On the Eigenpair Problem

Felipe Cucker

City University of Hong Kong

Joint work with D. Armentano, C. Beltrán, P. Bürgisser, and M. Shub

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $A \in \mathbb{C}^{n \times n}$

We say that $\lambda \in \mathbb{C}$ is an eigenvalue of A when there exists $v \in \mathbb{C}^{n \times n} \setminus \{0\}$ such that

$$Av = \lambda v.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

In this case we say that v is an eigenvector.

So the problem of devising an algorithm [for the eigenvalue problem] that is numerically stable and globally (and quickly!) convergent remains open. [p. 139]

• Compute the characteristic polynomial χ_A of A and then compute (i.e., approximate) its zeros.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Compute the characteristic polynomial χ_A of A and then compute (i.e., approximate) its zeros.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[*** Numerically unstable in practice ***]

• Compute the characteristic polynomial χ_A of A and then compute (i.e., approximate) its zeros.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[*** Numerically unstable in practice ***]

• Variations of the QR algorithm.

• Compute the characteristic polynomial χ_A of A and then compute (i.e., approximate) its zeros.

[*** Numerically unstable in practice ***]

- Variations of the QR algorithm.
 - The unshifted QR algorithm terminates with probability 1 but is probably infinite average cost if approximations to the eigenvectors are to be output.

• Compute the characteristic polynomial χ_A of A and then compute (i.e., approximate) its zeros.

[*** Numerically unstable in practice ***]

- Variations of the QR algorithm.
 - The unshifted QR algorithm terminates with probability 1 but is probably infinite average cost if approximations to the eigenvectors are to be output.
 - The QR algorithm with Rayleigh Quotient shift fails for open sets of real input matrices.

• Compute the characteristic polynomial χ_A of A and then compute (i.e., approximate) its zeros.

[*** Numerically unstable in practice ***]

- Variations of the QR algorithm.
 - The unshifted QR algorithm terminates with probability 1 but is probably infinite average cost if approximations to the eigenvectors are to be output.
 - The QR algorithm with Rayleigh Quotient shift fails for open sets of real input matrices.
 - It is unknown whether the Francis (double) shift algorithm converges generally on real or complex matrices.

• Compute the characteristic polynomial χ_A of A and then compute (i.e., approximate) its zeros.

[*** Numerically unstable in practice ***]

- Variations of the QR algorithm.
 - The unshifted QR algorithm terminates with probability 1 but is probably infinite average cost if approximations to the eigenvectors are to be output.
 - The QR algorithm with Rayleigh Quotient shift fails for open sets of real input matrices.
 - It is unknown whether the Francis (double) shift algorithm converges generally on real or complex matrices.

[*** No theoretical understanding ***]

Theorem We exhibit an algorithm which on input a matrix A with complex Gaussian entries generates (with probability 1) an "excellent" approximation to all the (eigenvalue, eigenvector) pairs of A. Moreover, the running time of this algorithm is polynomial in n on the average.

This algorithm is numerically stable.

Three kinds of approximation ($\tilde{\zeta}$ for $A \mapsto \zeta$):

Three kinds of approximation (ζ for $A \mapsto \zeta$):

Backward approximation. ζ̃ is the solution of a datum à close to A. Given ε > 0, we say that ζ̃ is an ε-backward approximation when ||A − Ã|| ≤ ε.

Three kinds of approximation ($\tilde{\zeta}$ for $A \mapsto \zeta$):

- Backward approximation. ζ̃ is the solution of a datum à close to A. Given ε > 0, we say that ζ̃ is an ε-backward approximation when ||A − Ã|| ≤ ε.
- Forward approximation. $\tilde{\zeta}$ is close to ζ . Given $\varepsilon > 0$, we say that $\tilde{\zeta}$ is an ε -forward approximation when $|\zeta \tilde{\zeta}| \le \varepsilon$.

Three kinds of approximation (ζ for $A \mapsto \zeta$):

- Backward approximation. ζ̃ is the solution of a datum à close to A. Given ε > 0, we say that ζ̃ is an ε-backward approximation when ||A − Ã|| ≤ ε.
- ► Forward approximation. $\tilde{\zeta}$ is close to ζ . Given $\varepsilon > 0$, we say that $\tilde{\zeta}$ is an ε -forward approximation when $|\zeta \tilde{\zeta}| \le \varepsilon$.

 Approximation à la Smale. An appropriate version of Newton's iteration, starting at ζ̃, converges immediately, quadratically fast, to ζ.

