P-M. Samson

About the use of weak transport costs for concentration and functionals inequalities in discrete spaces.

Based on :

Transport-entropy inequalities on locally acting groups of permutations. Electron. J. Probab. 22 (2017), no. 62.
Kantorovich duality for general transport costs and applications.
J. Funct. Anal. 273 (2017), no. 11, 3327-3405.
Joint work with N. Gozlan, C. Roberto et P. Tetali.

Institut d'Études Scientifiques de Cargèse

Concentration of measure and its applications

May 2018

P-M. Samson Université Paris-Est Marne-la-Vallée

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

• (X, d) : a metric space (complete separable)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

• (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- $\mathcal{P}(A)$: the set of all probability measures on $A \subset \mathcal{X}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(0) = 0$$
 and $\gamma(u + v) \leq C(\gamma(u) + \gamma(v)), \quad \forall u, v \in \mathbb{R}^+.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given γ : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(0) = 0$$
 and $\gamma(u + v) \leq C(\gamma(u) + \gamma(v)), \quad \forall u, v \in \mathbb{R}^+$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(0) = 0$$
 and $\gamma(u + v) \leq C(\gamma(u) + \gamma(v)), \quad \forall u, v \in \mathbb{R}^+.$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*.
 More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

-
$$\gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

- $\gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}).$ - $\gamma_0(u) = \mathbb{1}_{u \neq 0},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

- $\gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}).$ - $\gamma_0(u) = \mathbb{1}_{u \neq 0}, \quad \gamma_0(d(x, y)) = \mathbb{1}_{x \neq y},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbb{1}_{u \neq 0}, \quad \gamma_0(d(x, y)) = \mathbb{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant \mathcal{C}(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x,y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

• $\Pi(\mu,\nu)$: the set of probability measures in $\mathcal{P}_{\gamma}(\mathcal{X} \times \mathcal{X})$ with marginals μ and ν .

P-M. Samson

introductior

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x,y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

• $\Pi(\mu,\nu)$: the set of probability measures in $\mathcal{P}_{\gamma}(\mathcal{X} \times \mathcal{X})$ with marginals μ and ν .

Any measure $\pi \in \Pi(\mu, \nu)$ admits a decomposition

$$d\pi(x, y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$

P-M. Samson

introductior

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- $\mathcal{P}(A)$: the set of all probability measures on $A \subset \mathcal{X}$. More generally, given $\gamma : \mathbb{R}^+ \to \mathbb{R}^+$, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x,y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

• $\Pi(\mu, \nu)$: the set of probability measures in $\mathcal{P}_{\gamma}(\mathcal{X} \times \mathcal{X})$ with marginals μ and ν .

Any measure $\pi \in \Pi(\mu, \nu)$ admits a decomposition

$$d\pi(x, y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$
$$\pi(A \times B) = \int_A p_x(B)d\mu(x), \qquad \text{for all Borel set } A, B \text{ of } \mathcal{X}.$$

P-M Samson

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant C(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x,y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

Π(μ, ν) : the set of probability measures in P_γ(X × X) with marginals μ and ν.
 Any measure π ∈ Π(μ, ν) admits a decomposition

$$d\pi(x,y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$

 $\pi(A \times B) = \int_{A} p_{x}(B) d\mu(x), \qquad \text{for all Borel set } A, B \text{ of } \mathcal{X}.$

• $H(\nu|m)$: the relative entropy of $\nu \in \mathcal{P}(\mathcal{X})$ with respect to a measure m,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- (\mathcal{X}, d) : a metric space (complete separable) $\rightarrow \mathcal{X} = \mathbb{Z}, S_n, ...$
- $\mathcal{M}(\mathcal{X})$: the set of non-negative measure on \mathcal{X} .
- *P*(*A*) : the set of all probability measures on *A* ⊂ *X*. More generally, given *γ* : ℝ⁺ → ℝ⁺, a lower semi-continuous function with

$$\gamma(\mathbf{0}) = \mathbf{0} \quad \text{and} \quad \gamma(u + v) \leqslant \mathcal{C}(\gamma(u) + \gamma(v)), \qquad \forall u, v \in \mathbb{R}^+$$

$$\mathcal{P}_{\gamma}(\mathcal{X}) := \left\{ p \in \mathcal{P}(\mathcal{X}), \int \gamma(d(x_0, y)) dp(y) < +\infty \right\}, \quad x_0 \in \mathcal{X}.$$

