Random positive maps

Benoît Collins

Kyoto University & University of Ottawa

Hong Kong, January 2015
Overview

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse)

Outline:
1. Positive maps: why do we care? (a primer of quantum information theory)
2. Random positive maps with random matrices (convergence of the largest eigenvalue).
Overview

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse)
Overview

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse)
Outline:

1. Positive maps: why do we care? (a primer of quantum information theory)
Overview

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse)

Outline:

1. Positive maps: why do we care? (a primer of quantum information theory)
2. Random positive maps with random matrices (convergence of the largest eigenvalue).
Overview

Joint work in preparation with Patrick Hayden (Stanford) and Ion Nechita (CNRS, Toulouse)

Outline:

1. Positive maps: why do we care? (a primer of quantum information theory)
2. Random positive maps with random matrices (convergence of the largest eigenvalue).
Quantum information: a primer

- A *quantum system* is a Hilbert space \mathbb{C}^n. Its set of *states* $D(\mathbb{C}^n) = D_n$ is the collection of positive trace one matrices of $\mathcal{M}_n(\mathbb{C})$.
A quantum system is a Hilbert space \mathbb{C}^n. Its set of states $D(\mathbb{C}^n) = D_n$ is the collection of positive trace one matrices of $\mathcal{M}_n(\mathbb{C})$.

Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2}$.

A very important set (resource for quantum computing, etc.).
Quantum information: a primer

- A *quantum system* is a Hilbert space \mathbb{C}^n. Its set of *states* $D(\mathbb{C}^n) = D_n$ is the collection of positive trace one matrices of $\mathcal{M}_n(\mathbb{C})$.

- Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2}$.

- *Separable states* $\text{Sep}(n_1, n_2) := \text{Conv}(D_{n_1} \otimes D_{n_2})$. This is a convex body.
A quantum system is a Hilbert space \mathbb{C}^n. Its set of states $D(\mathbb{C}^n) = D_n$ is the collection of positive trace one matrices of $\mathcal{M}_n(\mathbb{C})$.

Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2}$.

Separable states $\text{Sep}(n_1, n_2) := \text{Conv}(D_{n_1} \otimes D_{n_2})$. This is a convex body.

Although, $\text{Sep}(n_1, n_2) \subset D(n_1 n_2)$, $\text{Sep}(n_1, n_2) \neq D(n_1 n_2)$ unless n_1 or n_2 is 1.
A quantum system is a Hilbert space \mathbb{C}^n. Its set of states $D(\mathbb{C}^n) = D_n$ is the collection of positive trace one matrices of $\mathcal{M}_n(\mathbb{C})$.

Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2}$.

Separable states $\text{Sep}(n_1, n_2) := \text{Conv}(D_{n_1} \otimes D_{n_2})$. This is a convex body.

Although, $\text{Sep}(n_1, n_2) \subset D(n_1 n_2)$, $\text{Sep}(n_1, n_2) \neq D(n_1 n_2)$ unless n_1 or n_2 is 1.

Entangled states $\text{Ent}(n_1, n_2) := D(n_1 n_2) - \text{Sep}(n_1, n_2)$.
Quantum information: a primer

- A quantum system is a Hilbert space \mathbb{C}^n. Its set of states $D(\mathbb{C}^n) = D_n$ is the collection of positive trace one matrices of $\mathcal{M}_n(\mathbb{C})$.
- Two (disjoint) quantum systems can be combined into one by taking the Hilbert tensor product: $\mathbb{C}^{n_1} \otimes \mathbb{C}^{n_2}$.
- Separable states $\text{Sep}(n_1, n_2) := \text{Conv}(D_{n_1} \otimes D_{n_2})$. This is a convex body.
- Although, $\text{Sep}(n_1, n_2) \subset D(n_1 n_2)$, $\text{Sep}(n_1, n_2) \neq D(n_1 n_2)$ unless n_1 or n_2 is 1.
- Entangled states $\text{Ent}(n_1, n_2) := D(n_1 n_2) - \text{Sep}(n_1, n_2)$. A very important set (resource for quantum computing, etc).
Quantum information: positive maps

- A positive map is a linear map $\mathcal{M}_{n_1}(\mathbb{C}) \rightarrow \mathcal{M}_{n_2}(\mathbb{C})$ that takes positive matrices to positive matrices.
Quantum information: positive maps

A positive map is a linear map $\mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_2}(\mathbb{C})$ that takes positive matrices to positive matrices.

For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.

Φ_1 is k-positive for all k whereas Φ_2 is 'only' 1-positive.

