et omega

March 21st, 2016 2 comments
Robert Solovay (1938 - )

Robert Solovay (1938 – )

En unifiant la théorie de la mesure d’Émile Borel et la théorie de l’intégration de Bernhard Riemann, Henri-Léon Lebesgue a créé un paradis pour les mathématiciens. Ces derniers ont eu du mal à s’en rendre compte, et même les plus illustres comme Nicolas Bourbaki ont ignoré le sujet durablement. Stanisław Saks et Paul Halmos ont beaucoup fait, dit-on, pour la diffusion de la théorie de la mesure et l’intégrale de Lebesgue. Il existe, de nos jours, plusieurs manières d’introduire et d’étudier l’intégrale de Lebesgue (en troisième année de licence en France). Les analystes spécialistes des équations aux dérivées partielles et du calcul des variations préfèrent bien souvent évacuer rapidement la théorie de la mesure et les tribus, pour se consacrer pleinement aux aspects fonctionnels, car les fonctions tests sont leur alpha et omega. Ils apprécient l’intégrale de Lebesgue notamment pour ses commutations : théorèmes de convergence monotone, lemme de Pierre Fatou, théorème de convergence dominée, et théorème de Guido Fubini et Leonida Tonelli. Les probabilistes en revanche mettent plus l’accent sur la théorie de la mesure et les tribus, car c’est le langage moderne des probabilités inventé par Andreï Kolmogorov, qui permet notamment de donner un sens à l’indépendance et d’unifier l’étude des variables aléatoires discrètes et continues : les sommes et les intégrales sont des objets de même nature et les théorèmes sont les mêmes. Il est bien sûr possible de procéder de manière équilibrée en ménageant la chèvre et le chou, mais force est de constater que tout le monde ne souhaite pas être polyglotte. La mesurabilité constitue un sujet épineux pour les étudiants, culminant avec l’effrayante simplicité de construction d’ensembles non mesurables grâce à l’axiome du choix. Je ne résiste pas au plaisir de partager un extrait du cours d’analyse de Jean-Michel Bony, signalé par Yann Brenier :

1.6.1. Existe-t-il des ensembles et des fonctions non mesurables? L’expérience suggère la réponse non. En effet, les ensembles mesurables forment une tribu contenant les ouverts et il en résulte que l’espace des fonctions mesurables contient les fonctions continues et est stable par toutes les opérations dénombrables usuelles : limite d’une suite (ou somme d’une série) de fonctions qui converge en chaque point, sup ou inf dénombrable,… À titre d’exemple, le lecteur pourra voir dans l’exercice B.2.4 que la fonction égale à 1 en tout point rationnel et à 0 en tout point irrationnel — le type même de la fonction non intégrable au sens de Riemann, alors que c’est une excellente fonction sommable d’intégrale nulle — est limite d’une suite de fonctions dont chacune est limite d’une suite de fonctions continues. On peut bien sûr faire beaucoup plus compliqué, mais on n’arrive jamais à construire une fonction non mesurable sans faire appel à l’axiome du choix.

La véritable réponse à la question posée est : cela dépend des axiomes mis à la base des mathématiques. On a en effet les deux résultats suivants.

  • Si on adjoint l’axiome du choix aux axiomes usuels de la théorie des ensembles, on peut prouver effectivement qu’il existe des ensembles non mesurables (voir l’exercice 1.6.2).
  • Par contre, un résultat relativement récent de logique mathématique (Solovay, 1966) assure que l’on peut adjoindre à ces mêmes axiomes, sans introduire de contradiction, les formes dénombrables de l’axiome du choix et l’axiome “tout sous-ensemble de $\mathbb{R}^n$ est mesurable”.

Dans la pratique cela signifie que, à moins de le faire exprès à l’aide de l’axiome du choix, il est exclu que l’on ait à considérer des fonctions non mesurables. C’est pourquoi ce cours a été écrit comme si toutes les fonctions étaient mesurables. La véritable raison est bien sûr une question de temps, il y a mieux à faire que de démontrer, par des méthodes répétitives, des résultats dont on sait d’avance qu’ils sont toujours vrais. Le lecteur n’aura qu’à ajouter mentalement l’adjectif “mesurable” chaque fois qu’il rencontrera le mot “ensemble” ou “fonction”.

Cela dit, le lecteur excessivement scrupuleux qui serait choqué par cette façon de faire pourra se placer dans le système d’axiomes autorisé par Solovay. C’est un cadre dans lequel on peut développer toute l’analyse classique, et où tous les énoncés de ce chapitre sont effectivement des théorèmes.

Ce qui précède s’applique à la mesure de Lebesgue, et il ne faudrait pas en conclure que toutes les questions de mesurabilité sont sans intérêt. En théorie des probabilités, on introduit fréquemment plusieurs tribus (dépendant par exemple du temps), la mesurabilité d’une variable aléatoire X par rapport à telle ou telle tribu ayant un contenu probabiliste précis. Dans un tel contexte, la démonstration de la mesurabilité d’une variable aléatoire peut être un résultat important, et éventuellement difficile.

L’article A model of set-theory in which every set of reals is Lebesgue measurable de Robert Solovay paru dans Annals of Mathematics en 1970 vaut le détour. Page 3 Robert Solovay dit «Of course, the axiom of choice is true, and so there are non-measurable sets.»! Renoncer à l’axiome du choix général fait que certains résultats phares de l’analyse comme par exemple le théorème de Andrey Nikolayevich Tikhonov, de Hans Hahn et Stefan Banach, ou de Stefan Banach et Leonidas Alaoglu ne sont plus disponibles au delà du dénombrable ou du séparable.

Lectures : tous les livres cités sont disponibles en DjVu sur Internet !

  • Henri-Léon Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives professées au Collège de France, 1904.
  • Paul R. Halmos, Measure theory, 1950.
  • Jacques Neveu, Bases mathématiques du calcul des probabilités, 1970.
  • Jean-Michel Bony, Cours d’analyse – Théorie des distributions et analyse de Fourier, 1996.
Jean-Michel Bony (1942 - )

Jean-Michel Bony (1942 – )

Share