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One-component Coulomb plasma (OCP)

N positive charges in the two-dimensional plane: z = (z1, . . . , zN ) ∈ CN .

Confining potential V : C→ R ∪ {+∞} with sufficient growth at +∞.

Energy:

HN,V (z) =
∑
j 6=k

log
1

|zj − zk|
+N

∑
j

V (zj).

Probability measure:

PN,V,β(dz) =
1

ZN,V,β
e−βHN,V (z)m⊗N (dz),

where m is the Lebesgue measure on C and ZN,V,β the partition function.

More generally, we could consider the 3d Coulomb plasma.



Potential theory

IV (µ) =

∫∫
log

1

|z − w|
µ(dz)µ(dw) +

∫
V (z)µ(dz)

Theorem (Frostman)

Unique probability measure µV minimizing IV (equilibrium measure).

Its support SV = suppµV is compact.

Let Uµ(z) =
∫

log 1
|z−w|µ(dw). Characterized by Euler–Lagrange

equation:

UµV + 1
2V = c q.e. in SV and

UµV + 1
2V > c q.e. in C.

∆µV = 1
4π (∆V )1SV . Main difficulty is to determine support SV .

Example: if V = |z|2 then µV = 1
π1{|z|61}.



N = 400, V = |z|2

β → 0 β = 1 β = 200
independent particles Ginibre ensemble

The Coulomb plasma looks much more rigid than independent particles.



Linear statistics

Let f : C→ R be macroscopically smooth. How large are the fluctuations of∑
j

f(zj)?

For independent particles on the disk, f(zj) are
i.i.d random variables. The CLT implies∑

j

f(zj)−N
∫
D
f
dz

π
≈ N1/2.

For particles in a crystalline state, on the other
hand ∑

j

f(zj)−N
∫
D
f
dz

π
≈ 1.



Some motivations

Laughlin’s guess for wave functions at fractional
fillings of type 1

2s+1 (fractional quantum Hall effect):

φs(z1, . . . , zN ) =
∏
i<j

(zi − zj)2s+1e−
∑
|zi|2

Special case: Ginibre ensemble (eigenvalues of complex
Gaussian matrix)

β = 1 and V (z) = |z|2.

More generally, for β = 1 eigenvalues of random
normal matrices (we will come back to it).

Major question: phase transition for β > βc ≈ 142?
Understanding small discrepancy is a small step
towards such phenomena.
Alastuey and Jancovici (1980): It is very likely that the
model has a solid-fluid phase transition.



Convergence to equilibrium measure

Empirical measure µ̂ and equilibrium measure µV :

µ̂ =
1

N

∑
j

δzj , µV = argmin IV .

Then µ̂→ µV weakly for β > 0 and reasonable V . More precise results:

(Ben Arous–Zeitouni) LDP for µ̂ with rate function IV at speed N2.

Local density on macroscopic scale 1.

(Leblé–Serfaty) LDP for certain tagged point process at speed N .

Essentially corresponds to partition function estimate

− 1

β
logZN,V,β = N2IV (µV ) − 1

2
N logN

+N

(
1

β
− 1

2

)(∫
µV (z) log µV (z) dm

)
+ FβN + o(N).

Local density down to mesoscopic scales down to N−1/4 near any fixed
point in C.
Previous results of Sandier–Serfaty, Rougerie–Serfaty, and others.

(Lieb, unpublished) Points in minimizers of HN,V separated by cN−1/2.



Determinantal case β = 1

For β = 1 the correlation functions are determinantal:

p
(n)
N (z1, . . . , zn) = det(KN (zi, zj))

n
i,j=1

with KN (z, w) =
∑N−1
k=0 qk(z)qk(w)e−NV (z)/2e−NV (w)/2, and qk are

orthogonal polynomials (OP) with respect to L2(e−NV ).

For Ginibre ensemble V = |z|2 the OP are given by qk = zk/
√
πk!.

Very precise results known using determinantal structure. Example:
convergence of linear statistics to Gaussian free field (Rider–Virag
V = |z|2; Ameur–Hedenmalm–Makarov V smooth):∑

j

f(zj)−N
∫
f dµV

N→∞−→ Normal

(
0,

1

4π

∫
|∇fS |2 dm

)
,

for smooth f , where fS is the bounded harmonic extension of f |S to C.

Exercise: Fluctuations of number of particles in a domain Ω are
∼ (N1/2|∂Ω|)1/2 (unpublished). What if the boundary has no finite length
(unknown)?



