Free Lévy processes in large and small time limits

Takahiro Hasebe (Hokkaido Univ.)

Joint work with Octavio Arizmendi (CIMAT)

May 21, 2018, Kyoto

.

Classical limit theorem for random walks

Let $\{Z_i\}$ be iid random variables (\mathbb{R} -valued) and

$$S_n = X_1 + \dots + X_n.$$

Question

When does $a_nS_n + b_n$ converge in law as $n \to \infty$ for some deterministic sequences $a_n > 0$ and $b_n \in \mathbb{R}$?

The answer is well known (Lévy, Khintchine,...):

- (1) the possible limit distributions of $a_nS_n + b_n$ are stable distributions and delta measures;
- (2) Given a stable distribution μ , a necessary and sufficient condition for the convergence $a_nS_n + b_n \Rightarrow \mu$ for some a_n, b_n can be given in terms of X_1 .

Reference: Gnedenko & Kolmogorov's book

Limit theorem for Lévy processes

A continuous-time version is, for a (additive) Lévy process $\{X_t\}$ on \mathbb{R} ,

Question

When does $a(t)X_t + b(t)$ converge in law as $t \to \infty$ for some deterministic functions a(t) > 0 and $b(t) \in \mathbb{R}$?

[Bertoin 96, Doney & Maller 02, de Weert 03]

- (1) the possible limit distributions of $a(t)X_t + b(t)$ are stable distributions and delta measures;
- (2) given a stable distribution, a necessary and sufficient condition for the convergence is known.

We can also discuss the convergence as $t \to 0$. Then similar results hold (Maller & Mason 09)

イロト イポト イヨト イヨト

Free Lévy processes

- In free probability, we have free (additive) Lévy processes. They can be realized as large dimensional limits of some Hermitian matrix-valued, unitarily invariant Lévy processes [Perez & Perez-Abreu & Rocha-Arteaga]
- There is a homeomorphism (Bercovici-Pata bijection) between classical ID distributions and free ID distributions, so the complete analogy holds for limits of free Lévy processes.

Multiplicative free LP in large times

Classical multiplicative Lévy processes $\{M_t\}$ on the multiplicative group $(0, \infty)$ can also be defined, but it eventually means $X_t := \log M_t$ is an additive LP. Note that

$$\log e^{b(t)} (M_t)^{a(t)} = a(t)X_t + b(t).$$

However, in free probability, a very different phenomenon is known:

Theorem ((Special case of) Tucci 10, Haagerup & Moeller 13) Let $\{N_t\}$ be a multiplicative free LP (then $N_t \sim \mu^{\boxtimes t}$ where $N_1 \sim \mu$). Then

Law of
$$(N_t)^{1/t} \Rightarrow \nu$$
 $(t \to \infty)$,

where $\nu([0,x]) = S_{N_1}^{-1}(1/x) + 1$. (S_X is the S-transform of X)

In particular, the map "Law of $N_1 \mapsto \nu$ " is injective. The limit distributions are not universal

Multiplicative FLP in small times

Selected examples among our results

Theorem (1)

Let $\{N_t\}$ be a multiplicative free LP such that $S_{N_1}(z) = e^{(-z)^{\alpha-1}}$, $1 < \alpha \leq 2$. Then

$$(N_t)^{t^{-1/\alpha}} \stackrel{\mathrm{d}}{\Rightarrow} e^{S_\alpha}, \qquad t \to 0,$$

where S_{α} has a one-sided free α -stable law. In particular, S_2 follows the standard semicircle law.

Theorem (2)

Let $\{N_t\}$ be a multiplicative free LP such that $S_{N_1}(z) = \frac{1}{\lambda+z}, \lambda \ge 1$, namely N_1 follows the Marchenko-Pastur law. Then Law of $t(N_t)^{1/t} \Rightarrow DH$, $t \to 0$.

Theorem (2)

Let $\{N_t\}$ be a multiplicative free LP such that $S_{N_1}(z) = \frac{1}{\lambda + z}$, $\lambda \ge 1$, namely N_1 follows the Marchenko-Pastur law. Then Law of $t(N_t)^{1/t} \Rightarrow DH$, $t \to 0$.

[Dykema & Haagerup 04]

- $\bullet~{\rm DH}$ has moments $\frac{n^n}{(n+1)!}$ & support [0,e] & an implicit density
- Let $\{t_{ij}\}_{1 \le i < j \le N}$ be indep. complex Gaussian, mean 0 and var. 1/n;

$$T_N := \begin{pmatrix} 0 & t_{12} & t_{13} & \cdots & t_{1,N-1} & t_{1N} \\ 0 & 0 & t_{23} & \cdots & t_{2,N-1} & t_{2N} \\ 0 & 0 & 0 & \cdots & t_{3,N-1} & t_{3N} \\ \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & t_{N-1,N} \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Then the mean empirical eigenvalue distr. of $T_N^*T_N \Rightarrow DH (N \to \infty)$.

By computation of the densify functions we found that:

Proposition

If X follows the free 1-stable law supported on $(-\infty,1]$ then $e^X \sim \mathrm{DH}.$

- This means that the empirical eigenvalue distribution of $\log(T_N^*T_N)$ converges to the free 1-stable law.
- Recall that the semicircle law $\frac{1}{2\pi}\sqrt{4-x^2}$ on [-2,2] (free 2-stable) has a RM model (e.g. Wigner matrix)

Question

Do other free stable distributions have RM models?

Summary

- For classical additive LPs (X_t) , the limit distr. of $a(t)X_t + b(t)$ $(t \to \infty \text{ or } 0)$, if exists, is stable.
- For classical multiplicative LPs (M_t) , the limit distr. of $e^{b(t)}(M_t)^{a(t)}$ $(t \to \infty \text{ or } 0)$, if exists, is of the form e^S , where $S \sim$ stable.
- For free additive LPs (Y_t) , the limit distr. of $a(t)Y_t + b(t)$ $(t \to \infty \text{ or } 0)$, if exists, is free stable.
- For free multiplicative LPs (N_t) , the limit distr. of $(N_t)^{1/t}$ $(t \to \infty)$ always exists and is not universal.

Conjecture (after our examples)

For free multiplicative LPs (N_t) , the limit distr. of $e^{b(t)}(N_t)^{a(t)}$ $(t \to 0)$, if exists, must be e^S , where $S \sim$ free stable.

イロト イポト イヨト イヨト

References

- Free probability

- 1. O. Arizmendi and T. Hasebe, Limit theorems for free Lévy processes, arXiv:1711.10220.
- H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability theory (with an appendix by Philippe Biane), Ann. of Math.
 (2) 149, No. 3 (1999), 1023–1060.
- K. Dykema and U. Haagerup, DT-operators and decomposability of Voiculescu's circular operator, Amer. J. Math. 126(1) (2004), 121–189.

- Classical probability

- 1. R.A. Doney and R.A. Maller, Stability and attraction to normality for Levy processes at zero and infinity, J. Theor. Prob. 15 (2002), 751–792.
- 2. B.V. Gnedenko and A.N. Kolmogorov, *Limit Distributions for Sums of Independent Random Variables*, Addison-Wesley Publ. Co., Inc., 1954.
- F.J. de Weert, Attraction to stable distributions for Levy processes at zero, M. Phil thesis, Univ. Manchester, 2003.