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States (Phases) of Matter

Source: www.nasa.gov
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States (Phases) of Matter

Source: www.nasa.gov

We now know there are a multitude of distinguishable states of matter, e.g.,

quasicrystals and liquid crystals , which break the continuous translational

and rotational symmetries of a liquid differently from a sol id crystal .
. – p. 2/40



What Qualifies as a Distinguishable State of Matter?

Traditional Criteria

Homogeneous phase in thermodynamic equilibrium

Interacting entities are microscopic objects, e.g. atoms, molecules or spins

Often, phases are distinguished by symmetry-breaking and/or some

qualitative change in some bulk property
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Often, phases are distinguished by symmetry-breaking and/or some

qualitative change in some bulk property

Broader Criteria

Reproducible quenched/long-lived metastable or nonequilibrium phases, e.g.,

spin glasses and structural glasses

Interacting entities need not be microscopic, but can inclu de building blocks

across a wide range of length scales, e.g., colloids and metamaterials

Endowed with unique properties

New states of matter become more compelling if they:

Give rise to or require new ideas and/or experimental/theor etical tools

Technologically important
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HYPERUNIFORMITY

A hyperuniform many-particle system is one in which normalized density

fluctuations are completely suppressed at very large lengths scales .
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Disordered hyperuniform many-particle systems can be regarded to be new

ideal states of disordered matter in that they

(i) behave more like crystals or quasicrystals in the manner in which they

suppress large-scale density fluctuations , and yet are also like liquids and

glasses because they are statistically isotropic structures with n o Bragg

peaks ;

(ii) can exist as both as equilibrium and quenched nonequilibrium phases ;
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HYPERUNIFORMITY

A hyperuniform many-particle system is one in which normalized density

fluctuations are completely suppressed at very large lengths scales .

Disordered hyperuniform many-particle systems can be regarded to be new

ideal states of disordered matter in that they

(i) behave more like crystals or quasicrystals in the manner in which they

suppress large-scale density fluctuations , and yet are also like liquids and

glasses because they are statistically isotropic structures with n o Bragg

peaks ;

(ii) can exist as both as equilibrium and quenched nonequilibrium phases ;

(iii) and, appear to be endowed with unique bulk physical properties .

Understanding such states of matter, which have technologi cal importance, require

new theoretical tools.

All perfect crystals (periodic systems) and quasicrystals are hyperuniform.

Thus, hyperuniformity provides a unified means of categorizing and

characterizing crystals, quasicrystals and such special disordered systems.
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Definitions
A point process in d-dimensional Euclidean space R

d is a distribution of an

infinite number of points in R
d with configuration r1, r2, . . . with a

well-defined number density ρ (number of points per unit volume). This is

statistically described by the n-particle correlation function gn(r1, , . . . , rn).

A lattice L in d-dimensional Euclidean space R
d is the set of points that are

integer linear combinations of d basis (linearly independent) vectors ai, i.e.,

{n1a1 + n2a2 + · · · + ndad | n1, . . . , nd ∈ Z}

The space R
d can be geometrically divided into identical regions F called

fundamental cells , each of which contains just one point. For example, in R
2:

Every lattice L has a dual (or reciprocal) lattice L∗.

A periodic point distribution in R
d is a fixed but arbitrary configuration of N

points ( N ≥ 1) in each fundamental cell of a lattice.
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Definitions
For statistically homogeneous and isotropic point process es in R

d at number density ρ , g2(r) is

a nonnegative radial function that is proportional to the probability density of pair distances r.

We call

h(r) ≡ g2(r) − 1

the total correlation function .

When there is no long-range order in the system, h(r) → 0 [or g2(r) → 1 ] in the large-r limit .

We call a point process disordered if h(r) tends to zero sufficiently rapidly such that it is

integrable over all space .

The nonnegative structure factor S(k) is defined in terms of the Fourier transform of h(r), which

we denote by h̃(k):

S(k) ≡ 1 + ρh̃(k),

where k denotes wavenumber .

When there is no long-range order in the system, S(k) → 1 in the large- k limit, the dual-space

analog of the aforementioned direct space condition.

In some generalized sense, S(k) can be viewed as a probability density of pair distances of

“points” in reciprocal space .
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Pair Statistics for Spatially Uncorrelated and Ordered Point Processes

Poisson Distribution (Ideal Gas)
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Curiosities
Disordered jammed packings
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40,000−particle random

φ=0.632

jammed packing

S(k) appears to vanish in the limit k → 0: very unusual behavior for a

disordered system .

Harrison-Zeldovich spectrum for density fluctuations in the early Universe:

S(k) ∼ k for sufficiently small k.

Gabrielli et al. (2003)
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Local Density Fluctuations for General Point Patterns

Torquato and Stillinger, PRE (2003)

Points can represent molecules of a material, stars in a gala xy, or trees in a

forest. Let Ω represent a spherical window of radius R in d-dimensional

Euclidean space R
d.

