Minimal Discrete Energy on Rectifiable Sets

Doug Hardin Vanderbilt University

Optimal and random point configurations Institut Henri Poincaré, Paris – June 27 – July 1, 2016

Motivation

Questions from physics

How does long range order (crystalline structure) arise out of simple pairwise interactions?

FIGURE 1. Left: the Lennard-Jones potential (3). Right: a minimizer for the variational problem (2), computed numerically in [14], with N = 100 and d = 2. The particles seem to arrange themselves on an hexagonal lattice, and to form a large cluster having the shape of an hexagon.

Generating good node sets

 Distribute points on a set A according to a given distribution with good local properties.

Figure 1 from X. Blanc, M. Lewin 2015

Discrete energy problem

Let $A \subset \mathbf{R}^p$ be compact with $d = \dim A$ (say $A = \mathbb{S}^d \subset \mathbf{R}^{d+1}$).

For ω_N { $\mathbf{x}_1, \ldots, \mathbf{x}_N$ } $\subset A$ and $f : A - A \to \mathbf{R}$, let

$$E_f(\omega_N) := \sum_{i \neq j} f(\mathbf{x}_i - \mathbf{x}_j).$$

DMEP:

$$\mathcal{E}_f(A,N) := \min_{\omega_N \subset A} E_f(\omega_N),$$

Key Examples:

► Reisz potentials
$$s \neq 0$$
: $f(\mathbf{x} - \mathbf{y}) := f_s(\mathbf{x} - \mathbf{y}) = \frac{\operatorname{sgn}(s)}{|\mathbf{x} - \mathbf{y}|^s}$.

► Log-potential:
$$f(\mathbf{x} - \mathbf{y}) := f_{\log}(\mathbf{x} - \mathbf{y}) = \log\left(\frac{1}{|\mathbf{x} - \mathbf{y}|}\right)$$
.

• Gaussian a > 0: $f(\mathbf{x} - \mathbf{y}) := g_a(\mathbf{x} - \mathbf{y}) = e^{-a|\mathbf{x} - \mathbf{y}|^2}$.

Distributing points on a set: metrics

Separation:

$$\delta(\omega_N) := \min_{i \neq j} |\mathbf{x}_i - \mathbf{x}_j|$$

Covering:

$$\rho(\omega_N, A) := \max_{\mathbf{x} \in A} \min_i |\mathbf{x} - \mathbf{x}_i|$$

- Maximizing separation δ(ω_N): N-point best-packing problem on A.
- Minimizing covering radius ρ(ω_N, A): N-point best-covering problem on A.

The limits $a, s \rightarrow 0$ and $a, s \rightarrow \infty$.

• As $a, s \to \infty$ we recover the best-packing problem on A:

$$\lim_{s \to \infty} E_s(\omega_N)^{1/s} = \lim_{s \to \infty} \left(\sum_{i \neq j} |\mathbf{x}_i - \mathbf{x}_j|^{-s} \right)^{1/s} = \frac{1}{\delta(\omega_N)}$$
$$\lim_{a \to \infty} E_{g_a}(\omega_N)^{1/a} = \lim_{a \to \infty} \left(\sum_{i \neq j} e^{-a|\mathbf{x}_i - \mathbf{x}_j|^2} \right)^{1/a} = e^{-\delta(\omega_N)^2}.$$

▶ For *r* > 0, we have

$$r^{-s} = 1 + s \log(1/r) + O(s^2)$$
 $s \to 0$
 $e^{-ar^2} = 1 - ar^2 + O(a^2)$ $a \to 0.$

Thus:

$$\lim_{s \to 0} \frac{1}{s} \left(E_s(\omega_N) - N(N-1) \right) = E_{\log}(\omega_N)$$
$$\lim_{a \to 0} \frac{1}{a} \left(E_{g_a}(\omega_N) - N(N-1) \right) = E_{-2}(\omega_N)$$

7 of Smale's 18 Problems for this Century:

Generate $\{x_1, \ldots, x_N\} \subset S^2$ (in polynomial time in N) such that

$$E_{\log}(\{x_1,\ldots,x_N\}) \leq \mathcal{E}_{\log}(S^2,N) + \mathcal{O}(\log N).$$

Figure : N = 1600 (near) optimal points on S^2 for $s = \log$ energy. Voronoi cells are either pentagons, hexagons, heptagons.

Asymptotics of $\mathcal{E}_{log}(S^2, N)$

Known:

- ► Wagner (1989): $\mathcal{E}_{log}(S^2, N) = -(1/2) \log(4/e) N^2 - (1/2) N \log N + \mathcal{O}(N)$
- ▶ Rakhmanov, Saff, and Zhou (1994): $\mathcal{E}_{log}(S^2, N) = -(1/2) \log(4/e) N^2 - (1/2) N \log N + C_N N$, where $-0.2255... < C_N < -0.0469...$ for N sufficiently large.
- ▶ Bétermin, Sandier (2016) and Sandier, Serfaty (2015) establish that C_{log} := lim_{N→∞} C_N exists.

Conjecture:

Brauchart, Hardin, and Saff (2011):

$$C_{\log} = (1/2)\log(4/e) + \zeta'_{\Lambda_2}(0) = \log \frac{2}{\sqrt{3}} + 3\log \frac{\sqrt{2\pi}}{\Gamma(1/3)} = -0.0556...$$

3000 points in near minimal s = 2-energy configuration on S^{22}

²Show animation. Thanks Alex Vlasiuk and Ken Yang. (\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow

The circle $A = \mathbb{S}^1$

The configuration of equally spaced points $\omega_N = \{e^{i\frac{2\pi k}{N}}\}_{k=1}^N$ is optimal for a large class of potentials.

