Press "Enter" to skip to content

Libres pensées d'un mathématicien ordinaire Posts

De Mao Zedong à Xi Jinping

Changchun - School of Marxism - Photo by HC

Ci-dessus, une photo prise dans une université chinoise en 2011. Ci-dessous, une liste de cours tirée du dossier d’un étudiant de troisième année dans une grande université chinoise en 2022.

  • Abstract Algebra
  • Advanced linear Algebra
  • Appreciation of Symphony Music
  • Complex Analysis
  • Differential Geometry
  • English for Academic Purposes : Research Paper Writing
  • English for Academic Purposes : Spoken Communication
  • Experience of Manufacturing Engineering
  • Foundation of Vocal Music
  • Game Theory
  • How To Start a Startup – Face To Face with Famous Entrepreneurs
  • Ideological Moral and Legal Education
  • Introduction to Mao Zedong Thought and Socialism with Chinese Characteristics
  • Introduction to Mao Zedong Thoughts and Theoretical System of Socialism with Chinese Characteristic
  • Introduction to the Social Service of College Students
  • Introduction to Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era
  • Mathematical Analysis
  • Math from Examples
  • Measures and Integrals
  • Military Skills
  • Military Theory
  • Ordinary Differential Equations
  • Outline of Modern Chinese History
  • Physical Education
  • Physics for Scientists and Engineers
  • Principle of Marxist Philosophy
  • Probability and Statistics
  • Probability Theory
  • Programming Fundamentals
  • Situation and Policy
  • Swimming Competency Test
  • Sympathetic of Drama
  • The Practice of C++ Programming
Leave a Comment

Unexpected phenomena for equilibrium measures

Photo of Marcel Riesz
Marcel Riesz (1886 -1969)

This post is about Riesz energy problems, a subject that I like to explore with Edward B. Saff (Vanderbilt University, USA) and Robert S. Womersley (UNSW Sydney, Australia).

Riesz kernel. For $-2<s<d$, the Riesz $s$-kernel in $\mathbb{R}^d$  is $$
K_s:=\begin{cases}
\displaystyle\frac{1}{s\left|\cdot\right|^{s}} & \text{if } s\neq0\\[1em]
\displaystyle-\log\left|\cdot\right| & \text{if } s=0
\end{cases}.
$$ We recover the Coulomb or Newton kernel when $s=d-2$. This definition of the $s$-kernel allows to pass from $K_s$ to $K_0$ by removing the $1/s$ singularity at $s=0$, namely, for $x\neq0$, $$-\log|x|=\lim_{\underset{s\neq0}{s\to0}}\frac{|x|^{-s}-1}{s-0}=\lim_{\underset {s\neq0}{s\to0}}\Bigr(\frac{1}{s|x|^s}-\frac{1}{s}\Bigr).$$

Riesz energy. For $-2<s<d$, the Riesz energy of a probability measure $\mu$ on $\mathbb{R}^d$ is $$
\mathrm{I}_s(\mu):=\iint K_s(x-y)\mathrm{d}\mu(x)\mathrm{d}\mu(y)
=\int(K_s*\mu)\mathrm{d}\mu.
$$ The Riesz energy is strictly convex and lower semi-continuous for the weak convergence of probability measures with respect to continuous and bounded test functions. This convexity is related to the Bochner positivity of $K_s$, which is a nice observation from harmonic analysis.

Equilibrium measure. The equilibrium measure on a ball $B_R:=\{x\in\mathbb{R}^d:|x|\leq R\}$ is
$$
\mu_{\mathrm{eq}}
=\arg\min_{\substack{\mu\\\mathrm{supp}(\mu)\subset B_R}}\mathrm{I}_s(\mu).
$$

Riesz original problem (1938). Equilibrium measure on $B_R$ when $d\geq2$ :
$$
\mu_{\mathrm{eq}}
=
\begin{cases}
\sigma_R & \text{if $-2<s\leq d-2$}\\[1em]
\displaystyle\frac{\Gamma(1+\frac{s}{2})}{R^s\pi^{\frac{d}{2}}\Gamma(1+\frac{s-d}{2})}
\frac{\mathbf{1}_{B_R}}{(R^2-|x|^2)^{\frac{d-s}{2}}}\mathrm{d}x &
\text{if $0\leq d-2<s<d$}
\end{cases}
$$ where $\sigma_R$ is the uniform distribution on the sphere $\{x\in\mathbb{R}^d:|x|=R\}$ of radius $R$.

