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Classical limit theorem for random walks

Let {Zi} be iid random variables (R-valued) and

Sn = X1 + · · ·+Xn.

Question

When does anSn + bn converge in law as n → ∞ for some deterministic

sequences an > 0 and bn ∈ R?

The answer is well known (Lévy, Khintchine,...):

(1) the possible limit distributions of anSn + bn are stable distributions

and delta measures;

(2) Given a stable distribution µ, a necessary and sufficient condition for

the convergence anSn + bn ⇒ µ for some an, bn can be given in terms

of X1.

Reference: Gnedenko & Kolmogorov’s book
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Limit theorem for Lévy processes

A continuous-time version is, for a (additive) Lévy process {Xt} on R,

Question

When does a(t)Xt + b(t) converge in law as t → ∞ for some deterministic

functions a(t) > 0 and b(t) ∈ R?

[Bertoin 96, Doney & Maller 02, de Weert 03]

(1) the possible limit distributions of a(t)Xt + b(t) are stable distributions

and delta measures;

(2) given a stable distribution, a necessary and sufficient condition for the

convergence is known.

We can also discuss the convergence as t → 0. Then similar results hold

(Maller & Mason 09)
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Free Lévy processes

In free probability, we have free (additive) Lévy processes. They can

be realized as large dimensional limits of some Hermitian

matrix-valued, unitarily invariant Lévy processes [Perez &

Perez-Abreu & Rocha-Arteaga]

There is a homeomorphism (Bercovici-Pata bijection) between

classical ID distributions and free ID distributions, so the complete

analogy holds for limits of free Lévy processes.
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Multiplicative free LP in large times

Classical multiplicative Lévy processes {Mt} on the multiplicative group

(0,∞) can also be defined, but it eventually means Xt := logMt is an

additive LP. Note that

log eb(t)(Mt)
a(t) = a(t)Xt + b(t).

However, in free probability, a very different phenomenon is known:

Theorem ((Special case of) Tucci 10, Haagerup & Moeller 13)

Let {Nt} be a multiplicative free LP (then Nt ∼ µ⊠t where N1 ∼ µ). Then

Law of (Nt)
1/t ⇒ ν (t → ∞),

where ν([0, x]) = S−1
N1

(1/x) + 1. (SX is the S-transform of X)

In particular, the map ”Law of N1 7→ ν ” is injective. The limit

distributions are not universal
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Multiplicative FLP in small times

Selected examples among our results

Theorem (1)

Let {Nt} be a multiplicative free LP such that SN1(z) = e(−z)α−1
,

1 < α ≤ 2. Then

(Nt)
t−1/α d⇒ eSα , t → 0,

where Sα has a one-sided free α-stable law. In particular, S2 follows the

standard semicircle law.

Theorem (2)

Let {Nt} be a multiplicative free LP such that SN1(z) =
1

λ+z , λ ≥ 1,

namely N1 follows the Marchenko-Pastur law. Then

Law of t(Nt)
1/t ⇒ DH, t → 0.
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Theorem (2)

Let {Nt} be a multiplicative free LP such that SN1(z) =
1

λ+z , λ ≥ 1,

namely N1 follows the Marchenko-Pastur law. Then

Law of t(Nt)
1/t ⇒ DH, t → 0.

[Dykema & Haagerup 04]

DH has moments nn

(n+1)! & support [0, e] & an implicit density

Let {tij}1≤i<j≤N be indep. complex Gaussian, mean 0 and var. 1/n;

TN :=



0 t12 t13 · · · t1,N−1 t1N
0 0 t23 · · · t2,N−1 t2N
0 0 0 · · · t3,N−1 t3N
...

...
. . .

...

0 0 0 · · · 0 tN−1,N

0 0 0 · · · 0 0


.

Then the mean empirical eigenvalue distr. of T ∗
NTN ⇒ DH (N → ∞).
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By computation of the densify functions we found that:

Proposition

If X follows the free 1-stable law supported on (−∞, 1] then

eX ∼ DH.

This means that the empirical eigenvalue distribution of log(T ∗
NTN )

converges to the free 1-stable law.

Recall that the semicircle law 1
2π

√
4− x2 on [−2, 2] (free 2-stable)

has a RM model (e.g. Wigner matrix)

Question

Do other free stable distributions have RM models?
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Summary

For classical additive LPs (Xt), the limit distr. of a(t)Xt + b(t)

(t → ∞ or 0), if exists, is stable.

For classical multiplicative LPs (Mt), the limit distr. of eb(t)(Mt)
a(t)

(t → ∞ or 0), if exists, is of the form eS , where S ∼ stable.

For free additive LPs (Yt), the limit distr. of a(t)Yt + b(t) (t → ∞ or

0), if exists, is free stable.

For free multiplicative LPs (Nt), the limit distr. of (Nt)
1/t (t → ∞)

always exists and is not universal.

Conjecture (after our examples)

For free multiplicative LPs (Nt), the limit distr. of eb(t)(Nt)
a(t) (t → 0), if

exists, must be eS , where S ∼ free stable.
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