Theorem (Fejes-Tóth, 1956)

Let $f : (0,2] \rightarrow \mathbf{R}$ be decreasing and strictly convex. Then an N-point configuration is an f-energy minimizing configuration if and only if it is equally spaced.

The circle $A = \mathbb{S}^1$

The configuration of equally spaced points $\omega_N = \{e^{i\frac{2\pi k}{N}}\}_{k=1}^N$ is optimal for a large class of potentials.

$$\mathcal{E}_{s}(\mathbb{S}^{1},N) = V_{s}N^{2} + (2\pi)^{-s}2\zeta(s)N^{1+s} + O(N^{s-1}), \quad (N \to \infty)$$

where $\zeta(s)$ is Riemann zeta function and $V_s = \frac{2^{-s}\Gamma((1-s)/2)}{\sqrt{\pi}\Gamma(1-s/2)}$.

▶ For a complete asymptotic expansion as $N \to \infty$ see [Brauchart, H., Saff, 2011].

 $N = 2, 3, d + 2, A = \mathbb{S}^{d}$

Theorem

For $r \in (0,2]$ let $f(r) = g(r^2)$ for some $g : (0,4] \to \mathbf{R}$ that is strictly convex and decreasing. A configuration ω_N of $N \le d+2$ points is f-energy optimal on \mathbb{S}^d if and only if ω_N is a regular simplex with center at the origin. Proof.

 $N = 2, 3, d + 2, A = \mathbb{S}^{d}$

Theorem

For $r \in (0,2]$ let $f(r) = g(r^2)$ for some $g : (0,4] \to \mathbf{R}$ that is strictly convex and decreasing. A configuration ω_N of $N \le d+2$ points is f-energy optimal on \mathbb{S}^d if and only if ω_N is a regular simplex with center at the origin.

Proof. Consider $\omega_N = {\mathbf{x}_1, \dots, \mathbf{x}_N} \subset \mathbb{S}^d$.

$$-E_{-2}(\omega_N) := \sum_{i=1}^N \sum_{j \neq i} |\mathbf{x}_i - \mathbf{x}_j|^2 = \sum_{i,j=1}^N (2 - 2\mathbf{x}_i \cdot \mathbf{x}_j)$$

= $2N^2 - 2\sum_{i,j=1}^N \mathbf{x}_i \cdot \mathbf{x}_j = 2N^2 - 2\left|\sum_{i=1}^N \mathbf{x}_i\right|^2 \le 2N^2,$

with equality if and only if $\sum_{i=1}^{N} \mathbf{x}_i = \mathbf{0}$.

 $N = 2, 3, d + 2, A = \mathbb{S}^{d}$

Theorem

For $r \in (0,2]$ let $f(r) = g(r^2)$ for some $g : (0,4] \to \mathbf{R}$ that is strictly convex and decreasing. A configuration ω_N of $N \le d+2$ points is f-energy optimal on \mathbb{S}^d if and only if ω_N is a regular simplex with center at the origin.

Proof. So $-E_{-2}(\omega_N) \leq 2N^2$, with "=" $\iff \sum_{i=1}^N \mathbf{x}_i = \mathbf{0}$.

$$E_f(\omega_N) := \sum_{i=1}^N \sum_{j:j
eq i} g\left(|\mathbf{x}_i - \mathbf{x}_j|^2
ight)$$

$$\geq N(N-1)g\left(\frac{-E_{-2}(\omega_N)}{N(N-1)}\right) \geq N(N-1)g\left(\frac{2N}{N-1}\right)$$

with equality if and only if all pairwise distances $|\mathbf{x}_i - \mathbf{x}_j|$, $i \neq j$, are equal and the configuration has centroid at **0**.

 $\Omega_N = \{X_1, X_2, \dots, X_N\}$: *N* independent samples chosen according to probability measure μ supported on *A*.

 $\Omega_N = \{X_1, X_2, \dots, X_N\}$: *N* independent samples chosen according to probability measure μ supported on *A*.

For recent results on separation and covering of random i.i.d. configurations, see Brauchart, Saff, Sloan, Wang and Womersley, 2016 Saff and Reznikov, 2016.

 $\Omega_N = \{X_1, X_2, \dots, X_N\}$: *N* independent samples chosen according to probability measure μ supported on *A*.

What about the *s*-energy?

 $\Omega_N = \{X_1, X_2, \dots, X_N\}$: *N* independent samples chosen according to probability measure μ supported on *A*.

$$\mathbb{E}\left[E_{\mathfrak{s}}(\Omega_{N})\right] = \int \cdots \int \sum_{i \neq j} \frac{1}{|\mathbf{x}_{i} - \mathbf{x}_{j}|^{\mathfrak{s}}} d\mu(\mathbf{x}_{1}) \cdots d\mu(\mathbf{x}_{N})$$
$$= \sum_{i \neq j} \iint \frac{1}{|\mathbf{x}_{i} - \mathbf{x}_{j}|^{\mathfrak{s}}} d\mu(\mathbf{x}_{i}) d\mu(\mathbf{x}_{j})$$
$$= N(N-1)I_{\mathfrak{s}}(\mu)$$

where

$$I_{s}(\mu) := \iint rac{1}{|\mathbf{x}-\mathbf{y}|^{s}} d\mu(\mathbf{x}) d\mu(\mathbf{y}).$$

Let $A \subset \mathbf{R}^p$ be compact with Hausdorff dimension $d = \dim_{\mathcal{H}}(A)$.

