Peter Grabner

Institute for Analysis and Number Theory Graz University of Technology

Paris, June 30, 2016

Two point distributions

Peter Grabner Hyperuniformity in compact spaces

For every point set $X_N = {\mathbf{x}_1, ..., \mathbf{x}_N}$ of *distinct* points, we assign several qualitative measures that describe aspects of even distribution.

For every point set $X_N = {\mathbf{x}_1, ..., \mathbf{x}_N}$ of *distinct* points, we assign several qualitative measures that describe aspects of even distribution.

Then we can try to minimise or maximise these measures for given N.

o discrepancy

$$D_N(X_N) = \sup_C \left| \frac{1}{N} \sum_{n=1}^N \chi_C(\mathbf{x}_n) - \sigma(C) \right|$$

o discrepancy

$$D_N(X_N) = \sup_C \left| \frac{1}{N} \sum_{n=1}^N \chi_C(\mathbf{x}_n) - \sigma(C) \right|$$

o dispersion

$$\delta_N(X_N) = \sup_{\mathbf{x} \in S^d} \min_k |\mathbf{x} - \mathbf{x}_k|$$

discrepancy

$$D_N(X_N) = \sup_C \left| \frac{1}{N} \sum_{n=1}^N \chi_C(\mathbf{x}_n) - \sigma(C) \right|$$

o dispersion

$$\delta_N(X_N) = \sup_{\mathbf{x} \in S^d} \min_k |\mathbf{x} - \mathbf{x}_k|$$

separation

$$\Delta_N(X_N) = \min_{i \neq j} |\mathbf{x}_i - \mathbf{x}_j|$$

• error in numerical integration

$$I_N(f, X_N) = \left| \sum_{n=1}^N f(\mathbf{x}_n) - \int_{S^d} f(\mathbf{x}) \, d\sigma_d(\mathbf{x}) \right|$$

• error in numerical integration

$$I_N(f, X_N) = \left| \sum_{n=1}^N f(\mathbf{x}_n) - \int_{S^d} f(\mathbf{x}) \, d\sigma_d(\mathbf{x}) \right|$$

• Worst-case error for integration in a normed space *H*:

$$I_N(X_N, H) = \sup_{\substack{f \in H \\ \|f\|=1}} I_N(f, X_N)),$$

• *L*²-discrepancy:

$$\int_0^{\pi} \int_{S^d} \left| \frac{1}{N} \sum_{n=1}^N \chi_{C(\mathbf{x},t)}(\mathbf{x}_n) - \sigma_d(C(\mathbf{x},t)) \right|^2 \, d\sigma_d(\mathbf{x}) \, dt$$

• L^2 -discrepancy:

$$\int_0^{\pi} \int_{S^d} \left| \frac{1}{N} \sum_{n=1}^N \chi_{C(\mathbf{x},t)}(\mathbf{x}_n) - \sigma_d(C(\mathbf{x},t)) \right|^2 \, d\sigma_d(\mathbf{x}) \, dt$$

(generalised) energy:

$$E_g(X_N) = \sum_{\substack{i,j=1\\i\neq j}}^N g(\langle \mathbf{x}_i, \mathbf{x}_j \rangle) = \sum_{\substack{i,j=1\\i\neq j}}^N \tilde{g}(\|\mathbf{x}_i - \mathbf{x}_j\|),$$

where g denotes a positive definite function.

• L^2 -discrepancy:

$$\int_0^{\pi} \int_{S^d} \left| \frac{1}{N} \sum_{n=1}^N \chi_{C(\mathbf{x},t)}(\mathbf{x}_n) - \sigma_d(C(\mathbf{x},t)) \right|^2 \, d\sigma_d(\mathbf{x}) \, dt$$

(generalised) energy:

$$E_g(X_N) = \sum_{\substack{i,j=1\\i\neq j}}^N g(\langle \mathbf{x}_i, \mathbf{x}_j \rangle) = \sum_{\substack{i,j=1\\i\neq j}}^N \tilde{g}(\|\mathbf{x}_i - \mathbf{x}_j\|),$$

where g denotes a positive definite function.

 L^2 -discrepancy and the worst case error (for many function spaces) turn out to be energies of the underlying point configuration.

