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Two point distributions
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Quantify evenness

For every point set XN = {x1, . . . ,xN} of distinct points, we
assign several qualitative measures that describe aspects of
even distribution.

Then we can try to minimise or maximise these measures for
given N .
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Combinatorial measures

discrepancy

DN (XN ) = sup
C

∣∣∣∣∣ 1

N

N∑
n=1

χC(xn)− σ(C)

∣∣∣∣∣

dispersion
δN (XN ) = sup

x∈Sd

min
k
|x− xk|

separation
∆N (XN ) = min

i6=j
|xi − xj |
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Analytic measures

error in numerical integration

IN (f,XN ) =

∣∣∣∣∣
N∑
n=1

f(xn)−
∫
Sd

f(x) dσd(x)

∣∣∣∣∣

Worst-case error for integration in a normed space H:

IN (XN , H) = sup
f∈H
‖f‖=1

IN (f,XN )),
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L2-discrepancy and energy

L2-discrepancy:

∫ π

0

∫
Sd

∣∣∣∣∣ 1

N

N∑
n=1

χC(x,t)(xn)− σd(C(x, t))

∣∣∣∣∣
2

dσd(x) dt

(generalised) energy:

Eg(XN ) =
N∑

i,j=1
i 6=j

g(〈xi,xj〉) =
N∑

i,j=1
i 6=j

g̃(‖xi − xj‖),

where g denotes a positive definite function.

L2-discrepancy and the worst case error (for many function
spaces) turn out to be energies of the underlying point
configuration.
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Discrepancy

Discrepancy is the most classical measure for the difference of
two distributions

DN (XN ) = sup
C

∣∣∣∣∣ 1

N

N∑
n=1

χC(xn)− σ(C)

∣∣∣∣∣ .

It is rather difficult to compute explicitly, even for moderate
values of N .
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Irregularities

On the other hand the theory of irregularities of distributions
developed by K. F. Roth, W. Schmidt, J. Beck, W. Chen,
. . . gives a lower bound

DN (XN ) ≥ CN−
1
2
− 1

2d .

The proof of this result uses Fourier-analytic techniques. The
caps contributing to the lower bound have the property

lim
N→∞

σ(CN ) = 0 and lim
N→∞

Nσ(CN ) =∞.

(for later reference)
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Irregularities

Beck’s lower bound

DN (XN ) ≥ CN−
1
2
− 1

2d .

is essentially best possible. Namely, for every N there exists a
point set XN such that

DN(XN ) ≤ CN−
1
2
− 1

2d logN.

The construction of this point set is probabilistic.

No explicit construction is known.
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A new measure

The aim of this talk is to introduce a new measure for the
quality of point distributions on compact spaces, especially the
sphere and the torus.

The ideas can be extended to compact homogeneous spaces.
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Motivation: Hyperuniformity in Rd

Remember Salvatore Torquato’s talks on Monday

Distribute N particles in a volume V ⊆ Rd according to a point
process with joint density ρ(N)

V being

(a) invariant under permutation of the particles
(b) invariant under Euclidean motion (for V ↗ Rd)

Hence, a single particle is distributed with density∫
V N−1

ρ
(N)
V (r1, . . . , rN ) dr2 · · · drN =

1

|V |

Assume N
|V | → ρ (thermodynamic limit).

⇒ distribution is asymptotically uniform with density ρ.
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Hyperuniformity in Rd

Heuristic
Hyperuniformity = asymptotically uniform + extra order

Counting points in test sets, e.g. balls BR

NR :=

N∑
i=1

1BR
(Xi) , where (X1, . . . , XN ) ∼ ρ(N)

V

The expected number of points in BR is

E [NR]
th.→ ρ|BR|
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Hyperuniformity in Rd

The variance measures the rate of convergence.

Example: (Xi)i i.i.d. ⇒ V[NR]
th.→ ρ|BR|.

Definition

(ρ(N))N∈N hyperuniform⇐⇒ lim
th.

V[NR] ∼ |∂BR| for large R

Remarks:

If (ρ(N))N∈N hyperuniform, i.e. Rd-term of lim
th.