 $\mathfrak{M}_A := \{ all Borel probability measures <math>\mu$ on $A \}.$

Let $A \subset \mathbf{R}^p$ be compact with Hausdorff dimension $d = \dim_{\mathcal{H}}(A)$.

 $\mathfrak{M}_A := \{ all Borel probability measures <math>\mu$ on $A \}.$

▶ For $\mu \in \mathfrak{M}_A$, let

$$I_s(\mu) := \int \int rac{1}{|x-y|^s} d\mu(y) d\mu(x).$$

・ロト・日本・モート モー うへぐ

Let $A \subset \mathbf{R}^p$ be compact with Hausdorff dimension $d = \dim_{\mathcal{H}}(A)$.

 $\mathfrak{M}_{A} := \{ all Borel probability measures <math>\mu$ on $A \}.$

▶ For $\mu \in \mathfrak{M}_A$, let

$$I_s(\mu) := \int \int rac{1}{|x-y|^s} d\mu(y) d\mu(x).$$

 For s < d, there exists a unique equilibrium measure μ_s in *M_A* such that

$$I_{s}(\mu_{s}) \leq I_{s}(\mu) \hspace{0.2cm} ext{ for all } \hspace{0.2cm} \mu \in \mathfrak{M}_{\mathcal{A}}.$$

Let $A \subset \mathbf{R}^p$ be compact with Hausdorff dimension $d = \dim_{\mathcal{H}}(A)$.

 $\mathfrak{M}_{\mathcal{A}} := \{ all Borel probability measures <math>\mu$ on $\mathcal{A} \}.$

▶ For $\mu \in \mathfrak{M}_A$, let

$$I_s(\mu) := \int \int rac{1}{|x-y|^s} d\mu(y) d\mu(x).$$

 For s < d, there exists a unique equilibrium measure μ_s in *M_A* such that

$$I_{s}(\mu_{s}) \leq I_{s}(\mu) \hspace{0.2cm} ext{ for all } \hspace{0.2cm} \mu \in \mathfrak{M}_{\mathcal{A}}.$$

• For
$$s \ge d$$
, $I_s(\mu) = \infty$ for all $\mu \in \mathfrak{M}_A$.

Connection Between Continuous & Discrete Problems

Theorem (Polya, Szego, Fekete, Frostman; cf. Landkof) Let $A \subset \mathbf{R}^p$ be compact, $s < d := \dim_{\mathcal{H}}(A)$, and μ_s Riesz s-equilibrium measure on A. Then

 $\mathcal{E}_{s}(A, N) = I_{s}(\mu_{s})N^{2} + o(N^{2}), \qquad N \to \infty$

and minimal s-energy configurations $\omega_N^* = \omega_N^*(A, s)$ satisfy³

$$u_{\mathsf{N}} := rac{1}{\mathsf{N}} \sum_{\mathbf{x} \in \omega_{\mathsf{N}}^*} \delta_{\mathbf{x}} \stackrel{*}{
ightarrow} \mu_{\mathsf{s}} \quad \text{as} \quad \mathsf{N}
ightarrow \infty.$$

Recall: If s < d and Ω_N consists of N independent samples of $X \sim \mu_s$ then

$$\mathbb{E}\left[E_s(\Omega_N)\right] = I_s(\mu_s)N(N-1).$$

 ${}^{3}\mu_{n} \stackrel{*}{\rightarrow} \mu$ means $\int f \, d\mu_{n} \rightarrow \int f \, d\mu$ for all $f \in C(A)$. $\Rightarrow A = A = A = A$

Step 1: First observe that

$$\mathcal{E}_{s}(A,N) = E_{s}(\omega_{N}^{*}) = \frac{1}{N-2}\sum_{k=1}^{N}E_{s}(\omega_{N}^{*} \setminus \{x_{k}^{*}\}) \geq \frac{N}{N-2}\mathcal{E}_{s}(A,N-1).$$

Then

$$\tau_N := \frac{\mathcal{E}_s(A, N)}{N(N-1)} \ge \frac{\mathcal{E}_s(A, N-1)}{N(N-1)} \frac{N}{N-2} = \tau_{N-1}$$

showing that τ_N is **increasing** with N.

Let

$$au := \lim_{N o \infty} rac{\mathcal{E}_{s}(A, N)}{N(N-1)}$$

Step 2: Let $\Omega_N = \{X_1, \dots, X_N\}$ consist of *N* independent samples from $X \sim \mu_s$. Then

$$\mathcal{E}_{s}(A, N) \leq \mathbb{E}(E_{s}(\Omega_{N})) = N(N-1)I_{s}(\mu_{s}).$$

Step 2: Let $\Omega_N = \{X_1, \dots, X_N\}$ consist of *N* independent samples from $X \sim \mu_s$. Then

$$\mathcal{E}_{s}(A, N) \leq \mathbb{E}(E_{s}(\Omega_{N})) = N(N-1)I_{s}(\mu_{s}).$$

and so:

$$\tau_N = \frac{\mathcal{E}_s(A, N)}{N(N-1)} \leq I_s(\mu_s) \quad \Rightarrow \quad \tau \leq I_s(\mu_s).$$

Step 3: By weak-star compactness argument (Banach-Alaoglu Thm), ν_N has a weak-star limit pt μ . Consider

$$\begin{split} l_{s}(\mu) &= \int \int \frac{1}{|x-y|^{s}} d\mu(x) d\mu(y) \\ &= \lim_{M \to \infty} \int \int \min\left\{\frac{1}{|x-y|^{s}}, M\right\} d\mu(x) d\mu(y) \\ &= \lim_{M \to \infty} \lim_{N \to \infty} \int \int \min\left\{\frac{1}{|x-y|^{s}}, M\right\} d\nu_{N}(x) d\nu_{N}(y) \\ &\leq \lim_{M \to \infty} \lim_{N \to \infty} \frac{1}{N^{2}} \left\{ \mathcal{E}_{s}(A, N) + NM \right\} \\ &= \tau \leq l_{s}(\mu_{s}). \end{split}$$

So $\mu = \mu_s$ and hence $\tau = I_s(\mu_s)$ and $\nu_N \xrightarrow{*} \mu_s$.

