Toujours à bicyclette

March 19th, 2015 No comments
Vélo Origine Tuxedo

Origine Tuxedo à Dauphine

J’ai acquis en novembre dernier un magnifique vélo de course Tuxedo de 8 kilogrammes fabriqué par Origine Cycles, une entreprise bordelaise qui propose des vélos sur-mesure sur Internet. Ce modèle Tuxedo est un vrai régal : les 27 kilomètres quotidiens sont vite avalés ! Internet permet au producteur de vendre directement au consommateur, en courcircuitant les marchands devenus inutiles, ce qui n’est pas pour me déplaire. Avec ce mode de diffusion, des vélos de grande qualité sont à prix usine ! Ce Tuxedo est en aluminium avec une fourche en carbone. Pour le reste, freins et  transmission classiques Shimano Tiagra, roues Mavic Ksyrium et pneus Mavic Yksion.

Vélo Origine Tuxedo

Origine Tuxedo à Vincennes

Je garde en réserve mon ancien vélo Décathlon B’Twin Nework 700, équipé notamment de freins à disques, d’un moyeu à vitesses intégrées Shimano Alfine 8, et d’un petit porte bagages. Un beau vélo de ville, qui pèse cependant près de 14 kilogrammes !

Décathlon B'Twin Nework 700

Décathlon B’Twin Nework 700

Que de chemin parcouru depuis mon précédent billet sur la bicyclette !

Share
Categories: Uncategorized

Entropy ubiquity

March 16th, 2015 No comments
Ludwig Boltzmann (1844 - 1906)

Ludwig Boltzmann (1844 – 1906)

Recently a friend of mine asked about finding a good reason to explain the presence of the Boltzmann-Shannon entropy here and there in mathematics. Well, a vague answer is to simply say that the logarithm is already in many places, waiting for a nice interpretation. A bit less vaguely, here are some concrete fundamental formulas involving the Boltzmann-Shannon entropy \( {\mathcal{S}} \) also denoted \( {-H} \).

Combinatorics. If \( {n=n_1+\cdots+n_r} \) and \( {\lim_{n\rightarrow\infty}\frac{(n_1,\ldots,n_r)}{n}=(p_1,\ldots,p_r)} \) then

\[ \frac{1}{n}\log\binom{n}{n_1,\ldots,n_r} =\frac{1}{n}\log\frac{n!}{n_1!\cdots n_r!} \underset{n\rightarrow\infty}{\longrightarrow} -\sum_{k=1}^r p_k\log(p_k)=:\mathcal{S}(p_1,\ldots,p_r). \]

Also \( {\binom{n}{n_1,\ldots,n_r}\approx e^{-nH(p_1,\ldots,p_r)}} \) when \( {n\gg1} \) and \( {\frac{(n_1,\ldots,n_r)}{n}\approx (p_1,\ldots,p_r)} \). Wonderful!

Volumetrics. In terms of microstates and macrostate we also have

\[ \inf_{\varepsilon>0} \varlimsup_{n\rightarrow\infty} \frac{1}{n} \log\left| \left\{ f:\{1,\ldots,n\}\rightarrow\{1,\ldots,r\}: \max_{1\leq k\leq r}\left|\frac{f^{-1}(k)}{n}-p_k\right|<\varepsilon \right\}\right| =\mathcal{S}(p_1,\ldots,p_r). \]

This formula can be related to the Sanov Large Deviations Principle, some sort of refinement of the strong Law of Large Numbers.

Maximization. If \( {\displaystyle\int\!V(x)\,f(x)\,dx=\int\!V(x)f_\beta(x)\,dx} \) with \( {f_\beta(x)=\frac{e^{-\beta V(x)}}{Z_\beta}} \) then

\[ \mathcal{S}(f_\beta) – \mathcal{S}(f) =\int\!\frac{f}{f_\beta}\log\frac{f}{f_\beta}f_\beta\,dx \geq\left(\int\!\frac{f}{f_\beta}f_\beta\,dx\right)\log\left(\int\!\frac{f}{f_\beta}f_\beta\,dx\right)=0. \]

This formula plays an important role in statistical physics and in Bayesian statistics.

Likelihood. If \( {X_1,X_2,\ldots} \) are i.i.d. r.v. on \( {\mathbb{R}^d} \) with density \( {f} \) then

\[ L(f;X_1,\ldots,X_n) =\frac{1}{n}\log(f(X_1,\ldots,X_n)) \overset{a.s.}{\underset{n\rightarrow\infty}{\longrightarrow}} \int\!f\log(f)\,dx=:-\mathcal{S}(f). \]

This formula allows to reinterpret the maximum likelihood estimator as a minimum contrast estimator for the Kullback-Leibler divergence or relative entropy. It is also at the heart of Shannon coding theorems in information theory.

\( {L^p} \) norms. If \( {f\geq0} \) then

\[ \partial_{p=1}\left\Vert f\right\Vert_p^p =\partial_{p=1}\int\!e^{p\log(f)}\,dx =\int\!f\log(f)\,dx =-\mathcal{S}(f). \]

This formula is at the heart of a famous theorem of Leonard Gross which relates the hypercontractivity of ergodic Markov semigroups with a logarithmic Sobolev inequality for the invariant measure of the semigroup.

Fisher information. If \( {\partial_t f_t(x)=\Delta f_t(x)} \) then by integration by parts

\[ \partial_t\mathcal{S}(f_t) =-\int\!\log(f_t)\,\Delta f_t\,dx =\int\!\frac{\left|\nabla f_t\right|^2}{f_t}\,dx =\mathcal{F}(f_t). \]

This formula, attribued to de Bruijn, is at the heart of the analysis and geometry of heat kernels, diffusion processes, and gradient flows in partial differential equations.

Claude Shannon (1916 - 2001)

Claude Shannon (1916 – 2001)

 

Share

Stéphane Charbonnier, dit Charb, dessinateur satirique

January 24th, 2015 No comments
Il faut changer la société (Charb).

Il faut changer la société.

Share
Categories: Society

Baltic states

January 4th, 2015 2 comments
Map of the Baltic states

Baltic states (source: Wikitravel)

How to remember the geographical positions of the Baltic states Estonia, Latvia, and Lithuania, and their respective capitals Tallin, Riga, and Vilnius? Is there a hidden order in this apparent disorder? Well, I realized naively, by accident, that these countries are ordered alphabetically from north to south, and that this is also the same for the capitals provided this time that we remove the first letter!

This trick works in English, in French (Estonie, Lettonie, Lituanie), and in several other languages, but does not work for instance in Polish (Estonią, Łotwa, Litwa).

Picture of Riga

Riga

Share
Categories: Uncategorized