ΩR Ω
R

Average number of points in window of volume v1(R): 〈N(R)〉 = ρv1(R) ∼ Rd

Local number variance : σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2
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Local Density Fluctuations for General Point Patterns

Torquato and Stillinger, PRE (2003)

Points can represent molecules of a material, stars in a gala xy, or trees in a

forest. Let Ω represent a spherical window of radius R in d-dimensional

Euclidean space R
d.

ΩR Ω
R

Average number of points in window of volume v1(R): 〈N(R)〉 = ρv1(R) ∼ Rd

Local number variance : σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2

For a Poisson point pattern and many disordered point patterns, σ2(R) ∼ Rd.

We call point patterns whose variance grows more slowly than Rd (window

volume) hyperuniform . This implies that structure factor S(k) → 0 for k → 0.

All perfect crystals and perfect quasicrystals are hyperuniform such that

σ2(R) ∼ Rd−1: number variance grows like window surface area .

Hyperuniformity is aka superhomogeneity: Gabrielli, Joyce & Sylos Labini, Phys. Rev. E (2002) . – p. 9/40



Hidden Order on Large Length Scales

Which is the hyperuniform pattern?
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Scaled Number Variance for 3D Systems at Unit Density
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Outline

Hyperuniform Point Configurations: History and

Recent Developments

Connections to Sphere Packing, Covering and

Quantizer Problems

Running themes:

1. All of these problems can be cast as optimization

tasks; specifically energy-minimizing point

configurations .

2. Optimal solutions can be both ordered and

disordered .
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ENSEMBLE-AVERAGE FORMULATION
For a translationally invariant point process at number den sity ρ in R

d:

σ2(R) = 〈N(R)〉
h

1 + ρ

Z

Rd

h(r)α(r; R)dr
i

α(r; R)- scaled intersection volume of 2 windows of radius R separated by r

R
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For large R, we can show

σ2(R) = 2dφ
h

A

„

R

D

«d

+ B

„

R

D

«d−1

+ o

„

R

D

«d−1
i

,

where A and B are the “ volume ” and “ surface-area ” coefficients:

A = S(k = 0) = 1 + ρ

Z

Rd

h(r)dr, B = −c(d)

Z

Rd

h(r)rdr,

D: microscopic length scale, φ: dimensionless density

Hyperuniform : A = 0, B > 0
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INVERTED CRITICAL PHENOMENA: Ornstein-Zernike Formalism
h(r) can be divided into direct correlations , via function c(r), and indirect correlations:

c̃(k) =
h̃(k)

1 + ρh̃(k)
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c̃(k) =
h̃(k)

1 + ρh̃(k)

For any hyperuniform system , h̃(k = 0) = −1/ρ, and thus c̃(k = 0) = −∞. Therefore, at the

“critical” reduced density φc, h(r) is short-ranged and c(r) is long-ranged .

This is the inverse of the behavior at liquid-gas (or magnetic) critical points , where h(r) is

long-ranged (compressibility or susceptibility diverges ) and c(r) is short-ranged .
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h(r) can be divided into direct correlations , via function c(r), and indirect correlations:

c̃(k) =
h̃(k)

1 + ρh̃(k)

For any hyperuniform system , h̃(k = 0) = −1/ρ, and thus c̃(k = 0) = −∞. Therefore, at the

“critical” reduced density φc, h(r) is short-ranged and c(r) is long-ranged .

This is the inverse of the behavior at liquid-gas (or magnetic) critical points , where h(r) is

long-ranged (compressibility or susceptibility diverges ) and c(r) is short-ranged .

For sufficiently large d at a disordered hyperuniform state , whether achieved via a nonequilibrium

or an equilibrium route,

c(r) ∼ − 1

rd−2+η
(r → ∞), c(k) ∼ − 1

k2−η
(k → 0),

h(r) ∼ − 1

rd+2−η
(r → ∞), S(k) ∼ k2−η (k → 0),

where η is a new critical exponent .

One can think of a hyperuniform system as one resulting from an effective pair potential v(r) at

large r that is a generalized Coulombic interaction between like charges . Why? Because

v(r)

kBT
∼ −c(r) ∼ 1

rd−2+η
(r → ∞)

However, long-range interactions are not required to drive a nonequilibrium system to a

disordered hyperuniform state.
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SINGLE-CONFIGURATION FORMULATION & GROUND STATES
We showed

σ2(R) = 2dφ
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configurations) .
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For large R, in the special case of hyperuniform systems,

σ2(R) = Λ(R)

„

R

D

«d−1

+ O
„

R

D

«d−3

100 110 120 130
R/D

0

0.2

0.4

0.6

0.8

1

Λ
(R

)

Triangular Lattice (Average value=0.507826)
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Hyperuniformity and Number Theory

Averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L→∞

1

L

∫ L

0
Λ(R)dR

. – p. 16/40



Hyperuniformity and Number Theory

Averaging fluctuating quantity Λ(R) gives coefficient of interest:

Λ = lim
L→∞

1

L

∫ L

0
Λ(R)dR

We showed that for a lattice

σ2(R) =
∑

q6=0

(

2πR

q

)d

[Jd/2(qR)]2, Λ = 2dπd−1
∑

q6=0

1

|q|d+1
.