Remarks: General kernel and external field

- ► The Riesz potential ¹/_{|x-y|^s} can be replaced by a lower semi-continuous kernel k(x, y) defined on A × A.
- ► Existence of a unique equilibrium measure requires that there is at least one µ ∈ M_A such that

$$I_k(\mu) := \iint k(x,y) \, d\mu(x) d\mu(y) < \infty$$

and that k is conditionally positive definite: $I_k(\mu) > 0$ for all signed measures μ supported on A such that $I_k(|\mu|) < \infty$ and $\mu(A) = 0$.

► Incorporate an external field V(x) by considering k_V(x, y) = k(x, y) + (V(x) + V(y))/2.

What about bottom two figures (s = 2, 4)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Asymptotics for *d*-rectifiable sets

A is a *d*-rectifiable set if A is the image of a bounded set in \mathbf{R}^d under a Lipschitz mapping.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Asymptotics for *d*-rectifiable sets

A is a *d*-rectifiable set if A is the image of a bounded set in \mathbf{R}^d under a Lipschitz mapping.

Theorem (H. & Saff, 2005; Borodachov, H. & Saff 2007)

Let A be a compact d-rectifiable set with d-dimensional Hausdorff measure $\mathcal{H}_d(A) > 0$ and suppose $s \ge d$.

- Optimal s-energy configurations ω^{*}_N for A have limit distribution uniform wrt H_d|_A.
- ► If s > d, there exists a constant C_{s,d} (independent of A) such that

$$\mathcal{E}_s(A,N) = C_{s,d}[\mathcal{H}_d(A)]^{-s/d}N^{1+s/d} + o(N^{1+s/d}).$$

 Further suppose A is contained in a C¹ d-dimensional manifold then

$$\lim_{N\to\infty}\frac{\mathcal{E}_d(A,N)}{N^2\log N}=\frac{\mathcal{H}_d(\mathcal{B}_d)}{\mathcal{H}_d(A)}.$$

Idea of proof.

First establish limit for unit cube $U^d = [0, 1]^d$:

$$C_{s,d} := \lim_{N \to \infty} \frac{\mathcal{E}_s(U^d, N)}{N^{1+s/d}}.$$

Key step: The unit cube is self-similar with scaling 1/m for any m = 2, 3, ... Use this self-similarity to relate $\mathcal{E}_s(A, N)$ and $\mathcal{E}_s(A, m^d N)$. Take $m \to \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

The constant $C_{s,d}$ reflects the 'local' structure of optimal *s*-energy configurations.

•
$$C_{s,1} = 2\zeta(s)$$
 (MMRS, (2005))

The constant $C_{s,d}$ reflects the 'local' structure of optimal *s*-energy configurations.

- $C_{s,1} = 2\zeta(s)$ (MMRS, (2005))
- Conjecture (Kuiljaars and Saff, 1998): C_{s,2} = ζ_{Λ2}(s) for s > 2 where Λ₂ denotes the equilateral triangular lattice and, for a *d*-dimensional lattice Λ,

$$\zeta_{\Lambda}(s) := \sum_{0 \neq v \in \Lambda} |v|^{-s} \qquad (s > d).$$

The constant $C_{s,d}$ reflects the 'local' structure of optimal *s*-energy configurations.

- $C_{s,1} = 2\zeta(s)$ (MMRS, (2005))
- Conjecture (Kuiljaars and Saff, 1998): C_{s,2} = ζ_{Λ2}(s) for s > 2 where Λ₂ denotes the equilateral triangular lattice and, for a *d*-dimensional lattice Λ,

$$\zeta_{\Lambda}(s) := \sum_{0 \neq v \in \Lambda} |v|^{-s} \qquad (s > d).$$

 Scaled lattice configurations restricted to a fundamental domain gives:

$$C_{s,d} \leq \zeta_{\Lambda}(s)|\Lambda|^{-s/d}, \qquad (s>d).$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

where

$$\zeta_{\Lambda}(s;x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d).$$
(1)

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

where

$$\zeta_{\Lambda}(s;x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d).$$
(1)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

where

$$\zeta_{\Lambda}(s;x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d).$$
(1)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▶ For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

where

$$\zeta_{\Lambda}(s;x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d).$$
(1)

► For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

where

$$\zeta_{\Lambda}(s;x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^s}, \qquad (s > d, x \in \mathbf{R}^d).$$
(1)

Theorem (H., Saff, Simanek, 2015) Let Λ be a lattice in \mathbf{R}^d with co-volume $|\Lambda| > 0$ and s > d. Then

$$\lim_{N \to \infty} \frac{\mathcal{E}_{s,\Lambda}(N)}{N^{1+s/d}} = \lim_{N \to \infty} \frac{\mathcal{E}_s(\Omega_{\Lambda}, N)}{N^{1+s/d}} = C_{s,d} |\Lambda|^{-s/d}, \qquad s > d, \quad (2)$$
$$\lim_{N \to \infty} \frac{\mathcal{E}_{d,\Lambda}(N)}{N^2 \log N} = \lim_{N \to \infty} \frac{\mathcal{E}_d(\Omega_{\Lambda}, N)}{N^2 \log N} = \frac{2\pi^{d/2}}{d\Gamma(\frac{d}{2})} |\Lambda|^{-1}. \quad (3)$$