Discrepancy is the most classical measure for the difference of two distributions

$$D_N(X_N) = \sup_C \left| \frac{1}{N} \sum_{n=1}^N \chi_C(\mathbf{x}_n) - \sigma(C) \right|.$$

Discrepancy is the most classical measure for the difference of two distributions

$$D_N(X_N) = \sup_C \left| \frac{1}{N} \sum_{n=1}^N \chi_C(\mathbf{x}_n) - \sigma(C) \right|.$$

It is rather difficult to compute explicitly, even for moderate values of N.

On the other hand the theory of irregularities of distributions developed by K. F. Roth, W. Schmidt, J. Beck, W. Chen, ... gives a lower bound

$$D_N(X_N) \ge CN^{-\frac{1}{2} - \frac{1}{2d}}$$

On the other hand the theory of irregularities of distributions developed by K. F. Roth, W. Schmidt, J. Beck, W. Chen, ... gives a lower bound

$$D_N(X_N) \ge CN^{-\frac{1}{2} - \frac{1}{2d}}.$$

The proof of this result uses Fourier-analytic techniques. The caps contributing to the lower bound have the property

$$\lim_{N \to \infty} \sigma(C_N) = 0 \text{ and } \lim_{N \to \infty} N \sigma(C_N) = \infty.$$

(for later reference)

Beck's lower bound

$$D_N(X_N) \ge CN^{-\frac{1}{2} - \frac{1}{2d}}.$$

is essentially best possible. Namely, for every N there exists a point set ${\cal X}_N$ such that

$$DN(X_N) \le CN^{-\frac{1}{2} - \frac{1}{2d}} \log N.$$

The construction of this point set is probabilistic.

Beck's lower bound

$$D_N(X_N) \ge CN^{-\frac{1}{2} - \frac{1}{2d}}.$$

is essentially best possible. Namely, for every N there exists a point set ${\cal X}_N$ such that

$$DN(X_N) \le CN^{-\frac{1}{2} - \frac{1}{2d}} \log N.$$

The construction of this point set is probabilistic. No explicit construction is known.

The aim of this talk is to introduce a new measure for the quality of point distributions on compact spaces, especially the sphere and the torus.

The aim of this talk is to introduce a new measure for the quality of point distributions on compact spaces, especially the sphere and the torus.

The ideas can be extended to compact homogeneous spaces.

Motivation: Hyperuniformity in \mathbb{R}^d

Remember Salvatore Torquato's talks on Monday

Remember Salvatore Torquato's talks on Monday Distribute N particles in a volume $V \subseteq \mathbb{R}^d$ according to a point process with **joint density** $\rho_V^{(N)}$ being

(a) invariant under permutation of the particles

Remember Salvatore Torquato's talks on Monday Distribute N particles in a volume $V \subseteq \mathbb{R}^d$ according to a point process with **joint density** $\rho_V^{(N)}$ being

- (a) invariant under permutation of the particles
- (b) invariant under Euclidean motion (for $V \nearrow \mathbb{R}^d$)

Remember Salvatore Torquato's talks on Monday Distribute N particles in a volume $V \subseteq \mathbb{R}^d$ according to a point process with **joint density** $\rho_V^{(N)}$ being

- (a) invariant under permutation of the particles
- (b) invariant under Euclidean motion (for $V \nearrow \mathbb{R}^d$)

Remember Salvatore Torquato's talks on Monday Distribute N particles in a volume $V \subseteq \mathbb{R}^d$ according to a point process with **joint density** $\rho_V^{(N)}$ being

- (a) invariant under permutation of the particles
- (b) invariant under Euclidean motion (for $V \nearrow \mathbb{R}^d$)

Hence, a single particle is distributed with density

$$\int_{V^{N-1}} \rho_V^{(N)}(r_1, \dots, r_N) \, \mathrm{d}r_2 \cdots \mathrm{d}r_N = \frac{1}{|V|}$$

Assume $\frac{N}{|V|} \rightarrow \rho$ (*thermodynamic limit*). \Rightarrow distribution is asymptotically uniform with density ρ .