Epstein zeta function for a lattice is defined by

ZQ(s) =
∑

q6=0

1

|q|2s
, Re s > d/2.

Summand can be viewed as an inverse power-law potential . For lattices ,

minimizer of ZQ(d + 1) is the lattice dual to the minimizer of Λ.

Surface-area coefficient Λ provides useful way to rank order crystals,

quasicrystals and special correlated disordered point patterns.
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Quantifying Suppression of Density Fluctuations at Large Scales: 1D

The surface-area coefficient Λ for some crystal, quasicrystal
and disordered one-dimensional hyperuniform point patterns.

Pattern Λ

Integer Lattice 1/6 ≈ 0.166667

Step+Delta-Function g2 3/16 =0.1875

Fibonacci Chain ∗ 0.2011

Step-Function g2 1/4 = 0.25

Randomized Lattice 1/3 ≈ 0.333333

∗Zachary & Torquato (2009)
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Quantifying Suppression of Density Fluctuations at Large Scales: 2D

The surface-area coefficient Λ for some crystal, quasicrystal
and disordered two-dimensional hyperuniform point patterns.

2D Pattern Λ

Triangular Lattice 0.508347

Square Lattice 0.516401

Honeycomb Lattice 0.567026

Kagom é Lattice 0.586990

Penrose Tiling ∗ 0.597798

Step+Delta-Function g2 0.600211

Step-Function g2 0.848826

∗Zachary & Torquato (2009)
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Quantifying Suppression of Density Fluctuations at Large Scales: 3D
Contrary to conjecture that lattices associated with the densest

sphere packings have smallest variance regardless of d, we have

shown that for d = 3, BCC has a smaller variance than FCC.

Pattern Λ

BCC Lattice 1.24476

FCC Lattice 1.24552

HCP Lattice 1.24569

SC Lattice 1.28920

Diamond Lattice 1.41892

Wurtzite Lattice 1.42184

Damped-Oscillating g2 1.44837

Step+Delta-Function g2 1.52686

Step-Function g2 2.25

Carried out analogous calculations in high d (Zachary &

Torquato, 2009 ), of importance in communications. Disordered

point patterns may win in high d (Torquato & Stillinger, 2006 ).
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1D Translationally Invariant Hyperuniform Systems

An interesting 1D hyperuniform point pattern is the distribution of the

nontrivial zeros of the Riemann zeta function (eigenvalues of random

Hermitian matrices and bus arrivals in Cuernavaca) : Dyson, 1970;

Montgomery, 1973; Krb àlek & S̆eba, 2000; g2(r) = 1 − sin2(πr)/(πr)2
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1D point process is always negatively correlated , i.e., g2(r) ≤ 1 and pairs of

points tend to repel one another, i.e., g2(r) → 0 as r tends to zero.
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1D point process is always negatively correlated , i.e., g2(r) ≤ 1 and pairs of

points tend to repel one another, i.e., g2(r) → 0 as r tends to zero.

Dyson mapped this problem to a 1D log Coulomb gas at positive temperature :
kBT = 1/2. The total potential energy of the system is given by

ΦN (rN ) =
1

2

N
X

i=1

|ri|2 −
N

X

i≤j

ln(|ri − rj |) .

Sandier and Serfaty, Prob. Theory & Related Fields (2015)
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An interesting 1D hyperuniform point pattern is the distribution of the
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points tend to repel one another, i.e., g2(r) → 0 as r tends to zero.

Dyson mapped this problem to a 1D log Coulomb gas at positive temperature :
kBT = 1/2. The total potential energy of the system is given by

ΦN (rN ) =
1

2

N
X

i=1

|ri|2 −
N

X

i≤j

ln(|ri − rj |) .

Sandier and Serfaty, Prob. Theory & Related Fields (2015)

Constructing and/or identifying homogeneous, isotropic h yperuniform

patterns for d ≥ 2 is more challenging . We now know of many more examples. . – p. 20/40



More Recent Examples of Disordered Hyperuniform Systems
Fermionic point processes : S(k) ∼ k as k → 0 (ground states and/or

positive temperature equilibrium states): Torquato et al. J. Stat. Mech. (2008)

Maximally random jammed (MRJ) particle packings: S(k) ∼ k as k → 0

(nonequilibrium states): Donev et al. PRL (2005)

Ultracold atoms (nonequilibrium states): Lesanovsky et al. PRE (2014)

Random organization (nonequilibrium states): Hexner et al. PRL (2015); Jack

et al. PRL (2015); Weijs et. al. PRL (2015); Tjhung et al. PRL ( 2015)

Disordered classical ground states : Uche et al. PRE (2004)
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positive temperature equilibrium states): Torquato et al. J. Stat. Mech. (2008)

Maximally random jammed (MRJ) particle packings: S(k) ∼ k as k → 0

(nonequilibrium states): Donev et al. PRL (2005)

Ultracold atoms (nonequilibrium states): Lesanovsky et al. PRE (2014)

Random organization (nonequilibrium states): Hexner et al. PRL (2015); Jack

et al. PRL (2015); Weijs et. al. PRL (2015); Tjhung et al. PRL ( 2015)