► For a lattice $\Lambda \subset \mathbf{R}^d$, s > d, and $\omega_N \subset \Omega_\Lambda$ consider

$$E_{s,\Lambda}(\omega_N) := \sum_{x \neq y \in \omega_N} \sum_{v \in \Lambda} \frac{1}{|x - y + v|^s} = \sum_{x \neq y \in \omega_N} \zeta_{\Lambda}(s; x - y),$$

where

$$\zeta_{\Lambda}(s;x) := \sum_{\nu \in \Lambda} \frac{1}{|x+\nu|^s}, \qquad (s > d, x \in \mathbf{R}^d).$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ For $s \le d$, the sum on the right side of (1) is infinite for all $x \in \mathbf{R}^d$.

Periodizing long range potentials and analytic continuation

For fixed x ∈ R^d \ Λ, it follows (using PSF and Riemann splitting) that ζ_Λ(s; x) has an analytic extension such that

$$F_{s,\Lambda}(x) := \zeta_{\Lambda}(s;x) + \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{s}{2})(d-s)},$$
(2)

is an entire function.

 We refer to (the analytically extended) ζ_Λ(s; x) as the Epstein Hurwitz zeta function for the lattice Λ.

Periodizing long range potentials

For a > 0, then

$$F_{s,a,\Lambda}(x) := \sum_{v \in \Lambda} \frac{1}{|x+v|^{-s}} e^{-a|x+v|^2}$$

converges to a finite value for all $x \notin \Lambda$, and there is a C_a such that

$$F_{s,\Lambda}(x) = \zeta_{\Lambda}(s;x) = \lim_{a \to 0^+} \left(F_{s,a,\Lambda}(x) - C_a \right),$$

so that
$$E_{s,\Lambda}(\omega_N) := E_{F_{s,\Lambda}}(\omega_N) = \lim_{a \to 0^+} \sum_{x \neq y \in \omega_N} F_{s,a,\Lambda}(x-y).$$

Main Result

Theorem (H., Saff, Simanek, Su, 2016) Let Λ be a lattice in \mathbf{R}^d with co-volume $|\Lambda| > 0$. Then, as $N \to \infty$,

$$\mathcal{E}_{s,\Lambda}(N) = \frac{2\pi^{\frac{d}{2}}|\Lambda|^{-1}}{\Gamma(\frac{s}{2})(d-s)}N^2 + C_{s,d}|\Lambda|^{-s/d}N^{1+\frac{s}{d}} + o(N^{1+\frac{s}{d}}), \qquad 0 < s < d,$$
(3)

$$\mathcal{E}_{\log,\Lambda}(N) = \frac{2\pi^{\frac{d}{2}}}{d} |\Lambda|^{-1} N(N-1) - \frac{2}{d} N \log N + (C_{\log,d} - 2\zeta'_{\Lambda}(0)) N + o(N).$$
(4)

where $C_{\log,d}$ and $C_{s,d}$ are constants independent of Λ .

- ▶ Note that the first relation also holds for *s* > *d*.
- Petrache, Serfaty (2016) establish a result closely related to
 (??) for configurations interacting through a Riesz s potential
 in an external field for values of the Riesz parameter
 d 2 ≤ s < d. Sandier, Serfaty (2015) prove a result closely
 related to (??) for the case that s = log and d = 2.

Universal optimality conjecture for dimensions d = 2, 4, 8, 24

- ▶ In each of the dimensions d = 2, 4, 8, 24, there are special lattices Λ_d , (namely, A_2 , D_4 , E_8 , Leech lattice) that are conjectured by Cohn and Kumar (2007) to be 'universally optimal'; i.e., optimal for energy minimization problems with potentials of the form $f(|x y|^2)$ for 'completely monotone' f with sufficient decay. If true, then $C_{s,d} = \zeta_{\Lambda_d}(s)$ in these dimensions for s > 0 and $s \neq d$.
- Coulangeon and Schürmann (2011) show that such lattice configurations are locally universally optimal under perturbations of both the points and the lattice.
- Optimality for Theta functions (periodized Gaussian potentials)

$$\Theta_{a,\Lambda}(x-y) = \sum_{\nu \in \Lambda} e^{-a|x-y+\nu|^2},$$

for all a > 0 implies universal optimality.

Connection to Best-Packing

Theorem (BHS)

 $(C_{s,d})^{1/s} \to (1/2)(\beta_d/\triangle_d)^{1/d}$ as $s \to \infty$,

where \triangle_d is maximal sphere packing density in \mathbb{R}^d and $\beta_d = \operatorname{Vol}(\mathcal{B}^d)$.

$$\Delta_1 = 1$$
,
 $\Delta_2 = \pi/\sqrt{12}$ (Thue and Fejes-Toth),
 $\Delta_3 = \pi/\sqrt{18}$ (Hales).

The exact value of Δ_d for d > 3 is unknown.

Connection to Best-Packing

Theorem (BHS)

 $(C_{s,d})^{1/s} \to (1/2)(\beta_d/\triangle_d)^{1/d}$ as $s \to \infty$,

where \triangle_d is maximal sphere packing density in \mathbb{R}^d and $\beta_d = \operatorname{Vol}(\mathcal{B}^d)$.

$$\Delta_1 = 1$$
,
 $\Delta_2 = \pi/\sqrt{12}$ (Thue and Fejes-Toth),
 $\Delta_3 = \pi/\sqrt{18}$ (Hales).