A map that is positive for all k is called completely positive.
A positive map is a linear map $\mathcal{M}_{n_1}(\mathbb{C}) \rightarrow \mathcal{M}_{n_2}(\mathbb{C})$ that takes positive matrices to positive matrices.

For example: $\Phi_1 : X \rightarrow AXA^*$, or a convex combination thereof.

Or, $\Phi_2 : X \rightarrow X^t$ (the matrix transpose).
Quantum information: positive maps

- A positive map is a linear map $\mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_2}(\mathbb{C})$ that takes positive matrices to positive matrices.
- For example: $\Phi_1 : X \to AXA^*$, or a convex combination thereof.
- Or, $\Phi_2 : X \to X^t$ (the matrix transpose).
- Both examples are very different:
A positive map is a linear map $\mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_2}(\mathbb{C})$ that takes positive matrices to positive matrices.

For example: $\Phi_1 : X \rightarrow AXA^*$, or a convex combination thereof.

Or, $\Phi_2 : X \rightarrow X^t$ (the matrix transpose).

Both examples are very different: although $\Phi_1 \otimes I_k : \mathcal{M}_n(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C})$ remains positive for all k, this is not the case for Φ_2.
A positive map is a linear map $\mathcal{M}_{n_1}(\mathbb{C}) \rightarrow \mathcal{M}_{n_2}(\mathbb{C})$ that takes positive matrices to positive matrices.

For example: $\Phi_1 : X \rightarrow AXA^*$, or a convex combination thereof.

Or, $\Phi_2 : X \rightarrow X^t$ (the matrix transpose).

Both examples are very different: although $\Phi_1 \otimes I_k : \mathcal{M}_n(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C}) \rightarrow \mathcal{M}_n(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C})$ remains positive for all k, this is not the case for Φ_2.

Φ_1 is k-positive for all k whereas Φ_2 is ‘only’ 1-positive.
A positive map is a linear map $\mathcal{M}_{n_1}(\mathbb{C}) \rightarrow \mathcal{M}_{n_2}(\mathbb{C})$ that takes positive matrices to positive matrices.

For example: $\Phi_1 : X \rightarrow AXA^*$, or a convex combination thereof.

Or, $\Phi_2 : X \rightarrow X^t$ (the matrix transpose).

Both examples are very different: although $\Phi_1 \otimes I_k : \mathcal{M}_n(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C}) \rightarrow \mathcal{M}_n(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C})$ remains positive for all k, this is not the case for Φ_2.

Φ_1 is k-positive for all k whereas Φ_2 is ‘only’ 1-positive.

A map that is positive for all k is called completely positive.
Quantum information: positive maps

- Paradoxically, completely positive maps are easier to classify than ‘just’ positive maps. They are all of the form $X \rightarrow \sum_i A_i X A_i^*$ (a variant of Stinespring theorem).
Paradoxically, completely positive maps are easier to classify than ‘just’ positive maps. They are all of the form $X \rightarrow \sum_i A_i X A_i^*$ (a variant of Stinespring theorem).

On the other hand, positive maps are still completely unclassified.
Quantum information: positive maps

- Paradoxically, completely positive maps are easier to classify than ‘just’ positive maps. They are all of the form $X \rightarrow \sum_i A_i X A_i^*$ (a variant of Stinespring theorem).
- On the other hand, positive maps are still completely unclassified.
 (roughly speaking) The only final results available are: maps from $\mathcal{M}_{n_1}(\mathbb{C}) \rightarrow \mathcal{M}_{n_2}(\mathbb{C})$ with $(n_1, n_2) = \{(1, n); (n, 1); (2, 2); (2, 3); (3, 2)\}$ are positive iff they are CP.
Quantum information: positive maps

- If $\rho \in \text{Sep}(n_1, n_2)$ and $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_3}(\mathbb{C})$ is positive then $\Phi \otimes I_{n_2}(\rho)$ is positive.
Quantum information: positive maps

- If $\rho \in \text{Sep}(n_1, n_2)$ and $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_3}(\mathbb{C})$ is positive then $\Phi \otimes I_{n_2}(\rho)$ is positive (because a tensor and a convex combination of positive matrices is positive).
Quantum information: positive maps

- If $\rho \in \text{Sep}(n_1, n_2)$ and $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \rightarrow \mathcal{M}_{n_3}(\mathbb{C})$ is positive then $\Phi \otimes I_{n_2}(\rho)$ is positive (because a tensor and a convex combination of positive matrices is positive).