Disordered classical ground states : Uche et al. PRE (2004)

Natural Disordered Hyperuniform Systems

Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)

Immune-system receptors (nonequilibrium states): Mayer et al. PNAS (2015)

Neuronal tracts (nonequilibrium states): Burcaw et. al. NeuroImage (2015)
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(nonequilibrium states): Donev et al. PRL (2005)

Ultracold atoms (nonequilibrium states): Lesanovsky et al. PRE (2014)

Random organization (nonequilibrium states): Hexner et al. PRL (2015); Jack

et al. PRL (2015); Weijs et. al. PRL (2015); Tjhung et al. PRL ( 2015)

Disordered classical ground states : Uche et al. PRE (2004)

Natural Disordered Hyperuniform Systems

Avian Photoreceptors (nonequilibrium states): Jiao et al. PRE (2014)

Immune-system receptors (nonequilibrium states): Mayer et al. PNAS (2015)

Neuronal tracts (nonequilibrium states): Burcaw et. al. NeuroImage (2015)

Nearly Hyperuniform Disordered Systems

Amorphous Silicon (nonequilibrium states): Henja et al. PRB (2013)

Structural Glasses (nonequilibrium states): Marcotte et al. (2013) . – p. 21/40



Hyperuniformity and Jammed Packings
Conjecture : All strictly jammed saturated sphere packings are hyperuniform
(Torquato & Stillinger, 2003 ).
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Hyperuniformity and Jammed Packings
Conjecture : All strictly jammed saturated sphere packings are hyperuniform
(Torquato & Stillinger, 2003 ).

A 3D maximally random jammed (MRJ) packing is a prototypical glass in that it

is maximally disordered but perfectly rigid (infinite elastic moduli).

Such packings of identical spheres have been shown to be hyperuniform with

quasi-long-range (QLR) pair correlations in which h(r) decays as −1/r4

(Donev, Stillinger & Torquato, PRL, 2005 ).
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This is to be contrasted with the hard-sphere fluid with correlations that decay

exponentially fast .
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A 3D maximally random jammed (MRJ) packing is a prototypical glass in that it

is maximally disordered but perfectly rigid (infinite elastic moduli).

Such packings of identical spheres have been shown to be hyperuniform with
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 Linear fit

This is to be contrasted with the hard-sphere fluid with correlations that decay

exponentially fast .

Apparently, hyperuniform QLR correlations with decay −1/rd+1 are a

universal feature of general MRJ packings in R
d.

Zachary, Jiao and Torquato, PRL (2011) : ellipsoids, superballs, sphere mixtures

Berthier et al., PRL (2011); Kurita and Weeks, PRE (2011) : sphere mixtures

Jiao and Torquato, PRE (2011) : polyhedra
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In the Eye of a Chicken: Photoreceptors
Optimal spatial sampling of light requires that photoreceptors be arranged in

the triangular lattice (e.g., insects and some fish).

Birds are highly visual animals, yet their cone photoreceptor patterns are

irregular .
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In the Eye of a Chicken: Photoreceptors
Optimal spatial sampling of light requires that photoreceptors be arranged in

the triangular lattice (e.g., insects and some fish).

Birds are highly visual animals, yet their cone photoreceptor patterns are

irregular .

5 Cone Types

Jiao, Corbo & Torquato, PRE (2014).
. – p. 23/40



Avian Cone Photoreceptors
Disordered mosaics of both total population and individual cone types are

effectively hyperuniform , which has been never observed in any system before

(biological or not). We term this multi-hyperuniformity .

Jiao, Corbo & Torquato, PRE (2014)
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Hyperuniformity, Free Fermions & Determinantal Point Proc esses
One can map random Hermitian matrices (GUE), fermionic gase s, and zeros of

the Riemann zeta function to a unique hyperuniform point process on R.
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Hyperuniformity, Free Fermions & Determinantal Point Proc esses
One can map random Hermitian matrices (GUE), fermionic gase s, and zeros of

the Riemann zeta function to a unique hyperuniform point process on R.

We provide exact generalizations of such a point process in d-dimensional

Euclidean space R
d and the corresponding n-particle correlation functions ,

which correspond to those of spin-polarized free fermionic systems in R
d.
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g2(r) = 1 − 2Γ(1 + d/2) cos2 (rK − π(d + 1)/4)

K πd/2+1 rd+1
(r → ∞)

S(k) =
c(d)

2K
k + O(k3) (k → 0) (K : Fermi sphere radius )

Torquato, Zachary & Scardicchio, J. Stat. Mech., 2008

Scardicchio, Zachary & Torquato, Phys. Rev., 2009
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Hyperuniformity, Free Fermions & Determinantal Point Proc esses

Let H(r) = H(−r) be a translationally invariant Hermitian-symmetric kerne l

of an integral operator H. A translationally invariant determinantal point

process in R
d exists if the the n-particle density functions for n ≥ 1 are given

by the following determinants:

gn(r12, r13, . . . , r1n) = det [H(rij)]i,j=1,...,n with H(0) = 1.