Whoops! (old slide) $\Delta_8 = \frac{\pi^4}{384}$ (Viazovska, March 14, 2016) $\Delta_{24} = \frac{\pi^{12}}{12!}$ (Cohn, Kumar, Miller, Radchenko, Viazovska, March 21, 2016) Cohn & Elkies (2003) provide extremely precise upper bounds for the 'best-packing' density Δ_d in dimensions 2, 8, and 24.

Figure 1. Plot of $\log_2 \delta + n(24 - n)/96$ vs. dimension n.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Best packing in dimensions d = 2, 8, and 24

Theorem (Cohn, Elkies (2003)) Suppose $f : \mathbf{R}^d \to \mathbf{R}$ is an admissible function satisfying : (1) $f(x) \leq 0$ for $|x| \geq r$, and (2) $\hat{f}(t) \geq 0$ for all t. Then $\Delta_d \leq \frac{\pi^{d/2}}{(d/2)!} \frac{f(0)}{\hat{f}(0)} (r/2)^d$.

Best packing in dimensions d = 2, 8, and 24

Theorem (Cohn, Elkies (2003)) Suppose $f : \mathbf{R}^d \to \mathbf{R}$ is an admissible function satisfying : (1) $f(x) \leq 0$ for $|x| \geq r$, and (2) $\hat{f}(t) \ge 0$ for all t. Then $\Delta_d \leq \frac{\pi^{d/2}}{(d/2)!} \frac{f(0)}{\hat{f}(0)} (r/2)^d$. $\hat{f}(t) = \left(\frac{\sin \pi t}{\pi t}\right)^2$ d = 1: $f(x) = (1 - |x|)_+$ -2 -1

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Best packing in dimensions d = 2, 8, and 24

Theorem (Cohn, Elkies (2003)) Suppose $f : \mathbf{R}^d \to \mathbf{R}$ is an admissible function satisfying : (1) $f(x) \leq 0$ for $|x| \geq r$, and (2) $\hat{f}(t) > 0$ for all t. Then $\Delta_d \leq \frac{\pi^{d/2}}{(d/2)!} \frac{f(0)}{f(0)} (r/2)^d$. $\hat{f}(t) = \left(\frac{\sin \pi t}{t}\right)^2$ d = 1: $f(x) = (1 - |x|)_+$ -2 -2 $\Delta_1 = \frac{\sqrt{\pi}}{(1/2)!} \left(\frac{1}{1}\right) (1/2) = 1.$ shows

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Prove:
$$\Delta_d \leq \frac{\pi^{d/2}}{(d/2)!} \frac{f(0)}{\hat{f}(0)} (r/2)^d$$

Assume:

Note: $\{B(x, r/2)\}_{x \in X}$ forms a sphere packing with density

$$\Delta(X) = \frac{NVol_d(B(0,1))(r/2)^d}{|\Lambda|} = \frac{\pi^{d/2}}{(d/2)!} \frac{N}{|\Lambda|} (r/2)^d.$$

By PSF

$$\sum_{x,y\in\omega_N}\sum_{\nu\in\Lambda}f(x-y+\nu) = \frac{1}{|\Lambda|}\sum_{t\in\Lambda^*}\hat{f}(t)\sum_{x,y\in\omega_N}e^{2\pi i\langle t,(x-y)\rangle}$$
$$= \frac{1}{|\Lambda|}\sum_{t\in\Lambda^*}\hat{f}(t)\sum_{x\in\omega_N}\left|e^{2\pi i\langle t,x\rangle}\right|^2$$

Prove:
$$\Delta_d \leq \frac{\pi^{d/2}}{(d/2)!} \frac{f(0)}{\hat{f}(0)} (r/2)^d$$

Assume:

Λ

►
$$f(x) \le 0$$
 for $|x| \ge r$, and $\hat{f}(t) \ge 0$ for all t .
► $X = \omega_N + \Lambda$ with $\delta(X) = r$.

Note: $\{B(x, r/2)\}_{x \in X}$ forms a sphere packing with density

$$\Delta(X) = \frac{NVol_d(B(0,1))(r/2)^d}{|\Lambda|} = \frac{\pi^{d/2}}{(d/2)!} \frac{N}{|\Lambda|} (r/2)^d$$

Since either x - y + v = 0 or $|x - y + v| \ge r$ and $\hat{f} \ge 0$,

$$egin{aligned} & \mathcal{N}f(0) & \geq & \sum_{x,y\in\omega_N}\sum_{v\in\Lambda}f(x-y+v) \ & = & rac{1}{|\Lambda|}\sum_{t\in\Lambda^*}\hat{f}(t)\left|\sum_{x\in\omega_N}e^{2\pi i\langle t,x
angle}
ight|^2\geq N^2\hat{f}(0), \end{aligned}$$

Thus, $\frac{N}{|\Lambda|} \leq \frac{f(0)}{\hat{f}(0)}$ which gives the result.

Necessary conditions for optimality

- It is sufficient to consider radial functions.
- To show optimality of lattice Λ , f must vanish on $\Lambda \setminus \{0\}$ and \hat{f} must vanish on $\Lambda^* \setminus \{0\}$.