Specific examples :

$$\begin{array}{l} \quad \cdot \ \gamma_q(u) = u^q, q > 0, \quad \mathcal{P}_{\gamma_q}(\mathcal{X}) = \mathcal{P}_q(\mathcal{X}). \\ \quad \cdot \ \gamma_0(u) = \mathbbm{1}_{u \neq 0}, \quad \gamma_0(d(x,y)) = \mathbbm{1}_{x \neq y}, \quad \mathcal{P}_{\gamma_0}(\mathcal{X}) = \mathcal{P}(\mathcal{X}). \end{array}$$

Π(μ, ν) : the set of probability measures in P_γ(X × X) with marginals μ and ν.
 Any measure π ∈ Π(μ, ν) admits a decomposition

$$d\pi(x,y) = dp_x(y)d\mu(x), \qquad \pi = \mu \oslash p$$

 $\pi(A \times B) = \int_{A} p_{X}(B) d\mu(X),$ for all Borel set A, B of \mathcal{X} .

• $H(\nu|m)$: the relative entropy of $\nu \in \mathcal{P}(\mathcal{X})$ with respect to a measure m,

$$H(\nu|m) := \int \log\left(rac{d
u}{dm}
ight) d
u, \qquad ext{if }
u << m,$$

and $H(\nu|m) := +\infty$ otherwise.

P-M. Samson

introductior

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality :

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger

minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger

minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\begin{aligned} \|\mu - \nu\|_{TV} &:= 2 \sup_{A} |\mu(A) - \nu(A)| \\ &= 2 \inf_{\pi \in \Pi(\mu,\nu)} \iint \mathbb{1}_{x \neq y} d\pi(x,y). \end{aligned}$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\|_{TV} := 2 \sup_{A} |\mu(A) - \nu(A)|$$
$$= 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y).$$

The Marton's transport inequalities :

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\begin{split} \|\mu - \nu\|_{TV} &:= 2 \sup_{A} |\mu(A) - \nu(A)| \\ &= 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y). \end{split}$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_2(\nu|\mu) \leq 2 H(\nu|\mu), \qquad \widetilde{T}_2(\mu|\nu) \leq 2 H(\nu|\mu),$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\|\mu - \nu\|_{TV} := 2 \sup_{A} |\mu(A) - \nu(A)|$$
$$= 2 \inf_{\pi \in \Pi(\mu,\nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y).$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_{2}(\nu|\mu) \leqslant 2 H(\nu|\mu), \qquad \widetilde{T}_{2}(\mu|\nu) \leqslant 2 H(\nu|\mu),$

with
$$\widetilde{T}_{2}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$TV := 2 \sup_{A} |\mu(A) - \nu(A)|$$
$$= 2 \inf_{\pi \in \Pi(\mu,\nu)} \iint \mathbb{1}_{X \neq Y} d\pi(X, Y).$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_2(\nu|\mu) \leqslant 2 H(\nu|\mu), \qquad \widetilde{T}_2(\mu|\nu) \leqslant 2 H(\nu|\mu),$

with
$$\widetilde{T}_{2}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \quad c(x, p_{x}) = \left(\int \mathbb{1}_{x \neq y} dp_{x}(y) \right)^{2}$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{\mathcal{T}}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\begin{split} \|\mu - \nu\|_{TV} &:= 2 \sup_{A} |\mu(A) - \nu(A)| \\ &= 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y). \end{split}$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_{2}(\nu|\mu) \leq 2 H(\nu|\mu), \qquad \widetilde{T}_{2}(\mu|\nu) \leq 2 H(\nu|\mu),$

with
$$\widetilde{T}_2(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_x) d\mu(x), \quad c(x, p_x) = \left(\int \mathbb{1}_{x \neq y} dp_x(y)\right)^2$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

In the 1990s, K. Marton introduced a weak transport cost $\tilde{T}_2(\nu|\mu)$. She proved a variant of the Csizàr-Kullback-Pinsker inequality to recover a Talagrand's concentration inequality on product spaces, related to the so-called convex-hull method.

The Csizár-Kullback-Pinsker inequality : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\|\mu - \nu\|_{TV}^2 \leq 2 H(\nu|\mu),$

where

$$\|\mu - \nu\|_{TV} := 2 \sup_{A} |\mu(A) - \nu(A)|$$
$$= 2 \inf_{\pi \in \Pi(\mu, \nu)} \iint \mathbb{1}_{x \neq y} d\pi(x, y).$$

The Marton's transport inequalities : for any $\mu, \nu \in \mathcal{P}(\mathcal{X})$