By virtue of the nonnegativity of the ρn and relation above, it follows that

H(r) is positive semidefinite with a nonnegative Fourier transform H̃(k) and

with the condition H(0) = 1 =
∫

Rd H̃(k)dk implies that H̃(k) ≤ 1, i.e.,

0 ≤ H̃(k) ≤ 1 for all k.

Such a kernel describes a determinantal point process with a pair correlation

function
g2(r) = 1 − |H(r)|2,

such that

0 ≤ g2(r) ≤ 1 and g2(0) = 0.

Macchi, Adv. Appl. Prob. (1975); Soshnikov, Russ. Math. Sur veys (2000)
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Hyperuniformity, Free Fermions & Determinantal Point Proc esses
For 1D GUE, we make the simple observation that S(k) is determined by the intersection volume

of two intervals of radius π whose centers are separated by a distance k, and hence

g2(r) = 1 − sin2(πr)/(πr)2

A natural d-dimensional extension is to replace 1D intersection volume in Fourier space with its

d-dimensional generalization, yielding

g2(r) = 1 − 2dΓ(1 + d/2)2
J2

d/2
(Kr)

(Kr)d
.

where K = 2
√

π [Γ(1 + d/2)]1/d ensures determinantal point process for any d.

We then showed that this special determinantal point proces s corresponds exactly to the

ground-state non-interacting gas of spin-polarized fermi ons in R
d, d ≥ 1.
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Hyperuniformity, Free Fermions & Determinantal Point Proc esses
For 1D GUE, we make the simple observation that S(k) is determined by the intersection volume

of two intervals of radius π whose centers are separated by a distance k, and hence

g2(r) = 1 − sin2(πr)/(πr)2

A natural d-dimensional extension is to replace 1D intersection volume in Fourier space with its

d-dimensional generalization, yielding

g2(r) = 1 − 2dΓ(1 + d/2)2
J2

d/2
(Kr)

(Kr)d
.

where K = 2
√

π [Γ(1 + d/2)]1/d ensures determinantal point process for any d.

We then showed that this special determinantal point proces s corresponds exactly to the

ground-state non-interacting gas of spin-polarized fermi ons in R
d, d ≥ 1.

One-Component Plasma (OCP): Ginibre (1965) Ensemble

A hyperuniform determinantal point process is generated by 2D OCP: particles of charge e

interacting via the Coulomb potential immersed in a rigid, u niform background of opposite charge.

Sandier and Serfaty, Annals Prob. (2015)

For a special coupling constant Γ = e2/kBT equal to 2, the total correlation function h(r) and

S(k) have been ascertained exactly by Jancovici (Phys. Rev. Lett, 1981) :

h(r) = − exp
`

−πr2
´

S(k) = 1 − exp[−k2/(4π)]

Hence,
S(k) ∼ k2 (k → 0)
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Slow and Rapid Cooling of a Liquid
Classical ground states are those classical particle
configurations with minimal potential energy per particle.
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Typically, ground states are periodic with high crystallographic
symmetries .
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Slow and Rapid Cooling of a Liquid
Classical ground states are those classical particle
configurations with minimal potential energy per particle.
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Typically, ground states are periodic with high crystallographic
symmetries .

Can classical ground states ever be disordered ?
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Creation of Disordered Hyperuniform Ground States

Uche, Stillinger & Torquato, Phys. Rev. E 2004

Batten, Stillinger & Torquato, Phys. Rev. E 2008

Collective-Coordinate Simulations

• Consider a system of N particles with configuration rN in a fundamental region Ω under periodic

boundary conditions) with a pair potentials v(r) that is bounded with Fourier transform ṽ(k).
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Creation of Disordered Hyperuniform Ground States

Uche, Stillinger & Torquato, Phys. Rev. E 2004

Batten, Stillinger & Torquato, Phys. Rev. E 2008

Collective-Coordinate Simulations

• Consider a system of N particles with configuration rN in a fundamental region Ω under periodic

boundary conditions) with a pair potentials v(r) that is bounded with Fourier transform ṽ(k).

The total energy is
ΦN (rN ) =

X

i<j

v(rij)

=
N

2|Ω|
X

k

ṽ(k)S(k) + constant

• For ṽ(k) positive ∀ 0 ≤ |k| ≤ K and zero otherwise, finding configurations in which S(k) is

constrained to be zero where ṽ(k) has support is equivalent to globally minimizing Φ(rN ).
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These hyperuniform ground states are called “stealthy” and generally highly degenerate .
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Uche, Stillinger & Torquato, Phys. Rev. E 2004

Batten, Stillinger & Torquato, Phys. Rev. E 2008

Collective-Coordinate Simulations

• Consider a system of N particles with configuration rN in a fundamental region Ω under periodic

boundary conditions) with a pair potentials v(r) that is bounded with Fourier transform ṽ(k).

The total energy is
ΦN (rN ) =

X

i<j

v(rij)

=
N

2|Ω|
X

k

ṽ(k)S(k) + constant

• For ṽ(k) positive ∀ 0 ≤ |k| ≤ K and zero otherwise, finding configurations in which S(k) is

constrained to be zero where ṽ(k) has support is equivalent to globally minimizing Φ(rN ).
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These hyperuniform ground states are called “stealthy” and generally highly degenerate .