Necessary conditions for optimality

- It is sufficient to consider radial functions.
- To show optimality of lattice Λ , f must vanish on $\Lambda \setminus \{0\}$ and \hat{f} must vanish on $\Lambda^* \setminus \{0\}$.
- Another d = 1 example:

Necessary conditions for optimality

- It is sufficient to consider radial functions.
- To show optimality of lattice Λ , f must vanish on $\Lambda \setminus \{0\}$ and \hat{f} must vanish on $\Lambda^* \setminus \{0\}$.
- Another d = 1 example:

- For $\Lambda = E_8$ or Leech lattice, we have $\Lambda^* = \Lambda$.
- ► Cohn-Elkies idea: Consider g₊ = f̂ + f and g₋ = f̂ f which are eigenfunctions of the *d*-dimensional Fourier transform with eigenvalues 1 or -1, respectively, with "good" double roots.
- ► Viazovska (March 14) and Cohn et al (March 21) explicitly construct FT-eigenfunctions with eigenvalues ±1 with double zeros on {√2n | n = 2, 3, 4, ...} using modular forms (Eisenstein series) and then rigorously verify that these can be put combined to give a function f establishing optimality.

Coding Theory Linear Programming Bounds: Notation

- ▶ S^{n-1} : unit sphere in **R**ⁿ
- ▶ Spherical Code: A finite set $C \subset S^{n-1}$ with cardinality |C|
- Interaction potential h : [−1, 1] → R ∪ {+∞} (low. semicont.)
- ► The *h*-energy of a spherical code *C*:

$$E(n,C;h) := \sum_{x,y\in C, y\neq x} h(\langle x,y\rangle),$$

where $t = \langle x, y \rangle$. Recall $|x - y|^2 = 2 - 2t$.

- Riesz *s*-potential: $h(t) = (2 2t)^{-s/2} = |x y|^{-s}$
- Log potential: $h(t) = -\log(2-2t) = -\log|x-y|$
- hard sphere potential:

$$h(t) = egin{cases} 0, & -1 \leq t \leq t^* \ \infty, & t^* \leq t \leq 1 \end{cases}$$

Spherical Harmonics

▶ Harm(k): homogeneous harmonic polynomials in n variables of degree k restricted to Sⁿ⁻¹ with

$$r_k := \dim \operatorname{Harm}(k) = \binom{k+n-3}{n-2} \left(\frac{2k+n-2}{k} \right)$$

Spherical harmonics (degree k): {Y_{kj}(x) : j = 1, 2, ..., r_k} orthonormal basis of Harm(k) with respect to integration using (n − 1)-dimensional surface area measure on S^{n−1}.

Gegenbauer polynomials

- Gegenbauer polynomials: For fixed dimension n, {P_k⁽ⁿ⁾(t)}_{k=0}[∞] is family of orthogonal polynomials with respect to the weight (1 − t²)^{(n−3)/2} on [−1, 1] normalized so that P_k⁽ⁿ⁾(1) = 1.
- The Gegenbauer polynomials and spherical harmonics are related through the well-known Addition Formula:

$$\frac{1}{r_k}\sum_{j=1}^{r_k}Y_{kj}(x)Y_{kj}(y)=P_k^{(n)}(t), \qquad t=\langle x,y\rangle, \ x,y\in\mathbb{S}^{n-1}.$$

• Consequence: If C is a spherical code of N points on \mathbb{S}^{n-1} ,

$$\sum_{x,y\in C} P_k^{(n)}(\langle x,y\rangle) = \frac{1}{r_k} \sum_{j=1}^{r_k} \sum_{x\in C} \sum_{y\in C} Y_{kj}(x) Y_{kj}(y)$$
$$= \frac{1}{r_k} \sum_{j=1}^{r_k} \left(\sum_{x\in C} Y_{kj}(x)\right)^2 \ge 0.$$

'Good' potentials for lower bounds

Suppose $f: [-1,1] \rightarrow \mathbf{R}$ is of the form

$$f(t) = \sum_{k=0}^{\infty} f_k P_k^{(n)}(t), \qquad f_k \ge 0 \text{ for all } k \ge 1.$$
 (5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $f(1) = \sum_{k=0}^{\infty} f_k < \infty \implies$ convergence is absolute and uniform. Then:

$$\begin{split} E(n,C;f) &= \sum_{x,y\in C} f(\langle x,y\rangle) - f(1)N \\ &= \sum_{k=0}^{\infty} f_k \sum_{x,y\in C} P_k^{(n)}(\langle x,y\rangle) - f(1)N \\ &\geq f_0 N^2 - f(1)N = N^2 \left(f_0 - \frac{f(1)}{N}\right). \end{split}$$

Thm (Delsarte-Yudin LP Bound)

Suppose f is of form (??) and $h(t) \ge f(t)$ for $t \in [-1, 1]$. Then

$$\mathcal{E}(n,N;h) \ge N^2(f_0 - f(1)/N). \tag{6}$$

An *N*-point spherical code *C* satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a)
$$f(t) = h(t)$$
 for all $t \in \{\langle x, y \rangle : x \neq y, x, y \in C\}$.
(b) for all $k \ge 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

Thm (Delsarte-Yudin LP Bound)

Suppose f is of form (??) and $h(t) \ge f(t)$ for $t \in [-1,1]$. Then

$$\mathcal{E}(n,N;h) \ge N^2(f_0 - f(1)/N). \tag{6}$$

An *N*-point spherical code *C* satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a)
$$f(t) = h(t)$$
 for all $t \in \{\langle x, y \rangle : x \neq y, x, y \in C\}$.
(b) for all $k \ge 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