- However, if $\rho \in \text{Ent}(n_1, n_2)$ then $\Phi \otimes I_{n_2}(\rho)$ could in principle fail to be positive.
Quantum information: positive maps

- If $\rho \in \text{Sep}(n_1, n_2)$ and $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_3}(\mathbb{C})$ is positive then $\Phi \otimes I_{n_2}(\rho)$ is positive (because a tensor and a convex combination of positive matrices is positive).

- However, if $\rho \in \text{Ent}(n_1, n_2)$ then $\Phi \otimes I_{n_2}(\rho)$ could in principle fail to be positive.

- But a failure to be positive can’t happen if Φ is CP by definition.
Quantum information: positive maps

- If $\rho \in \text{Sep}(n_1, n_2)$ and $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_3}(\mathbb{C})$ is positive then $\Phi \otimes I_{n_2}(\rho)$ is positive (because a tensor and a convex combination of positive matrices is positive).

- However, if $\rho \in \text{Ent}(n_1, n_2)$ then $\Phi \otimes I_{n_2}(\rho)$ could in principle fail to be positive.

- But a failure to be positive can’t happen if Φ is CP by definition.

So, trying to find positive but not completely positive maps is a strategy to witness entanglement.
Example: the PPT (positive partial transpose) test, with the transpose map.
Example: the PPT (positive partial transpose) test, with the transpose map.

The following state is not separable in $\mathcal{M}_2(\mathbb{C}) \otimes \mathcal{M}_2(\mathbb{C})$

\[
\begin{pmatrix}
0.2 & 0 & 0 & 0 \\
0 & 0.3 & 0.3 & 0 \\
0 & 0.3 & 0.3 & 0 \\
0 & 0 & 0 & 0.2
\end{pmatrix}
\]
A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that $\Phi \otimes ld(\rho)$ fails to be positive.
Quantum information: entanglement witness

- A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that $\Phi \otimes Id(\rho)$ fails to be positive.
- However, the transpose is not enough!
Quantum information: entanglement witness

- A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that $\Phi \otimes \text{Id}(\rho)$ fails to be positive.
- However, the transpose is not enough!
 We need to find more examples of ‘more’ positive maps. This is a hard task.
A corollary of Hahn Banach theorem is that, for every entangled state ρ there exists a positive map Φ such that $\Phi \otimes \text{Id}(\rho)$ fails to be positive.

However, the transpose is not enough!
We need to find more examples of ‘more’ positive maps. This is a hard task.

RMT can help.
Choi matrix

To a linear map $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_2}(\mathbb{C})$ we associate its Choi matrix $C_\Phi \in \mathcal{M}_{n_1}(\mathbb{C}) \otimes \mathcal{M}_{n_2}(\mathbb{C})$ given by

$$C_\Phi := \sum E_{ij} \otimes \Phi(E_{ij})$$
Choi matrix

- To a linear map $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \rightarrow \mathcal{M}_{n_2}(\mathbb{C})$ we associate its Choi matrix $C_{\Phi} \in \mathcal{M}_{n_1}(\mathbb{C}) \otimes \mathcal{M}_{n_2}(\mathbb{C})$ given by

$$C_{\Phi} := \sum E_{ij} \otimes \Phi(E_{ij})$$

(This is a new encoding of the map).

- Theorem (Choi, 70’s): Φ is completely positive iff C_{Φ} is positive.
To a linear map $\Phi : \mathcal{M}_{n_1}(\mathbb{C}) \to \mathcal{M}_{n_2}(\mathbb{C})$ we associate its Choi matrix $C_\Phi \in \mathcal{M}_{n_1}(\mathbb{C}) \otimes \mathcal{M}_{n_2}(\mathbb{C})$ given by

$$C_\Phi := \sum E_{ij} \otimes \Phi(E_{ij})$$

(This is a new encoding of the map).

Theorem (Choi, 70’s): Φ is completely positive iff C_Φ is positive.

More recently: Φ is positive iff $p \otimes 1_{n_2} C_\Phi p \otimes 1_{n_2}$ is positive.
One toy random example

- In $\mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$, we pick X a GUE centered at 1 and of variance a.
One toy random example

- In $\mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$, we pick X a GUE centered at 1 and of variance a.
 Its eigenvalue distribution is (close to) a semi-circle distribution on the interval $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$.
One toy random example

- In $\mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$, we pick X a GUE centered at 1 and of variance a. Its eigenvalue distribution is (close to) a semi-circle distribution on the interval $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$.
- Let p be a rank 1 projection in $\mathcal{M}_k(\mathbb{C})$.