• Stealthy patterns can be tuned by varying the parameter χ: ratio of number of constrained degrees of

freedom to the total number of degrees of freedom, d(N − 1).
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Creation of Disordered Stealthy Ground States
Unconstrained

Region

Exclusion

Zone S=0

K
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Creation of Disordered Stealthy Ground States
Unconstrained

Region

Exclusion

Zone S=0

K

One class of stealthy potentials involves the following power-law form:

ṽ(k) = v0(1 − k/K)m Θ(K − k),

where n is any whole number. The special case n = 0 is just the simple step function.
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In the large-system ( thermodynamic ) limit with m = 0 and m = 4, we have the following large-r

asymptotic behavior , respectively:
v(r) ∼ cos(r)

r2
(m = 0)

v(r) ∼ 1

r4
(m = 4)
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Creation of Disordered Stealthy Ground States
Unconstrained

Region

Exclusion

Zone S=0

K

One class of stealthy potentials involves the following power-law form:

ṽ(k) = v0(1 − k/K)m Θ(K − k),

where n is any whole number. The special case n = 0 is just the simple step function.
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In the large-system ( thermodynamic ) limit with m = 0 and m = 4, we have the following large-r

asymptotic behavior , respectively:
v(r) ∼ cos(r)

r2
(m = 0)

v(r) ∼ 1

r4
(m = 4)

While the specific forms of these stealthy potentials lead to the same convergent ground-state

energies, this may not be the case for the pressure and other thermodynamic quantities. . – p. 30/40



Creation of Disordered Stealthy Ground States

Previously, started with an initial random distribution of N points and then

found the energy minimizing configurations (with extremely high precision)

using optimization techniques.
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Previously, started with an initial random distribution of N points and then

found the energy minimizing configurations (with extremely high precision)

using optimization techniques.

For 0 ≤ χ < 0.5, the stealthy ground states are degenerate, disordered and

isotropic .

(a)   χ= 0.04167 (b)  χ = 0.41071

Success rate to achieve disordered ground states is 100%.
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Creation of Disordered Stealthy Ground States

Previously, started with an initial random distribution of N points and then

found the energy minimizing configurations (with extremely high precision)

using optimization techniques.

For 0 ≤ χ < 0.5, the stealthy ground states are degenerate, disordered and

isotropic .

(a)   χ= 0.04167 (b)  χ = 0.41071

Success rate to achieve disordered ground states is 100%.

For χ > 1/2, the system undergoes a transition to a crystal phase and the

energy landscape becomes considerably more complex.
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k/K
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Maximum  χ
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Stealthy Disordered Ground States and Novel Materials

Until recently, it was believed that Bragg scattering was required to achieve

metamaterials with complete photonic band gaps .
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Until recently, it was believed that Bragg scattering was required to achieve

metamaterials with complete photonic band gaps .

Have used disordered, isotropic “stealthy” ground-state configurat ions to

design photonic materials with large complete (both polarizations and all

directions) band gaps .

Florescu, Torquato and Steinhardt, PNAS (2009)
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Stealthy Disordered Ground States and Novel Materials

Until recently, it was believed that Bragg scattering was required to achieve

metamaterials with complete photonic band gaps .

Have used disordered, isotropic “stealthy” ground-state configurat ions to

design photonic materials with large complete (both polarizations and all

directions) band gaps .

Florescu, Torquato and Steinhardt, PNAS (2009)

These metamaterial designs have been fabricated for microwave regime.

Man et. al., PNAS (2013)

Because band gaps are isotropic , such photonic materials offer advantages

over photonic crystals (e.g., free-form waveguides ).
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Stealthy Disordered Ground States and Novel Materials

Until recently, it was believed that Bragg scattering was required to achieve

metamaterials with complete photonic band gaps .

Have used disordered, isotropic “stealthy” ground-state configurat ions to

design photonic materials with large complete (both polarizations and all

directions) band gaps .

Florescu, Torquato and Steinhardt, PNAS (2009)

These metamaterial designs have been fabricated for microwave regime.

Man et. al., PNAS (2013)

Because band gaps are isotropic , such photonic materials offer advantages

over photonic crystals (e.g., free-form waveguides ).

Other applications include new phononic devices.
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Ensemble Theory of Disordered Ground States
Torquato, Zhang & Stillinger, Phys. Rev. X, 2015

Nontrivial : Dimensionality of the configuration space depends on the nu mber density ρ (or χ) and

there is a multitude of ways of sampling the ground-state man ifold, each with its own probability

measure Which ensemble? How are entropically favored states determined?