Heuristic

Hyperuniformity = asymptotically uniform + extra order

Counting points in test sets, e.g. balls B_R

$$N_R := \sum_{i=1}^N \mathbb{1}_{B_R}(X_i)$$
, where $(X_1, \dots, X_N) \sim \rho_V^{(N)}$

Heuristic

Hyperuniformity = asymptotically uniform + extra order

Counting points in test sets, e.g. balls B_R

$$N_R := \sum_{i=1}^N \mathbb{1}_{B_R}(X_i)$$
, where $(X_1, \dots, X_N) \sim \rho_V^{(N)}$

Heuristic

Hyperuniformity = asymptotically uniform + extra order

Counting points in test sets, e.g. balls B_R

$$N_R := \sum_{i=1}^N \mathbb{1}_{B_R}(X_i)$$
, where $(X_1, \dots, X_N) \sim \rho_V^{(N)}$

The **expected** number of points in B_R is

$$\mathbb{E}\left[N_R\right] \stackrel{th.}{\to} \rho | B_R$$

Hyperuniformity in \mathbb{R}^d

The variance measures the rate of convergence.

Example:
$$(X_i)_i$$
 i.i.d. $\Rightarrow \mathbb{V}[N_R] \xrightarrow{th} \rho |B_R|$.

Definition $(\rho^{(N)})_{N \in \mathbb{N}}$ hyperuniform $\iff \lim_{th.} \mathbb{V}[N_R] \sim |\partial B_R|$ for large R

Remarks:

The variance measures the rate of convergence.

Example:
$$(X_i)_i$$
 i.i.d. $\Rightarrow \mathbb{V}[N_R] \xrightarrow{th.} \rho |B_R|.$

Definition

$$(\rho^{(N)})_{N \in \mathbb{N}}$$
 hyperuniform $\iff \lim_{th.} \mathbb{V}[N_R] \sim |\partial B_R|$ for large R

Remarks:

• If $(\rho^{(N)})_{N \in \mathbb{N}}$ hyperuniform, i.e. R^d -term of $\lim_{th.} \mathbb{V}[N_R]$ vanishes $\Rightarrow R^{d-1}$ -term cannot vanish.

The variance measures the rate of convergence.

Example:
$$(X_i)_i$$
 i.i.d. $\Rightarrow \mathbb{V}[N_R] \xrightarrow{th.} \rho |B_R|.$

Definition

$$(\rho^{(N)})_{N \in \mathbb{N}}$$
 hyperuniform $\iff \lim_{th.} \mathbb{V}[N_R] \sim |\partial B_R|$ for large R

Remarks:

- If $(\rho^{(N)})_{N \in \mathbb{N}}$ hyperuniform, i.e. R^d -term of $\lim_{th.} \mathbb{V}[N_R]$ vanishes $\Rightarrow R^{d-1}$ -term cannot vanish.
- Hyperuniformity is a long-scale property.

Compact sets have finite volume

 \Rightarrow the thermodynamical limit doesn't make sense!

Therefore consider distributions $(\rho^{(N)})_{N\in\mathbb{N}}$ on $M=\mathbb{T}^d$ or \mathbb{S}^d satisfying

(a)
$$\rho^{(N)}(x_{\sigma 1}, \dots, x_{\sigma N}) = \rho^{(n)}(x_1, \dots, x_N)$$
 for all $x_i \in M, \ \sigma \in \mathbf{S}_N.$

"particles are exchangeable"

Compact sets have finite volume

 \Rightarrow the thermodynamical limit doesn't make sense!

Therefore consider distributions $(\rho^{(N)})_{N\in\mathbb{N}}$ on $M=\mathbb{T}^d$ or \mathbb{S}^d satisfying

(a)
$$\rho^{(N)}(x_{\sigma 1}, \dots, x_{\sigma N}) = \rho^{(n)}(x_1, \dots, x_N)$$
 for all $x_i \in M, \ \sigma \in \mathbf{S}_N.$

"particles are exchangeable"

(b) $\rho^{(n)}(\tau x_1, \dots, \tau x_N) = \rho^{(N)}(x_1, \dots, x_N)$ for all $x_i \in M, \ \tau \in \mathbb{T}^d$ or $\mathrm{SO}(d+1)$, resp. *"isometry invariance"*

Compact sets have finite volume

 \Rightarrow the thermodynamical limit doesn't make sense!

Therefore consider distributions $(\rho^{(N)})_{N\in\mathbb{N}}$ on $M=\mathbb{T}^d$ or \mathbb{S}^d satisfying

(a)
$$\rho^{(N)}(x_{\sigma 1}, \dots, x_{\sigma N}) = \rho^{(n)}(x_1, \dots, x_N)$$
 for all $x_i \in M, \ \sigma \in \mathbf{S}_N.$

"particles are exchangeable"

(b) $\rho^{(n)}(\tau x_1, \dots, \tau x_N) = \rho^{(N)}(x_1, \dots, x_N)$ for all $x_i \in M, \ \tau \in \mathbb{T}^d$ or $\mathrm{SO}(d+1)$, resp. *"isometry invariance"*

Compact sets have finite volume

 \Rightarrow the thermodynamical limit doesn't make sense!