- ► The *k*-th moment $M_k(C) := \sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$ if and only if $\sum_{x \in C} Y(x) = 0$ for all $Y \in \text{Harm}(k)$.
- ▶ If $M_k(C) = 0$ for $1 \le k \le \tau$, then C is called a **spherical** τ -**design** and

$$\int_{\mathbb{S}^{n-1}} p(y) \, d\sigma_n(y) = \frac{1}{N} \sum_{x \in C} p(x), \quad \forall \text{ polys } p \text{ of deg at most } \tau.$$

Thm (Delsarte-Yudin LP Bound)

Suppose f is of form (??) and $h(t) \ge f(t)$ for $t \in [-1, 1]$. Then

$$\mathcal{E}(n,N;h) \ge N^2(f_0 - f(1)/N). \tag{6}$$

An *N*-point spherical code *C* satisfies $E(n, C; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

(a)
$$f(t) = h(t)$$
 for all $t \in \{\langle x, y \rangle : x \neq y, x, y \in C\}$.
(b) for all $k \ge 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x, y \rangle) = 0$.

Maximizing the lower bound (??) can be written as maximizing the objective function

$$F(f_0, f_1, \ldots) := N^2 \left(f_0 - \frac{1}{N} \sum_{k=0}^{\infty} f_k \right), \qquad (\Delta)$$

subject to (i) $\sum_{k=0}^{\infty} f_k P_k^n(t) \le h(t)$ and (ii) $f_k \ge 0$ for $k \ge 1$.

Example: *n*-Simplex on \mathbb{S}^{n-1}

Let *C* be N = n + 1 points on \mathbb{S}^{n-1} forming a regular simplex. Then there is only one inner product $\alpha_0 = \langle x, y \rangle$ for $x \neq y \in C$. Since $\sum_{x \in C} x = 0$, it easily follows that $\alpha_0 = -1/n$.

The first degree Gegenbauer polynomial $P_1^{(n)}(t) = t$.

If h is absolutely monotone (or just increasing and convex) then linear interpolant

$$f(t) = h(0) + h'(-1/n)(t+1/n) = (h(0) + h'(-1/n)/n)P_0^{(n)}(t) + h'(-1/n)h'$$

has $f_1 = h'(-1/n) \ge 0$ and, by convexity, stays below h(t) and so shows that the *n*-simplex is a universally optimal spherical code.

Sharp Codes

Definition

A spherical code $C \subset \mathbb{S}^{n-1}$ is **sharp** if there are *m* inner products between distinct points in it and *C* is a spherical (2m - 1)-design.

Theorem (Cohn and Kumar, 2006)

If $C \subset \mathbb{S}^{n-1}$ is a sharp code, then C is **universally optimal**; *i.e.*, C is h-energy optimal for any h that is absolutely monotone on [-1, 1].

Universal lower bounds for energy

Using results of Levenshtein (1983, 1998) (also the basis of Cohn, Kumar's results) we develop bounds that allow us to solve the linear program restricted to polynomials of certain degrees.

$$D(n,\tau) := \begin{cases} 2\binom{n+k-2}{n-1}, & \text{if } \tau = 2k-1, \\ \binom{n+k-1}{n-1} + \binom{n+k-2}{n-1}, & \text{if } \tau = 2k. \end{cases}$$

$$\tau := \tau(n,N) \quad \text{such that} \quad N \in (D(n,\tau), D(n,\tau+1)]. \tag{8}$$
Levenshtein: there exist quadrature nodes and nonnegative weights

$$-1 \leq \alpha_1 < \cdots < \alpha_k < 1, \quad \rho_1, \dots, \rho_k \in \mathbb{R}^+, \quad i = 1, \dots, k$$
 (9)
such that the Radau/Lobatto 1/N-quadrature

$$f_0 = \frac{f(1)}{N} + \sum_{i=1}^k \rho_i f(\alpha_i), \quad \text{for all } f \in \mathcal{P}_{\tau}. \tag{10}$$

Universal lower bounds for energy

Using results of Levenshtein (1983, 1998) (also the basis of Cohn, Kumar's results) we develop bounds that allow us to solve the linear program restricted to polynomials of certain degrees.

Theorem (Boyvalenkov, Dragnev, H., Saff, Stoyanova, 2016) Let n, N be fixed and h(t) be an absolutely monotone potential. Suppose that $\tau = \tau(n, N)$ is as in (??), and choose $k = \lceil \frac{\tau+1}{2} \rceil$. Associate the quadrature nodes and weights α_i and ρ_i , i = 1, ..., k, as in (??). Then

$$\mathcal{E}(n,N;h) \ge N^2 \sum_{i=1}^k \rho_i h(\alpha_i).$$
(7)

The Hermite interpolant to h at the nodes α_i solve the linear program (Δ) in Π_{τ} .

600 cell

- ▶ C = 120 points in \mathbb{R}^4 . Each $x \in C$ has 12 nearest neighbors forming an icosahedron (Voronoi cells are dodecahedra).
- ▶ 8 inner products between distinct points in C: $\{-1, \pm 1/2, 0, (\pm 1 \pm \sqrt{5})/4\}.$
- ▶ 2*7+1 interpolation conditions (would require $\tau = 14$ design)
- C is an 11 design, but almost a 19 design (only 12-th moment is nonzero). I.e. quadrature rule from C is exact on subspace Λ of Π₁₉ that is ⊥ to P⁽⁴⁾₁₂.
- Cohn and Kumar find a family of 17-th degree polynomials that proves universal optimality of 600 cell and they require f₁₁ = f₁₂ = f₁₃ = 0. Why?

Book to appear in late 2016 (?early 17):

Minimal Energy on Rectifiable Sets by D. Hardin, E. Saff, and S. Borodachov

Thanks!