 $\widetilde{T}_2(\nu|\mu) \leq 2 H(\nu|\mu), \qquad \widetilde{T}_2(\mu|\nu) \leq 2 H(\nu|\mu),$

with
$$\widetilde{T}_{2}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \quad c(x, p_{x}) = \left(\int \mathbb{1}_{x \neq y} dp_{x}(y)\right)^{2}$$

By Jensen's inequality,

$$\frac{1}{4}\|\mu-\nu\|_{TV}^2 \leqslant \widetilde{T}_2(\nu|\mu) \leqslant \frac{1}{2}\|\mu-\nu\|_{TV}$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \quad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since $\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \{H_1/s + H_2/(1-s)\},$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}).$$

or equivalently, since $\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in (0,1)} \{H_1/s + H_2/(1-s)\},$

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu) + \frac{1}{1-s}H(\nu_{2}|\mu), \qquad \forall s \in (0,1).$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in (0,1). \end{split}$$

Transport-entropy inequalities tensorize :

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since $\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in (0,1)} \{H_1/s + H_2/(1-s)\},$ $\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \quad \forall s \in (0,1).$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since
$$\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \{H_1/s + H_2/(1-s)\},$$

 $\frac{1}{2}\tilde{T}_2(\nu_2|\nu_1) \leq \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \quad \forall s \in \{0,1\}.$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leq \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \left(\sqrt{H(\nu_{1}|\mu)} + \sqrt{H(\nu_{2}|\mu)}\right)^{2}, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}),$$

or equivalently, since
$$\left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in (0,1)} \{H_1/s + H_2/(1-s)\},$$

 $\frac{1}{2} \widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s} H(\nu_1|\mu) + \frac{1}{1-s} H(\nu_2|\mu), \quad \forall s \in (0,1).$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\,\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1), \quad \forall \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}^{n}).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int c^{n}(x,p_{x}) d\nu_{1}(x),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in (0,1). \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1), \quad \forall \nu_{1}, \nu_{2} \in \mathcal{P}(\mathcal{X}^{n}).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int c^{n}(x,p_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$\boldsymbol{c}^{n}(\boldsymbol{x},\boldsymbol{p}) := \sum_{i=1}^{n} \boldsymbol{c}(\boldsymbol{x}_{i},\boldsymbol{p}_{i}),$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in \{0,1\}. \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int c^{n}(x, \rho_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$\boldsymbol{c}^{\boldsymbol{n}}(\boldsymbol{x},\boldsymbol{p}) := \sum_{i=1}^{n} \boldsymbol{c}(\boldsymbol{x}_{i},\boldsymbol{p}_{i}), \qquad \boldsymbol{c}(\boldsymbol{x}_{i},\boldsymbol{p}_{i}) = \left(\int \mathbb{1}_{\boldsymbol{x}_{i} \neq y_{i}} d\boldsymbol{p}_{i}(\boldsymbol{y}_{i})\right)^{2}.$$

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in (0,1). \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash \rho}} \int c^{n}(x, p_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$c^n(x,p) := \sum_{i=1}^n c(x_i, p_i), \qquad c(x_i, p_i) = \left(\int \mathbb{1}_{x_i \neq y_i} dp_i(y_i)\right)^2.$$

 p_i denotes the *i*-th marginal of p.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\begin{split} &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \left(\sqrt{H(\nu_1|\mu)} + \sqrt{H(\nu_2|\mu)}\right)^2, \qquad \forall \mu \in \mathcal{P}(\mathcal{X}), \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}), \\ &\text{or equivalently, since } \left(\sqrt{H_1} + \sqrt{H_2}\right)^2 = \inf_{s \in \{0,1\}} \left\{H_1/s + H_2/(1-s)\right\}, \\ &\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu) + \frac{1}{1-s}H(\nu_2|\mu), \qquad \forall s \in (0,1). \end{split}$$

Transport-entropy inequalities tensorize : setting $\mu^n = \mu \times \cdots \times \mu \in \mathcal{P}(\mathcal{X}^n)$,

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1), \quad \forall \nu_1, \nu_2 \in \mathcal{P}(\mathcal{X}^n).$$

where

$$\widetilde{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1}, \nu_{2}) \\ \pi = \nu_{1} \oslash \rho}} \int c^{n}(x, p_{x}) d\nu_{1}(x),$$

with for $x = (x_1, \ldots, x_n) \in \mathcal{X}^n$,

$$c^{n}(x,p) := \sum_{i=1}^{n} c(x_{i},p_{i}), \qquad c(x_{i},p_{i}) = \left(\int \mathbb{1}_{x_{i} \neq y_{i}} dp_{i}(y_{i})\right)^{2}.$$

 p_i denotes the *i*-th marginal of p.

