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Let A ∈ Cn×n

We say that λ ∈ C is an eigenvalue of A when there exists
v ∈ Cn×n \ {0} such that

Av = λv .

In this case we say that v is an eigenvector.



So the problem of devising an algorithm [for the eigenvalue
problem] that is numerically stable and globally (and quickly!)
convergent remains open. [p. 139]



Current Algorithms

• Compute the characteristic polynomial χA of A and then
compute (i.e., approximate) its zeros.

[*** Numerically unstable in practice ***]

• Variations of the QR algorithm.

I The unshifted QR algorithm terminates with probability 1 but
is probably infinite average cost if approximations to the
eigenvectors are to be output.

I The QR algorithm with Rayleigh Quotient shift fails for open
sets of real input matrices.

I It is unknown whether the Francis (double) shift algorithm
converges generally on real or complex matrices.

[*** No theoretical understanding ***]
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Theorem We exhibit an algorithm which on input a matrix A
with complex Gaussian entries generates (with probability 1) an
“excellent” approximation to all the (eigenvalue, eigenvector) pairs
of A. Moreover, the running time of this algorithm is polynomial in
n on the average.

This algorithm is numerically stable.



Three kinds of approximation (ζ̃ for A 7→ ζ):

I Backward approximation. ζ̃ is the solution of a datum Ã close
to A. Given ε > 0, we say that ζ̃ is an ε-backward
approximation when ‖A− Ã‖ ≤ ε.

I Forward approximation. ζ̃ is close to ζ. Given ε > 0, we say
that ζ̃ is an ε-forward approximation when |ζ − ζ̃| ≤ ε.

I Approximation à la Smale. An appropriate version of
Newton’s iteration, starting at ζ̃, converges immediately,
quadratically fast, to ζ.
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Newton’s method

We define a Newton map associated to A

NA : C× (Cn \ {0})→ C× (Cn \ {0}).

Let V := {(A, λ, v) | (A− λId)v = 0}.

Given (A, λ, v) ∈ V we say that (ζ,w) ∈ C× (Cn \ {0}) is an
approximate eigenpair of A with associated eigenpair (λ, v) when
for all k ≥ 1 the kth iterate Nk

A(ζ,w) of the Newton map at (ζ,w)
is well defined and satisfies

dist
(
(Nk

A(ζ,w)), (λ, v)
)
≤
(

1

2

)2k−1
dist
(
(ζ,w), (λ, v)

)
.



Newton’s method

We define a Newton map associated to A

NA : C× (Cn \ {0})→ C× (Cn \ {0}).

Let V := {(A, λ, v) | (A− λId)v = 0}.

Given (A, λ, v) ∈ V we say that (ζ,w) ∈ C× (Cn \ {0}) is an
approximate eigenpair of A with associated eigenpair (λ, v) when
for all k ≥ 1 the kth iterate Nk

A(ζ,w) of the Newton map at (ζ,w)
is well defined and satisfies

dist
(
(Nk

A(ζ,w)), (λ, v)
)
≤
(

1

2

)2k−1
dist
(
(ζ,w), (λ, v)

)
.



Well-posedness

A triple (A, λ, v) is well-posed when λ is a simple eigenvalue of A.
We write (A, λ, v) ∈ W. Otherwise, it is said to be ill-posed.

Proposition Ill-posed eigenpairs have no approximate eigenpairs
à la Smale.

Proposition The set Σ of matrices A with multiple eigenvalues
has (real) codimension 2 in Cn×n.



Given (A, λ, v) ∈ Cn×n × C× P(Cn), we let Aλ,v : Tv → Tv be

Aλ,v := Pv⊥ ◦ (A− λId)|Tv .

We define the condition number of the triple (A, λ, v) by

µ(A, λ, v) := ‖A‖F ‖A−1λ,v‖,

Theorem Let A ∈ Cn×n with ‖A‖F = 1 and
(λ, v), (λ0, v0) ∈ C× (Cn \ {0}). If (λ, v) is a well-posed eigenpair
of A and

dist
(
(λ, v), (λ0, v0)

)
<

c0
µ(A, λ, v)

then (λ0, v0) is an approximate eigenpair of A with associated
eigenpair (λ, v). One may choose c0 = 0.2881.



The Algorithm

We are given A ∈ Cn×n and an initial triple (M, λ0, v0) in W .

Consider the line segment [M,A] in Cn×n with endpoints M and A

[M,A] = {Qτ ∈ Cn×n | τ ∈ [0, 1]}

with Qτ being the only point in [M,A] such that dS(M,Qτ ) = τα.

0 M = Q0

A = Q1

Qτ

α

τα

When τ moves from 0 to 1 the eigenpair (λτ , vτ ) of Qτ moves
from (λ0, v0) to an eigenpair (λ1, v1) of A = Q1.
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We want to “follow” the curve (λτ , vτ ).

(λ0, v0)

(λ1, v1)

M = Q0 A = Q1Qτi

(λτi , vτi )

(ζi ,wi )

Qτi+1

(λτi+1 , vτi+1)

(ζi+1,wi+1)

C× Cn



Path-follow

Input: A ∈ Cn×n and (M, λ0, v0) ∈ W

α := dS(M,A), r := ‖A‖F, s := ‖M‖F
τ := 0, Q := M, (ζ,w) := (λ0, v0)

repeat

∆τ := 0.001461
αµ2(Q,ζ,w)

τ := min{1, τ + ∆τ}
t := s

s+r(sinα cot(τα)−cosα)
Q := tA + (1− t)M

(ζ,w) := NQ(ζ,w)

until τ = 1

return (ζ,w)

Output: (ζ,w) ∈ C× Cn, approximate eigenpair of A.



Complexity

Cost of Path-follow on input (A,M, λ0, v0):

cost(A,M, λ0, v0) = Number of iterations × cost of each iteration

↗ ↖

K (A,M, λ0, v0) O(n3)

Path-follow terminates (i.e., K (A,M, λ0, v0) <∞) iff
(Qτ , λτ , vτ ) ∈ W for all τ ∈ [0, 1].
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Theorem

K (A,M, λ0, v0) ≤ C

∫ 1

0
µ2(Qτ , λτ , vτ )dτ.



Given A ∈ Cn×n, we ran Path-follow with:

I M a (particular) diagonal matrix

I λ0 the ith diagonal entry (i choosen at random)

I v0 = ei

Theorem We have

E
A∼N(0,Id)

E
i∼{1,...,n}

K (A,M, λ0, v0) = O(n5)

and, consequently,

E
A∼N(0,Id)

E
i∼{1,...,n}

cost(A,M, λ0, v0) = O(n8).

One can also (deterministically) compute all the eigenpairs of A.
The average total cost is O(n9).
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A finer randomization?

Theorem We have

E
A∼N(0,Id)

E
M∼N(0,Id)

E
i∼{1,...,n}

K (A,M, λ0, v0) = O(n3).

This result raises the need of an efficient algorithm to draw, given
n, a triple (M, λ, v) satisfying:

I M is drawn from N(0, Id);

I (λ, v) is drawn from the (discrete) uniform distribution among
the n eigenpairs of M.

To do so, it is enough to draw a diagonal matrix whose diagonal
elements (λ1, . . . , λn) follow the spectrum law of the Ginibre
ensemble.

Can we do this in O(n6) operations?
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