The proof relies on the following integral formula for the variational characterization : $$
\int_{|y|\leq R}
\frac{|x-y|^{-s}}{(R^2-|y|^2)^{\frac{d-s}{2}}}\mathrm{d} y
=\frac{\pi^{\frac{d}{2}+1}}{\Gamma(\frac{d}{2})\sin(\frac{\pi}{2}(d-s))},\,\quad
x\in B_R
$$ The proof of this integral formula involves in turn a Kelvin transform and a reduction to the planar case. It can be found in detail in the Appendix of the book by Landkof (1972), and also with even more details in our 2022 JMAA article. To our knowledge, a simple proof is still lacking!

The result expresses a threshold phenomenon : the support condensates on a sphere when $s$ passes the critical value $d-2$ (Coulomb). Our main finding is that this Riesz problem admits a full space extension in which we replace the ball support constraint with an external field. We show that a new threshold phenomenon occurs, related to the strenght of the external field.

External field equilibrium problem. The energy with external field $V$ on $\mathbb{R}^d$ is defined by $$\mathrm{I}(\mu)=\mathrm{I}_{s,V}(\mu):=\iint\left[K_s(x-y)+V(x)+V(y)\right]\mathrm{d}\mu(x)\mathrm{d}\mu(y)$$
and the associated equilibrium measure $$\mu_{\mathrm{eq}}=\arg\min_{\mu}\mathrm{I}(\mu)$$ The Frostman or Euler-Lagrange variational characterization of $\mu_{\mathrm{eq}}$ reads $$K_s*\mu+V
\begin{cases}
=c& \text{quasi-everywhere on }\mathrm{supp}(\mu)\\
\geq c&\text{quasi-everywhere outside }\mathrm{supp}(\mu)
\end{cases}$$ Quasi-everywhere means except on a set that cannot carry a probability measure of finite energy. By taking $V=\infty\mathbf{1}_{B_R^c}$ we recover the Riesz problem on the ball mentioned previously.

Coulomb case : $s=d-2$. The kernel $K_{d-2}$ is a Laplace fundamental solution :
$$
\Delta K_{d-2}\overset{\mathcal{D}’}{=}-c_d\delta_0,\quad\text{with}\quad c_d=|\mathbb{S}^{d-1}|.
$$Also, restricted to the interior of $\mathrm{supp}(\mu_{\mathrm{eq}})$,
$$
\mu_{\mathrm{eq}}\overset{\mathcal{D}’}{=}\frac{\Delta V}{c_d}
$$In particular, if $V=\left|\cdot\right|^\alpha$, $\alpha>0$, then
$$
\mu_{\mathrm{eq}}
=\alpha(\alpha+d-2)\left|\cdot\right|^{\alpha-2}\mathbf{1}_{B_R}\mathrm{d}x
\quad\text{with}\quad R=\bigr(\frac{1}{\alpha}\bigr)^{\frac{1}{d-2+\alpha}}.$$ The proof relies crucially on the local nature of the Laplacian.

At this point we observe that the formula $$\Delta K_u=-c_{d,u}K_{u+2},\quad c_{d,u}:=d-2-u$$ suggests to apply iteratively $\Delta$ to reach the case $s=d-2n$ for an arbitrary positive integer $n$.