P-M. Samson

introduction

Marton's inequality

Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2} \widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s} H(\nu_{1}|\mu^{n}) + \frac{1}{1-s} H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$\boldsymbol{c}^{n}(\boldsymbol{x},\boldsymbol{A}):=\inf_{\boldsymbol{p},\boldsymbol{p}(\boldsymbol{A})=1}\boldsymbol{c}^{n}(\boldsymbol{x},\boldsymbol{p}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \quad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

 $\text{Choose} \quad \frac{d\nu_1}{d\mu} = \frac{\mathbbm{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbbm{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leqslant \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose $\frac{d\nu_1}{d\mu} = \frac{\mathbbm{1}_A}{\mu(A)}$ and $\frac{d\nu_2}{d\mu} = \frac{\mathbbm{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2|\nu_1) \ge t$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^n) + \frac{1}{1-s}H(\nu_2|\mu^n), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose We get

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

$$\frac{t}{2} \leq \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

-0

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

,

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{I}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{I}_X \setminus A_t}{\mu(X \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-11

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{I}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{I}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-10

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

 $D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choo

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

 $D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{''} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choos

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{I}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{I}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-0

We aet

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus A_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

 $D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$ $\sqrt{c^n(x, A)} =$

~

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose We get

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

 $\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(A)} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \backslash A_t)} \right),$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n$$
$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^{n} \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbbm{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbbm{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \quad \text{so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities

Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus A_{t})^{1/s}\mu^{n}(A)^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$\begin{split} D_{Tal}(x,A) &= \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 \text{ : the Euclidean ball in } \mathbb{R}^n.\\ \sqrt{c^n(x,A)} &= \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha,p). \end{split}$$

The function F is convex in p

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$\stackrel{\text{de}}{=} \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function F is convex in p and concave in α ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e_{t} \quad \frac{d\nu_{1}}{d\mu} = \frac{\mathbb{1}_{A}}{\mu(A)} \quad \text{and} \quad \frac{d\nu_{2}}{d\mu} = \frac{\mathbb{1}_{X \setminus A_{t}}}{\mu(X \setminus A_{t})}, \text{ so that } \widetilde{T}_{2}(\nu_{2}|\nu_{1}) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

$$\frac{1}{2}\widetilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

$$\stackrel{\text{de}}{=} \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^{n} \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$
$$\sqrt{c^n(x, A)} = \inf_{\substack{p \in \mathcal{P}(A) \\ \alpha \in B_1}} \sup_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{\substack{p \in \mathcal{P}(A) \\ \alpha \in B_1}} \sup_{x \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x, A) := \inf_{p, p(A)=1} c^n(x, p), \text{ and } A_t := \{x \in \mathcal{X}, c^n(x, A) \leq t\}.$$

Choose

se
$$\frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)}$$
 and $\frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{X \setminus A_t}}{\mu(X \setminus A_t)}$, so that $\widetilde{T}_2(\nu_2 | \nu_1) \ge t$.

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e_{t} \quad \frac{d\nu_{1}}{d\mu} = \frac{\mathbb{1}_{A}}{\mu(A)} \quad \text{and} \quad \frac{d\nu_{2}}{d\mu} = \frac{\mathbb{1}_{X \setminus A_{t}}}{\mu(X \setminus A_{t})}, \text{ so that } \widetilde{T}_{2}(\nu_{2}|\nu_{1}) \ge t.$$

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^n(x, A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha, p)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-0

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^n(x, A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha, p)$$

(*F* is linear in *p*, the infimum is reached at the extremal points of $\mathcal{P}(A)$.)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-0

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^n(x,A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha,p) = \sup_{\alpha \in B_1} \inf_{\delta_y, y \in A} F(\alpha,\delta_y)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-0

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^n(x,A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha,p) = \sup_{\alpha \in B_1} \inf_{\delta_y, y \in A} F(\alpha,\delta_y)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-0

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\backslash \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{c^{n}(x, A)} = \sup_{\alpha \in B_{1}} \inf_{p \in \mathcal{P}(A)} F(\alpha, p) = D_{Tal}(x, A),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\frac{1}{2}\tilde{T}_{2}(\nu_{2}|\nu_{1}) \leq \frac{1}{s}H(\nu_{1}|\mu^{n}) + \frac{1}{1-s}H(\nu_{2}|\mu^{n}), \qquad \forall s \in (0,1).$$

First method, the Marton's argument : $x \in \mathcal{X}^n$, $A \subset \mathcal{X}^n$,

$$c^n(x,A) := \inf_{p,p(A)=1} c^n(x,p), \quad \text{and} \quad A_t := \{x \in \mathcal{X}, c^n(x,A) \leq t\}.$$