Main result

Theorem (Bauerschmidt–B–Nikula–Yau)

Let s ∈ (0, 1
2 ), z0 be in the interior of the support of µV , and f : C→ R have

support in the disk of radius N−s centred at z0.

Then for any sufficiently small ε > 0 and any β > 0, we have

N∑
j=1

f(zj)−N
∫
f(z)µV (dz) = O(Nε)

(
4∑
l=1

N−ls‖∇lf‖∞

)
,

with probability at least 1− e−βN
ε

for sufficiently large N .

Optimal scale N−s for all s ∈ (0, 1
2 ) and applies to all β > 0.

Rigidity: fluctuations are No(1) compared to N
1
2−s for i.i.d. particles.

The dominant fluctuation term is NεO(
∫
|∇f |2).

Simultaneous result (Leblé): Fluctuations bounded by N
3
4−

s
2 .



Comparision with 1D

Pair interaction for particles on real line

Coulomb interaction:
∑
j,k −|xj − xk|

Logarithmic interaction:
∑
j,k − log |xj − xk|

Interactions are convex on simplex {x1 < x2 < · · · < xN}.

1D-Coulomb gas crystallizes:

(Kunz) 1-point function is nontrivially periodic for most β;

(Brascamp–Lieb) 1-point function is nontrivially periodic for all β large;

(Aizenman–Martin) translational symmetry broken for all β.



Related results for log gas in d = 1

β-ensemble has been studied extensively in d = 1. In particular:

(Johansson) Linear statistics converge to Gaussian field with covariance
proportional to (−∆)1/2 for all β > 0;

(Deift et al., Bleher–Its, Pastur–Shcherbina, ...) Universality of local
correlations for β = 1, 2, 4;

(Dumitriu–Edelman) Representation as eigenvalues of tridiagonal matrix
for V = λ2 and all β > 0;

(Valko–Virag) Explicit characterization of the point process for V = λ2

and all β > 0;

(Borot–Guionnet) 1/N expansion of the partition function;

(B-Erdős-Yau) Rigidity and universality of local correlations for all β > 0;

(Shcherbina), (Bekerman–Figalli–Guionnet) alternative proofs of the
universality for all β > 0;

The proofs do not apply in d = 2. For non-Hermitian matrices with iid
entries, similar rigidity by B-Yau-Yin.



Strategy

Step 1 Multiscale iteration to show that µV provides local density on all
scales N−s with s ∈ (0, 1

2 ):

Use mean-field bounds and potential theory in each step.
Optimal scale but bound on order of fluctuations is not optimal.

Step 2 Use Loop Equation to obtain optimal order for smooth linear
statistics:

The loop equation is singular in two dimensions.
Singularity controlled using Step 1.

For f with support in B(z0, N
−s):

(Step 1)
1

N

N∑
j=1

f(zj)−
∫
f(z)µV (dz) = O(N−

1
2 logN)

(
2∑
l=1

N−ls‖∇lf‖∞

)

(Step 2)
1

N

N∑
j=1

f(zj)−
∫
f(z)µV (dz) = O(N−1+ε)

(
4∑
l=1

N−ls‖∇lf‖∞

)



Initial estimate

Simple mean-field estimate controls scales � N−1/4.

Let

ZN,V,β =

∫
e−βHN,V (z)m⊗N (dz).

Newton’s electrostatic theorem − log > − log ∗ρ for radial probability ρ:

ZN,V,β 6 e−N
2IV (µV )+O(N logN)

Jensen inequality:

ZN,V,β > e−N
2IV (µV )−O(N logN)

Applying this with V → V + 1
βN f gives

EN,V,β(e
∑
j f(zj)) 6 eN

∫
f dµV + 1

8π (f,−∆f)+O(N logN).

This gives control on scales � N−1/4.



Multiscale iteration

Condition on particles outside a small
disk of radius ≈ N−1/4.

Conditional measure (inside small disk)
is again a Coulomb gas, but with only
≈ N1/2 particles.

If initial mean-field estimate can be
applied to conditional system would get
an estimate at scale � (N1/2)−1/4

Difficulty: the conditional system has a
singular potential given by the external
charges.



Control of conditional measure

For the equilibrium measure of the conditioned
system with high probability:

The support contains most of the disk
conditioned on.

The boundary charge (which exists since
V = +∞ outside the disk) has uniformly
bounded density.

These conditions give enough regularity to repeat
the mean-field bound.