Findings for the iterated Coulomb case $s=d-2n, n=1,2,3,\ldots$. Then, restricted to the interior of $\mu_{\mathrm{eq}}$, in the sense of distributions,
$$
\mu_{\mathrm{eq}}
\overset{\mathcal{D}’}{=}
\frac{\Delta^{n}V}{c_dC_{d,n}},
\quad\text{where}\quad
C_{d,n}:=(-1)^{n-1}\prod_{k=0}^{n-2}c_{d,s+2k}=(-1)^{n-1}(2n-2)!!.
$$ In particular : if $s=d-4$ and $V=\left|\cdot\right|^\alpha$, $\alpha\geq2$, then $C_{d,2}<0$ while $\Delta V=\alpha(\alpha+d-2)\left|\cdot\right|^{\alpha-2}\geq0$ and thus $\mu_{\mathrm{eq}}$ is necessarily singular! Actually the case $s=d-4$ can be analyzed completely, and this analysis reveals the singularity when $\alpha\geq2$ as well as a threshold condensation to this singular support when $\alpha$ reaches the critical value $2$.

Findings when $s=d-4$. Suppose that $V=\gamma\left|\cdot\right|^\alpha$, $\gamma>0,  \alpha>0$.

  • Let $d\geq4$ and $s=d-4\geq0$.
    • If $\alpha\geq2$ then $\mu_{\mathrm{eq}}=\sigma_R$ (indeed it is singular!) where $$
      R=\Bigr(\frac{2}{(s+4)\alpha\gamma}\Bigr)^{\frac{1}{\alpha+s}}$$
    • If $0<\alpha<2$ then (mixture!) $$\mu_{\mathrm{eq}}=\beta fm_d+(1-\beta)\sigma_R$$ where
      $$\beta=\frac{2-\alpha}{s+2},\
      f=\frac{\alpha+s}{R^{\alpha+s}|\mathbb{S}^{d-1}|}\mathbf{1}_{B_R},\
      R=\Bigr(\frac{2}{(\alpha+s+2)\alpha\gamma}\Bigr)^{\frac{1}{\alpha+s}}$$
  • Let $d=3$ and $s=d-4=-1$ (non-singular kernel!).
    • If $0<\alpha<1$, then $\mu_{\mathrm{eq}}$ does not exist (blowup)
    • If $\alpha=1$ and $\gamma\geq1$, then $\mu_{\mathrm{eq}}=\delta_0$ (collapse).
    • If $\alpha>1$, then $\mu_{\mathrm{eq}}$ is as above (mixture).

In contrast, there is no threshold condensation phenomenon when $s=d-3$.

Findings when $s=d-3$. Suppose that $V=\gamma\left|\cdot\right|^\alpha$, $\gamma>0, \alpha>0$.

  • If $s=d-3$ and $\alpha=2$ then $$\mu_{\mathrm{eq}}
    =\frac{\Gamma(\frac{s+4}{2})}{\pi^{\frac{s+4}{2}}R^{s+2}}
    \frac{\mathbf{1}_{B_R}}{\sqrt{R^2-\left|\cdot\right|^2}}
    \mathrm{d}x$$ where $$R=\Bigr(\frac{\sqrt{\pi}}{4\gamma}\frac{\Gamma(\frac{s+4}{2})}{\Gamma(\frac{s+5}{2})}\Bigr)^{\frac{1}{s+2}}$$
  • This is also $\mu_{\mathrm{eq}}$ for $s=d-1$ on $B_R$ with this $R$.

Methods of proof.

  • Frostman or Euler-Lagrange variational characterization
  • Applying Laplacian on support of $\mu_{\mathrm{eq}}$
  • Rotational invariance and maximum principle
  • Dimensional reduction with Funk-Hecke formula
  • Orthogonal polynomials expansions
  • Integral formulas and special functions

Challenges.

  • Super-harmonic kernel and sub-harmonic external field
  • Non-locality of fractional Laplacian

Selected Open Problems.

  • Find a simple proof of Riesz formula!
  • When $s=d-3$ with $\alpha\neq2$, we conjecture that the support of the equilibrium measure is a ball if $0<\alpha<2$ and a full dimensional shell (annulus) if $\alpha>2$
  • When $s=d-6$, it could be that the support of the equilibrium measure is disconnected
  • Other norms in kernel and external field

Marcel Riesz (1886 – 1969) is the young brother of Frigyes Riesz (1880 – 1956). I do not known if Naoum Samoilovitch Landkof (1915 – 2004) has ever met in person Marcel Riesz. Landkof was a student of Mikhaïl Alekseïevitch Lavrentiev (1900 – 1980),  who gave his name to the Lavrentiev phenomenon in the calcul of variations. Landkof was an expert in potential theory. He advised Vladimir Alexandrovich Marchenko (1922 – ), famous notably for his findings on random operators and matrices with his student Leonid Pastur (1937 – ).