Therefore consider distributions $(\rho^{(N)})_{N\in\mathbb{N}}$ on $M=\mathbb{T}^d$ or \mathbb{S}^d satisfying

(a)
$$\rho^{(N)}(x_{\sigma 1}, \dots, x_{\sigma N}) = \rho^{(n)}(x_1, \dots, x_N)$$
 for all $x_i \in M, \ \sigma \in \mathbf{S}_N.$

"particles are exchangeable"

(b) $\rho^{(n)}(\tau x_1, \dots, \tau x_N) = \rho^{(N)}(x_1, \dots, x_N)$ for all $x_i \in M, \ \tau \in \mathbb{T}^d$ or $\mathrm{SO}(d+1)$, resp. *"isometry invariance"*

Averaging over permutations and isometries \Rightarrow joint densities with (a) and (b) exist.

Test sets B_R are balls or spherical caps, resp. and the **point** counting function is

$$N_R := \sum_{i=1}^N \mathbb{1}_{B_R}(X_i)$$
, where $(X_1, \dots, X_N) \sim \rho^{(N)}$

Test sets B_R are balls or spherical caps, resp. and the **point** counting function is

$$N_R := \sum_{i=1}^N \mathbb{1}_{B_R}(X_i)$$
, where $(X_1, \dots, X_N) \sim \rho^{(N)}$

The reduced density is

$$\rho_k^{(N)}(r_1, \dots, r_k) := \int_{M^{N-k}} \rho^{(N)}(r_1, \dots, r_N) \, \mathrm{d}r_{k+1} \cdots \, \mathrm{d}r_N$$

where we integrate with respect to the normalized Lebesgue measure.

Test sets B_R are balls or spherical caps, resp. and the **point** counting function is

$$N_R := \sum_{i=1}^N \mathbb{1}_{B_R}(X_i)$$
, where $(X_1, \dots, X_N) \sim \rho^{(N)}$

The reduced density is

$$\rho_k^{(N)}(r_1, \dots, r_k) := \int_{M^{N-k}} \rho^{(N)}(r_1, \dots, r_N) \, \mathrm{d}r_{k+1} \cdots \, \mathrm{d}r_N$$

where we integrate with respect to the normalized Lebesgue measure. The **expectation** remains *N*-dependent

$$\mathbb{E}[N_R] = \sum_{i=1}^N \mathbb{E}[\mathbb{1}_{B_R}(X_i)] = N \int_{B_R} \rho_1^{(N)}(r) \, \mathrm{d}r = N|B_R|.$$

The **variance** depends on *n* and the pair correlation $\rho_2^{(n)}$

$$\mathbb{V}[N_R] = N|B_R|(1-|B_R|) + N(N-1)\int_{B_R^2} (\rho_2^{(n)}(x,y) - 1) \,\mathrm{d}x \,\mathrm{d}y$$

The **variance** depends on *n* and the pair correlation $\rho_2^{(n)}$

$$\mathbb{V}[N_R] = N|B_R|(1-|B_R|) + N(N-1)\int_{B_R^2} (\rho_2^{(n)}(x,y) - 1) \,\mathrm{d}x \,\mathrm{d}y$$

Example:
$$(X_i)_i$$
 i.i.d. (i.e. $\rho^{(N)} = 1$)
 $\Rightarrow \mathbb{E}[N_R] = N|B_R|$ and $\mathbb{V}[N_R] = N|B_R|(1 - |B_R|).$

Remark:

• From (a) and (b)
$$\Rightarrow \rho_2^{(N)}(x,y) = \rho_2^{(N)}(x-y).$$

The **variance** depends on *n* and the pair correlation $\rho_2^{(n)}$

$$\mathbb{V}[N_R] = N|B_R|(1-|B_R|) + N(N-1)\int_{B_R^2} (\rho_2^{(n)}(x,y) - 1) \,\mathrm{d}x \,\mathrm{d}y$$

Example:
$$(X_i)_i$$
 i.i.d. (i.e. $\rho^{(N)} = 1$)
 $\Rightarrow \mathbb{E}[N_R] = N|B_R|$ and $\mathbb{V}[N_R] = N|B_R|(1 - |B_R|)$.