V [NR]

vanishes
⇒ Rd−1-term cannot vanish.
Hyperuniformity is a long-scale property.
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Hyperuniformity in compact spaces

Compact sets have finite volume
⇒ the thermodynamical limit doesn’t make sense!

Therefore consider distributions (ρ(N))N∈N on M = Td or Sd

satisfying

(a) ρ(N)(xσ1, . . . , xσN ) = ρ(n)(x1, . . . , xN ) for all
xi ∈M, σ ∈ SN .

”particles are exchangeable”

(b) ρ(n)(τx1, . . . , τxN ) = ρ(N)(x1, . . . , xN ) for all
xi ∈M, τ ∈ Td or SO(d+ 1), resp. ”isometry invariance”

Averaging over permutations and isometries
⇒ joint densities with (a) and (b) exist.
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Hyperuniformity in compact spaces

Test sets BR are balls or spherical caps, resp. and the point
counting function is

NR :=

N∑
i=1

1BR
(Xi) , where (X1, . . . , XN ) ∼ ρ(N)

The reduced density is

ρ
(N)
k (r1, . . . , rk) :=

∫
MN−k

ρ(N)(r1, . . . , rN ) drk+1 · · · drN

where we integrate with respect to the normalized Lebesgue
measure.The expectation remains N -dependent

E [NR] =

N∑
i=1

E[1BR
(Xi)] = N

∫
BR

ρ
(N)
1 (r) dr = N |BR|.
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Hyperuniformity in compact spaces

The variance depends on n and the pair correlation ρ(n)
2

V [NR] = N |BR|(1− |BR|) +N(N − 1)

∫
B2

R

(ρ
(n)
2 (x, y)− 1) dx dy

Example: (Xi)i i.i.d. (i.e. ρ(N) = 1)
⇒ E [NR] = N |BR| and V [NR] = N |BR|(1− |BR|).

Remark:

From (a) and (b)⇒ ρ
(N)
2 (x, y) = ρ

(N)
2 (x− y).

For M = Sd:
∫ π

0 V [NR] dR = L2-discrepancy.
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Hyperuniformity in compact spaces

Heuristic
Hyperuniformity in the compact setting

⇐⇒
For |BR| → 0 and N →∞ such that N |BR| = E [NR]→∞:

V [NR] is of smaller order than in the i.i.d. case.

Two examples to make this more precise. . .
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Lattice on the torus T2

(X1, . . . , XN ) ∼ ρ(N),
where AN := {a1, . . . , aN} ⊆ T2 square lattice (N a square for
simplicity) and

ρ(N)(x1, . . . , xN ) =
1

N !

∑
σ∈Sn

∫
T2

N∏
i=1

δ(xσi − ai − t) dt

Therefore

V [NR] = N2|BR|

(
1

N

N∑
i=1

αR(ai)−
∫
T2

αR(r) dr

)
,

where αR(r) := vol(BR(0) ∩BR(r)).
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Lattice on the torus T2

The Fourier series of ball intersection volume is

αR(r) =
∑
k∈Z2

bke
2πi〈k,r〉, bk :=

1

4π2

∫
T2

αR(|x|)e2πi〈k,x〉 dx

αR can be written as a convolutional square, which implies
bk ≥ 0.
For the variance this gives

V [NR] = N2|BR|

(
1

N

N∑
i=1

αR(ai)−
∫
T2

αR(r) dr

)
= N2|BR|

∑
k∈Z2\{0}

b√Nk
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Lattice on the torus T2

Ball intersection volume = convolution of indicator functions
⇒ Fourier coefficients bk = product of Bessel functions.

Asymptotic: |bk| ≤ c
|k|3R , for |k|R ≥ 0, c = const. > 0.

Therefore for small |BR|:

Vρ [NR] ≤ N2|BR|
c

RN3/2

∑
k∈Z2\{0}

1

‖k‖3

= c̃
√
N |∂BR|

Compare to

Vi.i.d. [NR] = N |BR|.

Remark: This method works for lattices in Td, d ≥ 3.
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Determinantal point process in S2

Definition

A point process on M with joint densities (ρ(N))N∈N is called
determinantal with kernel K(n), if

ρ(N)(x1, . . . , xn) = det(K(N)(xi, xj))
N
i,j=1, for allN ∈ N, xi ∈M.