Further reading.

Photo of Naoum Samoilovitch Landkof
Naoum Samoilovitch Landkof (1915 – 2004)
Leave a Comment

Boltzmann-Gibbs entropic variational principle

Nicolas Léonard Sadi Carnot (1796 - 1932)
Nicolas Léonard Sadi Carnot (1796 – 1932), an Évariste Galois of Physics.

The aim of this short post is to explain why the maximum entropy principle could be better seen as a minimum relative entropy principle, in other words an entropic projection.

Relative entropy. Let $\lambda$ be a reference measure on some measurable space $E$. The relative entropy with respect to $\lambda$ is defined for every measure $\mu$ on $E$ with density $\mathrm{d}\mu/\mathrm{d}\lambda$ by $$\mathrm{H}(\mu\mid\lambda):=\int\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\log\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\mathrm{d}\lambda.$$ If the integral is not well defined, we could simply set $\mathrm{H}(\mu\mid\lambda):=+\infty$.

  • An important case is when $\lambda$ is a probability measure. In this case $\mathrm{H}$ becomes the Kullback-Leibler divergence, and the Jensen inequality for the strictly convex function $u\mapsto u\log(u)$ indicates then that $\mathrm{H}(\mu\mid\lambda)\geq0$ with equality if and only if $\mu=\lambda$.
  • Another important case is when $\lambda$ is the Lebesgue measure on $\mathbb{R}^n$ or the counting measure on a discrete set, then $$-\mathrm{H}(\mu\mid\lambda)$$ is the Boltzmann-Shannon entropy of $\mu$. Beware that when $E=\mathbb{R}^n$, this entropy takes its values in the whole $(-\infty,+\infty)$ since for all positive scale factor $\sigma>0$, denoting $\mu_\sigma$ the push forward of $\mu$ by the dilation $x\mapsto\sigma x$, we have $$\mathrm{H}(\mu_\sigma\mid\lambda)=\mathrm{H}(\mu\mid\lambda)-n\log \sigma.$$

Boltzmann-Gibbs probability measures. Such a probability measure $\mu_{V,\beta}$ takes the form $$\mathrm{d}\mu_{V,\beta}:=\frac{\mathrm{e}^{-\beta V}}{Z_{V,\beta}}\mathrm{d}\lambda$$ where $V:E\mapsto(-\infty,+\infty]$, $\beta\in[0,+\infty)$, and $$Z_{V,\beta}:=\int\mathrm{e}^{-\beta V}\mathrm{d}\lambda<\infty$$ is the normalizing factor. The more $\beta$ is large, the more $\mu_{V,\beta}$ puts its probability mass on the regions where $V$ is low. The corresponding asymptotic analysis, known as the Laplace method, states that as $\beta\to\infty$ the probability measure $\mu_{V,\beta}$ concentrates on the minimizers of $V$.

The mean of $V$ or $V$-moment of $\mu_{V,\beta}$ writes
$$
\int V\mathrm{d}\mu_{V,\beta}
=-\frac{1}{\beta}\mathrm{H}(\mu_{V,\beta}\mid\lambda)-\frac{1}{\beta}\log Z_{V,\beta}.
$$
In thermodynamics $-\frac{1}{\beta}\log Z_{V,\beta}$ appears as a Helmholtz free energy since it is equal to $\int V\mathrm{d}\mu_{V,\beta}$ (mean energy) minus $\frac{1}{\beta}\times-\mathrm{H}(\mu_{V,\beta}\mid\lambda)$ (temperature times entropy).