Remark:

- From (a) and (b) $\Rightarrow \rho_2^{(N)}(x,y) = \rho_2^{(N)}(x-y).$
- For $M = \mathbb{S}^d$: $\int_0^{\pi} \mathbb{V}[N_R] dR = L^2$ -discrepancy.

Two examples to make this more precise...

 $(X_1,\ldots,X_N)\sim \rho^{(N)},$ where $A_N:=\{a_1,\ldots,a_N\}\subseteq \mathbb{T}^2$ square lattice (N a square for simplicity) and

$$\rho^{(N)}(x_1, \dots, x_N) = \frac{1}{N!} \sum_{\sigma \in \mathbf{S}_n} \int_{\mathbb{T}^2} \prod_{i=1}^N \delta(x_{\sigma_i} - a_i - t) \, \mathrm{d}t$$

 $(X_1,\ldots,X_N)\sim \rho^{(N)},$ where $A_N:=\{a_1,\ldots,a_N\}\subseteq \mathbb{T}^2$ square lattice (N a square for simplicity) and

$$\rho^{(N)}(x_1, \dots, x_N) = \frac{1}{N!} \sum_{\sigma \in S_n} \int_{\mathbb{T}^2} \prod_{i=1}^N \delta(x_{\sigma_i} - a_i - t) \, \mathrm{d}t$$

Therefore

$$\mathbb{V}[N_R] = N^2 |B_R| \left(\frac{1}{N} \sum_{i=1}^N \alpha_R(a_i) - \int_{\mathbb{T}^2} \alpha_R(r) \, \mathrm{d}r \right),$$

where $\alpha_R(r) := \operatorname{vol}(B_R(0) \cap B_R(r))$.

The Fourier series of ball intersection volume is

$$\alpha_R(r) = \sum_{k \in \mathbb{Z}^2} b_k e^{2\pi i \langle k, r \rangle}, \quad b_k := \frac{1}{4\pi^2} \int_{\mathbb{T}^2} \alpha_R(|x|) e^{2\pi i \langle k, x \rangle} \, \mathrm{d}x$$

The Fourier series of ball intersection volume is

$$\alpha_R(r) = \sum_{k \in \mathbb{Z}^2} b_k e^{2\pi i \langle k, r \rangle}, \quad b_k := \frac{1}{4\pi^2} \int_{\mathbb{T}^2} \alpha_R(|x|) e^{2\pi i \langle k, x \rangle} \, \mathrm{d}x$$

 α_R can be written as a convolutional square, which implies $b_k \ge 0$.

The Fourier series of ball intersection volume is

$$\alpha_R(r) = \sum_{k \in \mathbb{Z}^2} b_k e^{2\pi i \langle k, r \rangle}, \quad b_k := \frac{1}{4\pi^2} \int_{\mathbb{T}^2} \alpha_R(|x|) e^{2\pi i \langle k, x \rangle} \, \mathrm{d}x$$

 α_R can be written as a convolutional square, which implies $b_k \ge 0$.

For the variance this gives

$$\mathbb{V}[N_R] = N^2 |B_R| \left(\frac{1}{N} \sum_{i=1}^N \alpha_R(a_i) - \int_{\mathbb{T}^2} \alpha_R(r) \, \mathrm{d}r \right)$$
$$= N^2 |B_R| \sum_{k \in \mathbb{Z}^2 \setminus \{0\}} b_{\sqrt{N}k}$$

Ball intersection volume = convolution of indicator functions \Rightarrow Fourier coefficients b_k = product of Bessel functions.

Ball intersection volume = convolution of indicator functions \Rightarrow Fourier coefficients b_k = product of Bessel functions.

Asymptotic: $|b_k| \leq \frac{c}{|k|^3 R}$, for $|k|R \geq 0$, c = const. > 0. Therefore for small $|B_R|$:

$$\mathbb{V}_{\rho}\left[N_{R}\right] \leq N^{2} |B_{R}| \frac{c}{RN^{3/2}} \sum_{k \in \mathbb{Z}^{2} \setminus \{0\}} \frac{1}{\|k\|^{3}}$$
$$= \tilde{c} \sqrt{N} |\partial B_{R}|$$

Compare to

$$\mathbb{V}_{i.i.d.}\left[N_R\right] = N|B_R|.$$

Remark: This method works for lattices in \mathbb{T}^d , $d \geq 3$

Definition

A point process on M with joint densities $(\rho^{(N)})_{N \in \mathbb{N}}$ is called **determinantal with kernel** $K^{(n)}$, if