One toy random example

- In \(\mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C}) \), we pick \(X \) a GUE centered at 1 and of variance \(a \).

 Its eigenvalue distribution is (close to) a semi-circle distribution on the interval \([1 - 2\sqrt{a}, 1 + 2\sqrt{a}]\).

- Let \(p \) be a rank 1 projection in \(\mathcal{M}_k(\mathbb{C}) \). Then, the non-trivial eigenvalues of
 \[
p \otimes 1_n \cdot C_{\Phi} \cdot p \otimes 1_n
 \]
 follow a GUE centered at 1 and of variance \(a/k \).
One toy random example

- In $\mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$, we pick X a GUE centered at 1 and of variance a.
 Its eigenvalue distribution is (close to) a semi-circle distribution on the interval $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$.
- Let p be a rank 1 projection in $\mathcal{M}_k(\mathbb{C})$. Then, the non-trivial eigenvalues of
 $$p \otimes 1_n \cdot C_\phi \cdot p \otimes 1_n$$
follow a GUE centered at 1 and of variance a/k.
That is, the eigenvalues are located in a semi-circle distribution on the interval $[1 - 2\sqrt{a/k}, 1 + 2\sqrt{a/k}]$.
One toy random example

- Fixing k, if we construct a (random) map $\Phi : \mathcal{M}_k(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ whose Choi matrix is X.

And if a is such that $1 - 2\sqrt{a/k} > 0$, with probability tending to 1 as n becomes large, we obtain a random positive map.

[largest eigenvalue convergence + ε-net + union bound argument]

In addition, if $1 - 2\sqrt{a/k} < 0$, Φ is not completely positive with probability tending to 1 as n becomes large, therefore it 'detects' many entangled states.
Fixing k, if we construct a (random) map
$\Phi : \mathcal{M}_k(\mathbb{C}) \rightarrow \mathcal{M}_n(\mathbb{C})$ whose Choi matrix is X.
And if a is such that $1 - 2\sqrt{a/k} > 0$,
One toy random example

Fixing k, if we construct a (random) map
$\Phi : \mathcal{M}_k(\mathbb{C}) \rightarrow \mathcal{M}_n(\mathbb{C})$ whose Choi matrix is X.
And if a is such that $1 - 2\sqrt{a/k} > 0$,
with probability tending to 1 as n becomes large, we obtain a random positive map.
One toy random example

- Fixing k, if we construct a (random) map \(\Phi : M_k(\mathbb{C}) \to M_n(\mathbb{C}) \) whose Choi matrix is X.
 And if a is such that $1 - 2\sqrt{a/k} > 0$, with probability tending to 1 as n becomes large, we obtain a random positive map.
 [largest eigenvalue convergence + ε-net + union bound argument]
One toy random example

- Fixing k, if we construct a (random) map $\Phi : \mathcal{M}_k(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ whose Choi matrix is X.
And if a is such that $1 - 2\sqrt{a/k} > 0$, with probability tending to 1 as n becomes large, we obtain a random positive map.

[largest eigenvalue convergence + ε-net + union bound argument]

- In addition, if $1 - 2\sqrt{a} < 0$, Φ is not completely positive with probability tending to 1 as n becomes large, therefore it ‘detects’ many entangled states.
Generalization of this example

- Let μ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for l large enough, $\mu \boxplus l$ has positive support.
- Picking a random selfadjoint matrix $X \in M_k(C) \otimes M_n(C)$ with random eigenvectors ($UXU^* \sim X$) whose eigenvalue distribution converges strongly to μ yields a random map whose Choi map is X.
- If $l > l$, this map is positive with probability one as $n \to \infty$.
- [uses C & Male's strong convergence for random unitaries]
Generalization of this example

- Let μ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for l large enough, $\mu^\boxplus l$ has positive support.
Generalization of this example

- Let μ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for l large enough, $\mu \boxplus l$ has positive support.
- Picking a random selfadjoint matrix $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ with random eigenvectors $(UXU^* \sim X)$ whose eigenvalue distribution converges strongly to μ yields a random map whose Choi map is X. If $l > l$, this map is positive with probability one as $n \to \infty$.

[Uses C & Male's strong convergence for random unitaries]
Generalization of this example

- Let μ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for l large enough, $\mu^{\boxplus l}$ has positive support.
- Picking a random selfadjoint matrix $X \in M_k(\mathbb{C}) \otimes M_n(\mathbb{C})$ with random eigenvectors $(UXU^* \sim X)$ whose eigenvalue distribution converges strongly to μ yields a random map whose Choi map is X.
- If $l > l$, this map is positive with probability one as $n \to \infty$.