When $\beta$ ranges from $-\infty$ to $\infty$, the $V$-moment of $\mu_{V,\beta}$ ranges from $\sup V$ downto $\inf V$, and $$\partial_\beta\int V\mathrm{d}\mu_{V,\beta}=\Bigr(\int V\mathrm{d}\mu_{V,\beta}\Bigr)^2-\int V^2\mathrm{d}\mu_{V,\beta}\leq0.$$ If $\lambda(E)<\infty$ then $\mu_{V,0}=\frac{1}{\lambda(E)}\lambda$ and its $V$-moment is $\frac{1}{\lambda(E)}\int V\mathrm{d}\lambda$.

Variational principle. Let $\beta\geq0$ such that $Z_{V,\beta}<\infty$ and $c:=\int V\mathrm{d}\mu_{V,\beta}<\infty$. Then, among all the probability measures $\mu$ on $E$ with same $V$-moment as $\mu_{V,\beta}$, the relative entropy $\mathrm{H}(\mu\mid\lambda)$ is minimized by the Boltzmann-Gibbs measures $\mu_{V,\beta}$. In other words,$$\min_{\int V\mathrm{d}\mu=c}\mathrm{H}(\mu\mid\lambda)=\mathrm{H}(\mu_{V,\beta}\mid\lambda).$$

Indeed we have $$\begin{align*}\mathrm{H}(\mu\mid\lambda)-\mathrm{H}(\mu_{V,\beta}\mid\lambda)&=\int\log\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\mathrm{d}\lambda-\int\log\frac{\mathrm{d}\mu_{V,\beta}}{\mathrm{d}\lambda}\mathrm{d}\mu_{V,\beta}\\&=\int\log\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\mathrm{d}\lambda+\int(\log(Z_{V,\beta})+\beta V)\mathrm{d}\mu_{V,\beta}\\&=\int\log\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\mathrm{d}\lambda+\int(\log(Z_{V,\beta})+\beta V)\mathrm{d}\mu\\&=\int\log\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}\mathrm{d}\lambda-\int\log\frac{\mathrm{d}\mu_{V,\beta}}{\mathrm{d}\lambda}\mathrm{d}\mu\\&=\mathrm{H}(\mu\mid\mu_{V,\beta})\geq0\end{align*}$$ with equality if and only if $\mu=\mu_{V,\beta}$. The crucial point is that $\mu$ and $\mu_{V,\beta}$ are equal on test functions of the form $a+bV$ where $a,b$ are arbitrary real constants, by assumption.

  • When $\lambda$ is the Lebesgue measure on $\mathbb{R}^n$ or the counting measure on a discrete set, we recover the usual maximum Boltzmann-Shannon entropy principe $$\max_{\int V\mathrm{d}\mu=c}-\mathrm{H}(\mu\mid\lambda)=-\mathrm{H}(\mu_{V,\beta}).$$In particular, Gaussians maximize the Boltzmann-Shannon entropy under variance constraint (take for $V$ a quadratic form), while the uniform measures maximize the Boltzmann-Shannon entropy under support constraint (take $V$ constant on a set of finite measure for $\lambda$, and infinity elsewere). Maximum entropy is minimum relative entropy with respect to Lebesgue or counting measure, a way to find, among the probability measures with a moment constraint, the closest to the Lebesgue or counting measure.
  • When $\lambda$ is a probability measure, then we recover the fact that the Boltzmann-Gibbs measures realize the projection or least Kullback-Leibler divergence of $\lambda$ on the set of probability measures with a given $V$-moment. This is the Csiszár $\mathrm{I}$-projection.
  • There are other interesiting applications, for instance when $\lambda$ is a Poisson point process.

Note. The concept of maximum entropy was studied notably by

and by Edwin Thompson Jaynes (1922 – 1998) in relation with thermodynamics, statistical physics, statistical mechanics, information theory, and Bayesian statistics. The concept of I-projection or minimum relative entropy was studied notably by Imre Csiszár (1938 – ).

Related.

Leave a Comment

Comment publier vertueusement ?

RNBMCe petit billet d’information et d’aide à la décision, à destination des mathématiciens, a été préparé par et pour le réseau national des bibliothèques de mathématiques (RNBM).