 $\rho^{(N)}(x_1, \dots, x_n) = \det(K^{(N)}(x_i, x_j))_{i,j=1}^N, \text{ for all } N \in \mathbb{N}, \ x_i \in M$

Definition

A point process on M with joint densities $(\rho^{(N)})_{N \in \mathbb{N}}$ is called **determinantal with kernel** $K^{(n)}$, if

 $\rho^{(N)}(x_1, \dots, x_n) = \det(K^{(N)}(x_i, x_j))_{i,j=1}^N, \text{ for all } N \in \mathbb{N}, \ x_i \in M$

Definition

A point process on M with joint densities $(\rho^{(N)})_{N \in \mathbb{N}}$ is called **determinantal with kernel** $K^{(n)}$, if

$$\rho^{(N)}(x_1, \dots, x_n) = \det(K^{(N)}(x_i, x_j))_{i,j=1}^N, \text{ for all } N \in \mathbb{N}, \ x_i \in M.$$

Let $\tilde{K}^{(N)}(x,y) = \frac{N(1+x\bar{y})^{N-1}}{4\pi(1+|x|^2)^{(N+1)/2}(1+|y|^2)^{(N+1)/2}}$ on \mathbb{C}^2 with resp. to the Lebesgue measure λ on \mathbb{C} . Then

$$\tilde{\rho}^{(N)}(x_1, \dots, x_N) = \det(\tilde{K}^{(N)}(x_i, x_j))_{i,j=1}^N$$
$$= const. \prod_{i < j} \frac{|x_i - x_j|^2}{(1 + |x_i|)(1 + |x_j|)} \prod_{k=1}^N \frac{1}{(1 + |x_k|^2)^2}$$

ЕШЕ 💶

Using stereographic projection $g:\mathbb{C}\times\mathbb{R}\to\mathbb{C},\;(z,x)\mapsto\frac{z}{1-x}$:

$$\rho^{(N)}(p_1, \dots, p_N) := g^* \tilde{\rho}^{(N)}(p_1, \dots, p_N)$$

= const. $\prod_{i < j} ||p_i - p_j||_{\mathbb{R}^3}^2$,

with resp. to the normalized Lebesgue measure σ on \mathbb{S}^2 .

Remark: Configurations, where points are close together have low weight \Rightarrow repulsion!

Determinantal point process in S²

Figure: 10000 sampled points from an i.i.d. process and a DPP, resp.

Determinantal point process in S²

For following set

$$C = C(\mathbf{x}, \phi) = \{ \mathbf{y} \in \mathbb{S}^2 \mid \langle \mathbf{x}, \mathbf{y} \rangle \ge \cos(\phi) \}$$

for the cap with angle ϕ around x.

Determinantal point process in S²

For following set

$$C = C(\mathbf{x}, \phi) = \{ \mathbf{y} \in \mathbb{S}^2 \mid \langle \mathbf{x}, \mathbf{y} \rangle \ge \cos(\phi) \}$$

for the cap with angle ϕ around ${\bf x}.$ Reduction of $\rho^{(N)}$:

$$\rho_k^{(N)}(p_1,\ldots,p_k) = \frac{(N-k)!}{N!} \det(K(p_i,p_j))_{i,j=1}^k$$

In particular: $\rho_2^{(N)}(p,q) = \frac{N}{N-1} [1 - (1 - \|p-q\|^2/4)^{N-1}].$ Therefore

$$\mathbb{V}[\#(X_N \cap C)] = N\left[\sigma(C) - N \int_{C^2} (1 - \|p - q\|^2/2)^{N-1} (\mathrm{d}\sigma)^2(p,q)\right]$$

= ...

Lemma (Alishahi, Zamani '15)

If $N\sigma(C) \to \infty$, when $N \to \infty$ and $\phi \to 0$. Then for all $\epsilon > 0$:

$$\mathbb{V}\left[\#(X_N \cap C)\right] = \sqrt{N\sigma(C)} + o(\log(N\sigma(C))^{1/2+\epsilon})$$

The approach given before is principally restricted to the sphere \mathbb{S}^2 . In a recent paper by C. Beltrán, J. Marzo and J. Ortega-Cerdà for certain values of *n* determinantal point processes on \mathbb{S}^d are constructed, which exhibit a similar behaviour as for the process on \mathbb{S}^2 .