For some ensemble at fixed density ρ, the average energy per particle u for radial potentials in the

thermodynamic limit is given by

u ≡ 〈Φ(rN )

N
〉 =

ρ

2

Z

Rd

v(r)g2(r)dr

=
ρ

2
ṽ(k = 0) − 1

2
v(r = 0) +

1

2(2π)d

Z

Rd

ṽ(k)S(k)dk.
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Ensemble Theory of Disordered Ground States
Torquato, Zhang & Stillinger, Phys. Rev. X, 2015

Nontrivial : Dimensionality of the configuration space depends on the nu mber density ρ (or χ) and

there is a multitude of ways of sampling the ground-state man ifold, each with its own probability

measure Which ensemble? How are entropically favored states determined?

For some ensemble at fixed density ρ, the average energy per particle u for radial potentials in the

thermodynamic limit is given by

u ≡ 〈Φ(rN )

N
〉 =

ρ

2

Z

Rd

v(r)g2(r)dr

=
ρ

2
ṽ(k = 0) − 1

2
v(r = 0) +

1

2(2π)d

Z

Rd

ṽ(k)S(k)dk.

Consider the same class of “stealthy” radial potential functions ṽ(k) in R
d. Whenever particle

configurations in R
d exist such that S(k) is constrained to be its minimum value of zero where

ṽ(k) has support, the system must be at its ground state or global energy minimum :

u =
ρ

2
v0 − 1

2
v(r = 0)

Remark: Ground-state manifold is generally highly degenerate .
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Nontrivial : Dimensionality of the configuration space depends on the nu mber density ρ (or χ) and

there is a multitude of ways of sampling the ground-state man ifold, each with its own probability

measure Which ensemble? How are entropically favored states determined?

For some ensemble at fixed density ρ, the average energy per particle u for radial potentials in the

thermodynamic limit is given by

u ≡ 〈Φ(rN )

N
〉 =

ρ

2

Z

Rd

v(r)g2(r)dr

=
ρ

2
ṽ(k = 0) − 1

2
v(r = 0) +

1

2(2π)d

Z

Rd

ṽ(k)S(k)dk.

Consider the same class of “stealthy” radial potential functions ṽ(k) in R
d. Whenever particle

configurations in R
d exist such that S(k) is constrained to be its minimum value of zero where

ṽ(k) has support, the system must be at its ground state or global energy minimum :

u =
ρ

2
v0 − 1

2
v(r = 0)

Remark: Ground-state manifold is generally highly degenerate .

In the thermodynamic limit, parameter χ is related to the number density ρ in any dimension d via

ρ χ =
V1(K)

2d (2π)d
,

where V1(K) is the volume of a d-dimensional sphere of radius K .

Remarks: We see that χ and ρ are inversely proportional to one another . Thus, for fixed K and d,

as χ tends to zero, ρ tends to infinity, which corresponds counterintuitively to the uncorrelated

ideal-gas limit (Poisson distribution). As χ increases from zero, the density ρ decreases.
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Ensemble Theory of Disordered Ground States

• Any periodic crystal with a finite basis is a stealthy ground state for all positive χ up to a maximum

χmax (ρmin) determined by its first positive Bragg peak (minimal vector in Fourier space).

Lemma: At fixed K , a configuration comprised of the union of m different stealthy ground-state

configurations in R
d with χ1, χ2, . . . , χm, respectively, is itself stealthy with a value χ value

given by

χ =

"

m
X

i=1

χ−1

i

#−1

,

which is the harmonic mean of the χi divided by m.

• These last two facts can be used to show how disordered patterns are possible ground states.
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Ensemble Theory of Disordered Ground States

• Any periodic crystal with a finite basis is a stealthy ground state for all positive χ up to a maximum

χmax (ρmin) determined by its first positive Bragg peak (minimal vector in Fourier space).

Lemma: At fixed K , a configuration comprised of the union of m different stealthy ground-state

configurations in R
d with χ1, χ2, . . . , χm, respectively, is itself stealthy with a value χ value

given by

χ =

"

m
X

i=1

χ−1

i

#−1

,

which is the harmonic mean of the χi divided by m.

• These last two facts can be used to show how disordered patterns are possible ground states.

Table 1: Periodic stealthy ground states in R
2 with K = 1.

Structure χmax ρmin

Kagom é crystal π
3
√

12
= 0.3022 . . . 3

√
3

8π2
= 0.06581 . . .

Honeycomb crystal π
2
√

12
= 0.4534 . . .

√
3

4π2
= 0.04387 . . .

Square lattice π
4

= 0.7853 . . . 1

4π2
= 0.02533 . . .

Triangular lattice π√
12

= 0.9068 . . .
√

3

8π2
= 0.02193 . . .
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Canonical Ensemble Theory of Disordered Ground States
We consider the Gibbs canonical ensemble in which the partition function Z is a function of ρ and

absolute temperature T . Our main interest is in a theory in the limit T → 0, i.e., the entropically

favored ground states in the canonical ensemble .
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Canonical Ensemble Theory of Disordered Ground States
We consider the Gibbs canonical ensemble in which the partition function Z is a function of ρ and

absolute temperature T . Our main interest is in a theory in the limit T → 0, i.e., the entropically

favored ground states in the canonical ensemble .

Ground-State Pressure and Isothermal Compressibility

Energy Route: The pressure in the thermodynamic limit at T = 0 can be obtained from the

energy per particle (taking v0 = 1) via the relation

p = ρ2

„

∂u

∂ρ

«

T

.