  1. Pourquoi chercher à publier vertueusement puisqu’il y a Sci-Hub ? D’une part Sci-Hub est illégal, et d’autre part Sci-Hub s’appuie par construction sur les abonnements des établissements académiques à travers le monde. Sci-Hub libère la science d’hier et d’aujourd’hui par une mutalisation pirate, ce qui peut avoir un bon effet systémique à terme. En attendant, une bonne manière de libérer sa propre production scientifique immédiatement, durablement, et légalement est de la déposer dans des dépôts ad hoc comme arXiv, dont le mirroir français est intégré à HAL.
  2. Est-il suffisant de déposer systématiquement sur arXiv ? Le dépôt sur arXiv est toujours bienvenu pour la diffusion ouverte de la science. Mais comme rien ne garantit que la version finale qui a bénéficié du processus éditorial de la revue est sur arXiv, les lecteurs vont souvent préférer la version publiée par la revue lorsqu’elle est accessible. De ce point de vue, la situation idéale est celle des revues en libre accès qui déposent elles-mêmes sur arXiv, ou qui s’appuient sur arXiv comme les épirevues de www.episciences.org par exemple. D’autre part, un certain nombre de revues pratiquent le libre accès pour les auteurs et les lecteurs (libre accès « diamant ») sans passer par arXiv.
  3. Pourquoi ne pas tout faire sur ResearchGate ? ResearchGate est une plateforme semi-fermée de même nature que Facebook, qui n’est pas portée par des institutions académiques, et qui a vocation un jour à monétiser son accès, ses services, et sa base de données. Elle n’aide pas vraiment la science ouverte, bien au contraire.
  4. Quelles sont les revues les plus vertueuses ? Les revues en libre accès à la fois pour les auteurs et les lecteurs, soutenues par une institution académique, et adossées à arXiv, font en général partie des plus vertueuses, bien que certaines fassent appel, pour la gestion éditoriale et la mise aux normes, au bénévolat des chercheurs. À l’opposé, les revues à accès payant ne sont pas toutes à mettre dans le même sac : certaines pratiquent des prix raisonnables, qu’elles soient à but lucratif ou pas. De manière générale, le fonctionnement éditorial d’une revue a un coût, et les différences se font sur le modèle et la politique de financement, d’accès, et de diffusion. Concrètement, pour un chercheur junior qui souhaite publier un article, il est possible d’établir une liste de revues envisageables sur des critères scientifiques, puis de trier cette liste en tenant compte du modèle de chaque revue par rapport à la science ouverte. Un chercheur sénior peut se permettre de viser d’emblée les revues les plus vertueuses sur le plan de la science ouverte, au détriment de leur prestige scientifique, car cela est moins impactant sur son devenir. Et ils peuvent tous déposer leur version finale sur arXiv si la revue ne le fait pas.
  5. Pourquoi il n’est pas vertueux de payer l’éditeur pour libérer l’article à la publication ? C’est le système des APC, pour article processing charges. Comme tout a un coût, l’idée de faire payer l’auteur à l’éditeur pour diffuser librement son article peut séduire. Mais ce paiment de l’auteur ne sera accessible qu’aux auteurs riches ou membres d’institutions riches, et les articles publiés par les moins riches resterons moins diffusés et surtout accessibles uniquement sur abonnement, ce qui fait au bout du compte payer deux fois les institutions académiques. Le modèle du subscribe to open (S2O), qui se développe en ce moment, est de ce point de vue plus vertueux, car il ne fait payer qu’une seule fois les institutions pour la libération de tous les articles.

Note. Pour répondre à une question fréquemment posée, le RNBM, en tant qu’entité de l’Institut des sciences mathématiques du CNRS, ne peut pas faire ouvertement la publicité pour un service illégal comme Sci-Hub ou libgen. En revanche, étant donné l’usage massif de Sci-Hub|libgen à travers le monde et en particulier en France, il est normal que le RNBM en fasse état et en explique les mécanismes et les enjeux. Chaque mathématicien peut souhaiter avoir recours à un service comme Sci-Hub|libgen, parce que cela est efficace, parce que le savoir doit être diffusé, parce que ce type de subversion anarchiste pourrait forcer à terme les multinationales de l’édition mercantile à changer leur système.

Lectures connexes.

Leave a Comment
Syntax · Style · .