The approach given before is principally restricted to the sphere \mathbb{S}^2 . In a recent paper by C. Beltrán, J. Marzo and J. Ortega-Cerdà for certain values of *n* determinantal point processes on \mathbb{S}^d are constructed, which exhibit a similar behaviour as for the process on \mathbb{S}^2 . They study

discrepancy

The approach given before is principally restricted to the sphere \mathbb{S}^2 . In a recent paper by C. Beltrán, J. Marzo and J. Ortega-Cerdà for certain values of *n* determinantal point processes on \mathbb{S}^d are constructed, which exhibit a similar behaviour as for the process on \mathbb{S}^2 . They study

- o discrepancy
- Riesz energy

The approach given before is principally restricted to the sphere \mathbb{S}^2 . In a recent paper by C. Beltrán, J. Marzo and J. Ortega-Cerdà for certain values of *n* determinantal point processes on \mathbb{S}^d are constructed, which exhibit a similar behaviour as for the process on \mathbb{S}^2 . They study

- o discrepancy
- Riesz energy
- separation

of the sample points.

Deterministic point of view

The definition of hyperuniformity was based on an underlying probabilistic model producing the points. We would like to apply a similar concept to define hyperuniformity of a deterministic sequence of point sets $(X_N)_N$.

Deterministic point of view

The definition of hyperuniformity was based on an underlying probabilistic model producing the points. We would like to apply a similar concept to define hyperuniformity of a deterministic sequence of point sets $(X_N)_N$.

Definition

A sequence $(X_N)_N$ of point sets on \mathbb{S}^d is called hyperuniformly distributed, if

$$\int_{\mathbb{S}^d} \left(\sum_{n=1}^N \chi_{C(\mathbf{x},\phi_N)}(\mathbf{x}_n) - N\sigma_d(C_{\mathbf{x},\phi_N}) \right)^2 \, d\sigma_d(\mathbf{x}) = o(N\sigma_d(C(\cdot,\phi_N)))$$

for all $(\phi_N)_N$ such that

$$\lim_{N \to \infty} \sigma_d(C(\cdot, \phi_N)) = 0 \text{ and } \lim_{N \to \infty} N \sigma_d(C(\cdot, \phi_N)) = \infty.$$

The results on determinantal point processes show that hyperuniformly distributed point sequences exist.

The results on determinantal point processes show that hyperuniformly distributed point sequences exist. The definition uses exactly those spherical caps for assessing the quality of the point distribution, which attain Beck's lower bound for the discrepancy.

The results on determinantal point processes show that hyperuniformly distributed point sequences exist. The definition uses exactly those spherical caps for assessing the quality of the point distribution, which attain Beck's lower bound for the discrepancy. The quantity

$$\int_{\mathbb{S}^d} \left(\sum_{n=1}^N \chi_{C(\mathbf{x},\phi_N)}(\mathbf{x}_n) - N\sigma_d(C_{\mathbf{x},\phi_N}) \right)^2 \, d\sigma_d(\mathbf{x})$$

is a localised version of the L^2 -discrepancy.

Concluding remarks

• The variance given in the definition of hyperuniform sequences of point sets is a positive definite function, which makes it a generalised energy of the point set.

Concluding remarks

- The variance given in the definition of hyperuniform sequences of point sets is a positive definite function, which makes it a generalised energy of the point set.
- The test sets $C_{\mathbf{x},\phi_N}$ are chosen so that

$$\lim_{N \to \infty} \sigma_d(C_{\mathbf{x},\phi_N}) = 0$$
$$\lim_{N \to \infty} N \sigma_d(C_{\mathbf{x},\phi_N}) = \infty.$$

Concluding remarks

- The variance given in the definition of hyperuniform sequences of point sets is a positive definite function, which makes it a generalised energy of the point set.
- The test sets $C_{\mathbf{x},\phi_N}$ are chosen so that

$$\lim_{N \to \infty} \sigma_d(C_{\mathbf{x},\phi_N}) = 0$$
$$\lim_{N \to \infty} N \sigma_d(C_{\mathbf{x},\phi_N}) = \infty.$$

Together with

$$\mathbb{V}(\#(X_N \cap C_{\mathbf{x},\phi_N})) = o(N\sigma_d(C_{\mathbf{x},\phi_N}))$$

this implies uniform distribution of the sequence of point sets $(X_N)_N$.