Therefore, for stealthy potentials,
p =

ρ2

2
.

The isothermal compressibility κT ≡ ρ−1
“

∂ρ
∂p

”

T
of such a system is

κT =
1

ρ2
.
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Canonical Ensemble Theory of Disordered Ground States
We consider the Gibbs canonical ensemble in which the partition function Z is a function of ρ and

absolute temperature T . Our main interest is in a theory in the limit T → 0, i.e., the entropically

favored ground states in the canonical ensemble .

Ground-State Pressure and Isothermal Compressibility

Energy Route: The pressure in the thermodynamic limit at T = 0 can be obtained from the

energy per particle (taking v0 = 1) via the relation

p = ρ2

„

∂u

∂ρ

«

T

.

Therefore, for stealthy potentials,
p =

ρ2

2
.

The isothermal compressibility κT ≡ ρ−1
“

∂ρ
∂p

”

T
of such a system is

κT =
1

ρ2
.

Virial Route: An alternative route to the pressure is through the “virial” e quation, which at T = 0

is given by

p = −ρ2

2d
s1(1)

Z ∞

0

rd dv

dr
g2(r)dr

= −ρ2

2d

»

f̃(k = 0) +
1

(2π)d

Z

Rd

f̃(k) h̃(k)dk

–

where f̃(k) is the Fourier transform of f(r) ≡ rdv/dr, when it exists .
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Pseudo-Hard Spheres in Fourier Space
From previous considerations, we see that that an important contribution to

S(k) is a simple hard-core step function Θ(k − K), which can be viewed as a

disordered hard-sphere system in Fourier space in the limit that χ tends to

zero, i.e., as the number density ρ tends to infinity.
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That the structure factor must have the behavior

S(k) → Θ(k − K), χ → 0

is perfectly reasonable; it is a perturbation about the ideal-gas limit in which

S(k) = 1 for all k.
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disordered hard-sphere system in Fourier space in the limit that χ tends to

zero, i.e., as the number density ρ tends to infinity.

0 1 2 3
k

0

0.5

1

1.5
S

(k
)

0 1 2 3
r

0

0.5

1

1.5

g 2(r
)

That the structure factor must have the behavior

S(k) → Θ(k − K), χ → 0

is perfectly reasonable; it is a perturbation about the ideal-gas limit in which

S(k) = 1 for all k.

Imagine carrying out a series expansion of S(k) about χ = 0. We make the

ansatz that for sufficiently small χ, S(k) in the canonical ensemble for a

stealthy potential can be mapped to g2(r) for an effective disordered

hard-sphere system for sufficiently small density .
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Pseudo-Hard Spheres in Fourier Space
Let us define

H̃(k) ≡ ρh̃(k) = hHS(r = k)

There is an Ornstein-Zernike integral eq. that defines FT of appropriate direct correlation function , C̃(k):

H̃(k) = C̃(k) + η H̃(k) ⊗ C̃(k),

where η is an effective packing fraction . Therefore,

H(r) =
C(r)

1 − (2π)d η C(r)
.

This mapping enables us to exploit the well-developed accur ate theories of standard Gibbsian

disordered hard spheres in direct space .
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Hyperuniformity of Disordered Two-Phase Materials
The hyperuniformity concept was generalized to the case of two-phase

heterogeneous materials (Zachary and Torquato, 2009).

Here the phase volume fraction fluctuates within a spherical window of radius

R, which can be characterized by the volume-fraction variance σ2

V
(R).
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Hyperuniformity of Disordered Two-Phase Materials
The hyperuniformity concept was generalized to the case of two-phase
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Here the phase volume fraction fluctuates within a spherical window of radius

R, which can be characterized by the volume-fraction variance σ2

V
(R).

For typical disordered two-phase media, the variance σ2

V
(R) for large R goes

to zero like R−d.

For hyperuniform disordered two-phase media , σ2

V
(R) goes to zero faster

than R−d, equivalent to following condition on spectral density χ̃
V
(k):

lim
|k|→0

χ̃
V
(k) = 0.
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Designing Disordered Hyperuniform Heterogeneous Materials
Disordered hyperuniform two-phase systems can be designed with targeted

spectral functions (Torquato, 2016).

For example, consider the following hyperuniform functional forms in 2D and

3D:
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The following is a 2D realization:
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CONCLUSIONS
Disordered hyperuniform materials can be regarded to be new ideal states of

disordered matter .

Hyperuniformity provides a unified means of categorizing and characterizing

crystals, quasicrystals and special correlated disordere d systems.

The degree of hyperuniformity provides an order metric for the extent to which

large-scale density fluctuations are suppressed in such systems.

Disordered hyperuniform systems appear to be endowed with unusual

physical properties that we are only beginning to discover.

Hyperuniformity has connections to physics and materials science (e.g.,

ground states, quantum systems, random matrices, novel mat erials, etc.),

mathematics (e.g., geometry and number theory), and biology .

Halton-type low-discrepancy point sets are hyperuniform but not disordered.
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