Newton's method

We define a Newton map associated to A

$$N_A: \mathbb{C} \times (\mathbb{C}^n \setminus \{0\}) \to \mathbb{C} \times (\mathbb{C}^n \setminus \{0\}).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let
$$\mathcal{V} := \{ (A, \lambda, v) \mid (A - \lambda \operatorname{Id})v = 0 \}.$$

Newton's method

We define a Newton map associated to A

$$N_A: \mathbb{C} \times (\mathbb{C}^n \setminus \{0\}) \to \mathbb{C} \times (\mathbb{C}^n \setminus \{0\}).$$

Let
$$\mathcal{V} := \{ (A, \lambda, v) \mid (A - \lambda \operatorname{Id})v = 0 \}.$$

Given $(A, \lambda, v) \in \mathcal{V}$ we say that $(\zeta, w) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{0\})$ is an *approximate eigenpair* of A with associated eigenpair (λ, v) when for all $k \geq 1$ the kth iterate $N_A^k(\zeta, w)$ of the Newton map at (ζ, w) is well defined and satisfies

$$\mathsf{dist}ig((\mathsf{N}^k_{\mathsf{A}}(\zeta,w)),(\lambda,v)ig) \leq igg(rac{1}{2}ig)^{2^k-1}\mathsf{dist}ig((\zeta,w),(\lambda,v)ig)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

A triple (A, λ, v) is well-posed when λ is a simple eigenvalue of A. We write $(A, \lambda, v) \in \mathcal{W}$. Otherwise, it is said to be ill-posed.

Proposition Ill-posed eigenpairs have no approximate eigenpairs à la Smale.

Proposition The set Σ of matrices A with multiple eigenvalues has (real) codimension 2 in $\mathbb{C}^{n \times n}$.

Given $(A, \lambda, v) \in \mathbb{C}^{n \times n} \times \mathbb{C} \times \mathbb{P}(\mathbb{C}^n)$, we let $A_{\lambda, v} : T_v \to T_v$ be $A_{\lambda, v} := P_{v^{\perp}} \circ (A - \lambda \operatorname{Id})|_{T_v}.$

We define the condition number of the triple (A, λ, v) by

$$\mu(\boldsymbol{A},\boldsymbol{\lambda},\boldsymbol{v}) := \|\boldsymbol{A}\|_{F} \, \|\boldsymbol{A}_{\boldsymbol{\lambda},\boldsymbol{v}}^{-1}\|,$$

Theorem Let $A \in \mathbb{C}^{n \times n}$ with $||A||_F = 1$ and $(\lambda, \nu), (\lambda_0, \nu_0) \in \mathbb{C} \times (\mathbb{C}^n \setminus \{0\})$. If (λ, ν) is a well-posed eigenpair of A and

$$\mathsf{dist}ig((\lambda, \mathbf{v}), (\lambda_0, \mathbf{v}_0)ig) < rac{\mathsf{c}_0}{\mu(\mathsf{A}, \lambda, \mathbf{v})}$$

then (λ_0, v_0) is an approximate eigenpair of A with associated eigenpair (λ, v) . One may choose $c_0 = 0.2881$.

The Algorithm

We are given $A \in \mathbb{C}^{n \times n}$ and an initial triple (M, λ_0, v_0) in \mathcal{W} . Consider the line segment [M, A] in $\mathbb{C}^{n \times n}$ with endpoints M and A

$$[M,A] = \{Q_\tau \in \mathbb{C}^{n \times n} \mid \tau \in [0,1]\}$$

with Q_{τ} being the only point in [M, A] such that $d_{\mathbb{S}}(M, Q_{\tau}) = \tau \alpha$.

The Algorithm

We are given $A \in \mathbb{C}^{n \times n}$ and an initial triple (M, λ_0, v_0) in \mathcal{W} . Consider the line segment [M, A] in $\mathbb{C}^{n \times n}$ with endpoints M and A

$$[M,A] = \{Q_\tau \in \mathbb{C}^{n \times n} \mid \tau \in [0,1]\}$$

with Q_{τ} being the only point in [M, A] such that $d_{\mathbb{S}}(M, Q_{\tau}) = \tau \alpha$.

When τ moves from 0 to 1 the eigenpair $(\lambda_{\tau}, v_{\tau})$ of Q_{τ} moves from (λ_0, v_0) to an eigenpair (λ_1, v_1) of $A = Q_1$.

・ロト ・個ト ・ヨト ・ヨト … ヨ

We want to "follow" the curve $(\lambda_{\tau}, v_{\tau})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Path-follow

Input: $A \in \mathbb{C}^{n \times n}$ and $(M, \lambda_0, v_0) \in \mathcal{W}$

$$lpha := d_{\mathbb{S}}(M, A), \ r := ||A||_F, \ s := ||M||_F$$

 $au := 0, \ Q := M, \ (\zeta, w) := (\lambda_0, v_0)$

repeat

$$\begin{split} \Delta \tau &:= \frac{0.001461}{\alpha \, \mu^2(Q,\zeta,w)} \\ \tau &:= \min\{1,\tau + \Delta \tau\} \\ t &:= \frac{s}{s + r(\sin \alpha \cot(\tau \alpha) - \cos \alpha)} \\ Q &:= tA + (1-t)M \\ (\zeta,w) &:= N_Q(\zeta,w) \end{split}$$

until $\tau = 1$
return (ζ,w)