[uses C & Male's strong convergence for random unitaries]
Generalization of this example

- Let μ be a compactly supported real probability measure of 1st moment > 0.
- The free CLT and super convergence (Bercovici Voiculescu) imply that for l large enough, $\mu^\boxplus l$ has positive support.
- Picking a random selfadjoint matrix $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ with random eigenvectors ($UXU^* \sim X$) whose eigenvalue distribution converges strongly to μ yields a random map whose Choi map is X.
- If $l > l$, this map is positive with probability one as $n \to \infty$. [uses C & Male’s strong convergence for random unitaries]
How useful are these examples?

We focus on the non-centered GUE case (we can’t study the efficiency of the other models at this time).
How useful are these examples?

We focus on the non-centered GUE case (we can’t study the efficiency of the other models at this time).
Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞.

Set $\alpha = 2\sqrt{a}$.

X is positive with probability one as $n \to \infty$ as soon as $0 < \alpha < 1$.

X is PPT with probability one as $n \to \infty$ as soon as $0 < \alpha < 1$.

PPT states and general states have typical size – i.e. PPT is not so efficient in large dimension to detect entanglement.
How useful are these examples?

We focus on the non-centered GUE case (we can’t study the efficiency of the other models at this time).

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

- X is positive with probability one as $n \to \infty$ as soon as $0 < \alpha < 1$.
How useful are these examples?

We focus on the non-centered GUE case (we can’t study the efficiency of the other models at this time).

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

- X is positive with probability one as $n \to \infty$ as soon as $0 < \alpha < 1$.
- X is PPT with probability one as $n \to \infty$ as soon as $0 < \alpha < 1$.

PPT states and general states have typical size – i.e. PPT is not so efficient in large dimension to detect entanglement.
How useful are these examples?

We focus on the non-centered GUE case (we can’t study the efficiency of the other models at this time).

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

- X is positive with probability one as $n \to \infty$ as soon as $0 < \alpha < 1$.
- X is PPT with probability one as $n \to \infty$ as soon as $0 < \alpha < 1$.
- PPT states and general states have typical size – i.e. PPT is not so efficient in large dimension to detect entanglement.
How useful are these examples?

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.
How useful are these examples?

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > \frac{4}{\sqrt{k}}$, X is PPT but not separable.
- If $\alpha < \sqrt{\frac{k}{2(k-1) + \sqrt{k}}}$, X is separable.

The criterion starts to become useful when $k > 16$.

In both cases, α is of order C/\sqrt{k}.

The order C/\sqrt{k} is optimal.

We use the non-centered GUE random positive maps exhibited earlier to prove this result.

Conclusion: Random maps are much more efficient than PPT.
How useful are these examples?

Let X be a *GUE* as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k - 1) + \sqrt{k})$, X is separable.
How useful are these examples?

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k - 1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when $k > 16$.

In both cases, α is of order C/\sqrt{k}. The order C/\sqrt{k} is optimal.

We use the non-centered GUE random positive maps exhibited earlier to prove this result.

Conclusion: Random maps are much more efficient than PPT.
How useful are these examples?

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k - 1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when $k > 16$.
- In both cases, α is of order C/\sqrt{k}.
How useful are these examples?

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k - 1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when $k > 16$.
- In both cases, α is of order C/\sqrt{k}. The order C/\sqrt{k} is optimal.
How useful are these examples?

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k - 1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when $k > 16$.
- In both cases, α is of order C/\sqrt{k}. The order C/\sqrt{k} is optimal. We use the non-centered GUE random positive maps exhibited earlier to prove this result.

Conclusion: Random maps are much more efficient than PPT.
How useful are these examples?

Let X be a GUE as above: $X \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_n(\mathbb{C})$ its eigenvalues are approximately in $[1 - 2\sqrt{a}, 1 + 2\sqrt{a}]$. k is fixed, n tends to ∞. Set $\alpha = 2\sqrt{a}$.

With probability one, as $n \to \infty$:

- With $1 > \alpha > 4/\sqrt{k}$, X is PPT but not separable.
- If $\alpha < \sqrt{k}/(2(k - 1) + \sqrt{k})$, X is separable.
- The criterion starts to become useful when $k > 16$.
- In both cases, α is of order C/\sqrt{k}. The order C/\sqrt{k} is optimal. We use the non-centered GUE random positive maps exhibited earlier to prove this result.
- Conclusion: Random maps are much more efficient than PPT.
Thank you!