Let K̃(N)(x, y) = N(1+xȳ)N−1

4π(1+|x|2)(N+1)/2(1+|y|2)(N+1)/2 on C2 with resp.
to the Lebesgue measure λ on C. Then

ρ̃(N)(x1, . . . , xN ) = det(K̃(N)(xi, xj))
N
i,j=1

= const.
∏
i<j

|xi − xj |2

(1 + |xi|)(1 + |xj |)

N∏
k=1

1

(1 + |xk|2)2
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Determinantal point process in S2

Using stereographic projection g : C× R→ C, (z, x) 7→ z
1−x :

ρ(N)(p1, . . . , pN ) := g∗ρ̃(N)(p1, . . . , pN )

= const.
∏
i<j

‖pi − pj‖2R3 ,

with resp. to the normalized Lebesgue measure σ on S2.

Remark: Configurations, where points are close together have
low weight⇒ repulsion!
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Determinantal point process in S2

Figure: 10000 sampled points from an i.i.d. process and a DPP, resp.
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Determinantal point process in S2

For following set

C = C(x, φ) = {y ∈ S2 | 〈x,y〉 ≥ cos(φ)}

for the cap with angle φ around x.

Reduction of ρ(N):

ρ
(N)
k (p1, . . . , pk) =

(N − k)!

N !
det(K(pi, pj))

k
i,j=1

In particular: ρ(N)
2 (p, q) = N

N−1 [1− (1− ‖p− q‖2/4)N−1].
Therefore

V [#(XN ∩ C)] = N

[
σ(C)−N

∫
C2

(1− ‖p− q‖2/2)N−1(dσ)2(p, q)

]
= . . .
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Lemma (Alishahi, Zamani ’15)
If Nσ(C)→∞, when N →∞ and φ→ 0. Then for all ε > 0:

V [#(XN ∩ C)] =
√
Nσ(C) + o(log(Nσ(C))1/2+ε).
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Higher dimensional spheres

The approach given before is principally restricted to the sphere
S2. In a recent paper by C. Beltrán, J. Marzo and
J. Ortega-Cerdà for certain values of n determinantal point
processes on Sd are constructed, which exhibit a similar
behaviour as for the process on S2.

They study

discrepancy
Riesz energy
separation

of the sample points.
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J. Ortega-Cerdà for certain values of n determinantal point
processes on Sd are constructed, which exhibit a similar
behaviour as for the process on S2.
They study

discrepancy
Riesz energy
separation

of the sample points.

Peter Grabner Hyperuniformity in compact spaces



Deterministic point of view

The definition of hyperuniformity was based on an underlying
probabilistic model producing the points. We would like to apply
a similar concept to define hyperuniformity of a deterministic
sequence of point sets (XN )N .

Definition

A sequence (XN )N of point sets on Sd is called hyperuniformly
distributed, if

∫
Sd

(
N∑
n=1

χC(x,φN )(xn)−Nσd(Cx,φN )

)2

dσd(x) = o(Nσd(C(·, φN )))

for all (φN )N such that

lim
N→∞

σd(C(·, φN )) = 0 and lim
N→∞

Nσd(C(·, φN )) =∞.
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Concluding remarks

The results on determinantal point processes show that
hyperuniformly distributed point sequences exist.

The definition uses exactly those spherical caps for assessing
the quality of the point distribution, which attain Beck’s lower
bound for the discrepancy.
The quantity

∫
Sd

(
N∑
n=1

χC(x,φN )(xn)−Nσd(Cx,φN )

)2

dσd(x)

is a localised version of the L2-discrepancy.
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Concluding remarks

The variance given in the definition of hyperuniform
sequences of point sets is a positive definite function,
which makes it a generalised energy of the point set.

The test sets Cx,φN are chosen so that

lim
N→∞

σd(Cx,φN ) = 0

lim
N→∞

Nσd(Cx,φN ) =∞.

Together with

V(#(XN ∩ Cx,φN )) = o(Nσd(Cx,φN ))

this implies uniform distribution of the sequence of point sets
(XN )N .
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