Output: $(\zeta, w) \in \mathbb{C} \times \mathbb{C}^n$, approximate eigenpair of A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Complexity

Cost of Path-follow on input (A, M, λ_0, v_0) :

 $cost(A, M, \lambda_0, v_0) =$ Number of iterations \times cost of each iteration

Complexity

Cost of Path-follow on input (A, M, λ_0, v_0) :

 $cost(A, M, \lambda_0, v_0) = Number of iterations \times cost of each iteration$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Complexity

Cost of Path-follow on input (A, M, λ_0, v_0) :

 $cost(A, M, \lambda_0, v_0) =$ Number of iterations \times cost of each iteration \nearrow \swarrow $K(A, M, \lambda_0, v_0)$ $\mathcal{O}(n^3)$

Path-follow terminates (i.e., $K(A, M, \lambda_0, v_0) < \infty$) iff $(Q_{\tau}, \lambda_{\tau}, v_{\tau}) \in \mathcal{W}$ for all $\tau \in [0, 1]$.

Theorem

$$\mathcal{K}(\mathcal{A}, \mathcal{M}, \lambda_0, v_0) \leq C \int_0^1 \mu^2(\mathcal{Q}_{\tau}, \lambda_{\tau}, v_{\tau}) d\tau.$$

<□ > < @ > < E > < E > E のQ @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► *M* a (particular) diagonal matrix

- M a (particular) diagonal matrix
- λ_0 the *i*th diagonal entry (*i* choosen at random)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- M a (particular) diagonal matrix
- λ_0 the *i*th diagonal entry (*i* choosen at random)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► $v_0 = e_i$

- M a (particular) diagonal matrix
- λ_0 the *i*th diagonal entry (*i* choosen at random)
- \triangleright $v_0 = e_i$

Theorem We have

$$\mathbb{E}_{A \sim N(0,\mathsf{Id})} \mathbb{E}_{i \sim \{1,...,n\}} K(A, M, \lambda_0, \nu_0) = \mathcal{O}(n^5)$$

and, consequently,

$$\mathop{\mathbb{E}}_{A \sim N(0, \mathsf{Id})} \mathop{\mathbb{E}}_{i \sim \{1, \dots, n\}} \mathsf{cost}(A, M, \lambda_0, \nu_0) = \mathcal{O}(n^8).$$

One can also (deterministically) compute **all** the eigenpairs of *A*. The average total cost is $O(n^9)$.

Theorem We have

$$\mathop{\mathbb{E}}_{A \sim N(0, \mathsf{Id})} \mathop{\mathbb{E}}_{M \sim N(0, \mathsf{Id})} \mathop{\mathbb{E}}_{i \sim \{1, \dots, n\}} K(A, M, \lambda_0, v_0) = \mathcal{O}(n^3).$$

Theorem We have

$$\mathbb{E}_{A \sim N(0, \mathsf{Id})} \mathbb{E}_{M \sim N(0, \mathsf{Id})} \mathbb{E}_{i \sim \{1, \dots, n\}} K(A, M, \lambda_0, \nu_0) = \mathcal{O}(n^3).$$

This result raises the need of an efficient algorithm to draw, given n, a triple (M, λ, v) satisfying:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem We have

$$\mathbb{E}_{A \sim N(0, \mathsf{Id})} \mathbb{E}_{M \sim N(0, \mathsf{Id})} \mathbb{E}_{i \sim \{1, \dots, n\}} K(A, M, \lambda_0, \nu_0) = \mathcal{O}(n^3).$$

This result raises the need of an efficient algorithm to draw, given n, a triple (M, λ, v) satisfying:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• M is drawn from N(0, Id);

Theorem We have

$$\mathbb{E}_{A \sim N(0, \mathsf{Id})} \mathbb{E}_{M \sim N(0, \mathsf{Id})} \mathbb{E}_{i \sim \{1, \dots, n\}} K(A, M, \lambda_0, \nu_0) = \mathcal{O}(n^3).$$

This result raises the need of an efficient algorithm to draw, given *n*, a triple (M, λ, v) satisfying:

- M is drawn from N(0, Id);
- (λ, ν) is drawn from the (discrete) uniform distribution among the *n* eigenpairs of *M*.

Theorem We have

$$\mathbb{E}_{A \sim N(0, \mathsf{Id})} \mathbb{E}_{M \sim N(0, \mathsf{Id})} \mathbb{E}_{i \sim \{1, \dots, n\}} K(A, M, \lambda_0, \nu_0) = \mathcal{O}(n^3).$$

This result raises the need of an efficient algorithm to draw, given *n*, a triple (M, λ, v) satisfying:

- M is drawn from N(0, Id);
- (λ, ν) is drawn from the (discrete) uniform distribution among the *n* eigenpairs of *M*.

To do so, it is enough to draw a diagonal matrix whose diagonal elements $(\lambda_1, \ldots, \lambda_n)$ follow the spectrum law of the Ginibre ensemble.

Can we do this in $\mathcal{O}(n^6)$ operations?