Their proof is achieved in the obstacle problem formulation of the
equilibrium measure by construction of dominating potentials.



Obstacle problem

Potential of equilibrium measure characterized by obstacle problem:

uV (z) = sup
{
v(z) : v subharmonic on C, v 6 1

2V on C,

lim sup
|z|→∞

(
v(z)− log |z|

)
<∞

}
v subharmonic and lim sup|z|→∞

(
v(z)− log |z|

)
<∞ imply v = c− Uν

where Uν is some potential of positive measure ν with mass 6 1.

Coincidence set: S∗V = {uV (z) = 1
2V }.

Theorem

Let µV be the equilibrium measure (minimizer of IV ). Then (essentially)

uV (z) = c− UµV (z), SV = S∗V .



Obstacle problem

1
2
V (z)

uV (z)

coincidence set S∗V



Example

Assume support of equilibrium measure is unit
disk SV = D.

Perturb external potential by a single charge ε at
w 6∈ SV close to boundary.

Want to show that support of perturbed
equilibrium measure contains all points z0 of D
with distance > r from boundary, with r = c

√
ε.

Achieve this by exhibiting for any such z0 a
subharmonic test function in obstacle problem that
matches potential at z0.

log 1
|z−w|

lr(z − z̃) + k

w

z0 z̃SV = D



Local density

By iteration of mean-field bound we show that µV provides local density.

Theorem

Let s ∈ (0, 1
2 ). For any z0 in the interior of the support of µV , and for any

f ∈ C2
c (C) with support in the disk of radius N−s centred at z0, we have

1

N

N∑
j=1

f(zj)−
∫
f(z)µV (dz) = O (logN)

(
N−1−2s‖∆f‖∞ +N−

1
2−s‖∇f‖2

)
,

with probability at least 1− e−(1+β)N1−2s

for sufficiently large N .

RHS is N−
1
2−s+o(1) for smooth f on scale N−s (similar to i.i.d. particles).

Rigidity: RHS is actually N−1+o(1) for such f .



Rigidity

Cumulant generating function for linear statistics:

FN,V,β(f) = logEN,V,β(eXf ),

with

Xf =
∑
j

f(zj)−N
∫
f dµV = N

∫
f dµ̃V

where

µ̂ =
1

N

∑
j

δzj and µ̃V = µ̂− µV .

Rigidity follows from estimate FN,V,β(f) = O(βNε).

Difficult to see using direct potential theory.

It would suffice to bound ∂
∂tFN,V,β(tf) since FN,V,β(0) = 0.



Loop Equation

For any reasonable function h, we have the loop equation:

EN,V,β

1

2

∑
j 6=k

h(zj)− h(zk)

zj − zk
+

1

β

∑
j

∂h(zj)−N
∑
j

h(zj)∂V (zj)

 = 0.

Proof.

By integration by parts:

EN,V,β (∂h(zj)) = βEN,V,β(h(zj)∂zjH(z))

= βEN,V,β

h(zj)

∑
k:k 6=j

−1

zj − zk
+N∂V (zj)

 .

Loop equation follows immediately by summation over j.

Loop Equation also has an interpretation as Schwinger–Dyson equation or
Conformal Ward Identity (Wiegmann–Zabrodin, Makarov et al.).



Loop Equation and Euler–Lagrange equation for equilibrium measure give
(here h = ∂̄f/∆V ):

∂

∂t
FN,V,β(tf) = EN,V−tf/(βN),β

(
1

β

∫
∂h dµ̂+

t

β

∫
h∂f dµ̂

+
N

2

∫∫
h(z)− h(w)

z − w
1{z 6=w} µ̃V (dz) µ̃V (dw)

)
.

First two terms on RHS are linear statistics: could be estimated by
standard estimates for macroscopic f , by local density for mesoscopic f .

Difficulty is the third term on RHS:

h(z)− h(w)

z − w
= ∂h(z) + ∂̄h(z)

z̄ − w̄
z − w

+O(|z − w|),

and the second term on the right-hand side is not smooth on the diagonal.

Use multiscale decomposition and local density to control singularity. The
Fefferman/de la Llave trick: for any compactly supported ϕ : [0,∞)→ R
we have

h(z)− h(w)

z − w
= C

∫ ∞
0

∫
C
ϕ(|z−ζ|/t)ϕ(|w−ζ|/t)(z̄−w̄)(h(z)−h(w))m(dζ)

dt

t5
.