Choose

$$e \quad \frac{d\nu_1}{d\mu} = \frac{\mathbb{1}_A}{\mu(A)} \quad \text{and} \quad \frac{d\nu_2}{d\mu} = \frac{\mathbb{1}_{\mathcal{X} \setminus A_t}}{\mu(\mathcal{X} \setminus A_t)}, \text{ so that } \widetilde{T}_2(\nu_2 | \nu_1) \ge t.$$

-0

We get

$$\frac{t}{2} \leqslant \frac{1}{s} \log \left(\frac{1}{\mu^n(\mathcal{A})} \right) + \frac{1}{1-s} \log \left(\frac{1}{\mu^n(\mathcal{X} \setminus \mathcal{A}_t)} \right),$$

or equivalently

$$\mu^{n}(\mathcal{X}^{n}\setminus \mathbf{A}_{t})^{1/s}\mu^{n}(\mathbf{A})^{1/(1-s)} \leq e^{-t/2}, \qquad \forall t \geq 0, s \in (0,1),$$

Links with Talagrand's convex-hull distance :

$$D_{Tal}(x, A) = \sup_{\alpha \in B_1} \inf_{y \in A} \sum_{i=1}^n \alpha_i \mathbf{1}_{x_i \neq y_i} \qquad B_1 : \text{the Euclidean ball in } \mathbb{R}^n.$$

$$\sqrt{c^n(x, A)} = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} \sum_{i=1}^n \alpha_i \int \mathbf{1}_{x_i \neq y_i} dp(y) = \inf_{p \in \mathcal{P}(A)} \sup_{\alpha \in B_1} F(\alpha, p).$$

The function *F* is convex in *p* and concave in α , *B*₁ is convex, $\mathcal{P}(A)$ is compact convex, by the Minimax Theorem,

$$\sqrt{C^n(x,A)} = \sup_{\alpha \in B_1} \inf_{p \in \mathcal{P}(A)} F(\alpha,p) = D_{Tal}(x,A), \qquad A_t = A_{\sqrt{t}}^{Tal}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

How to recover the Talagrand's concentration inequality? Second method, duality arguments :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\boldsymbol{\omega}: \mathcal{X} \times \mathcal{X} \rightarrow [0. + \infty]$ is lower semi-continuous,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,
u) := \inf_{\pi \in \Pi(\mu,
u)} \iint \boldsymbol{\omega}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{d}\pi(\boldsymbol{x}, \boldsymbol{y})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y)$$

$$= \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega: \mathcal{X} \times \mathcal{X} \rightarrow [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y)$$
$$= \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on $\mathcal X$ such that

$$\psi(x) - \varphi(y) \leq \omega(x, y), \quad \forall x, y \in \mathcal{X}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega: \mathcal{X} \times \mathcal{X} \rightarrow [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y)$$
$$= \sup_{(\mu,\nu)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \boldsymbol{\varphi}(\mathbf{y}) \leq \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}.$$

Given φ ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega: \mathcal{X} \times \mathcal{X} \rightarrow [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\omega}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y)$$
$$= \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(x) - \varphi(y) \leq \omega(x, y), \quad \forall x, y \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$Q_{\omega}\varphi(x) = \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x, y)\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\pmb{\omega}:\mathcal{X}\times\mathcal{X}\rightarrow [0.+\infty]$ is lower semi-continuous, then

$$\begin{aligned} \mathcal{T}_{\omega}(\mu,\nu) &:= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) d\pi(x,y) \\ &= \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leq \omega(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{aligned} \mathcal{Q}_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}}\{\varphi(y) + \omega(x,y)\}. \end{aligned}$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi}\left\{\int \mathcal{Q}_{\omega}\varphi\,d\mu - \int \varphi\,d\nu\right\}, \end{aligned}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\boldsymbol{x},\boldsymbol{y}) d\pi(\boldsymbol{x},\boldsymbol{y}) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leqslant \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{aligned} \mathcal{Q}_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x,y)\}. \end{aligned}$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\boldsymbol{x},\boldsymbol{y}) d\pi(\boldsymbol{x},\boldsymbol{y}) \\ = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leqslant \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{aligned} Q_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x,y)\}. \end{aligned}$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi} \left\{ \int Q_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\boldsymbol{x},\boldsymbol{y}) d\pi(\boldsymbol{x},\boldsymbol{y}) \\ = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leqslant \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{aligned} \mathcal{Q}_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x,y)\}. \end{aligned}$$

This yields $\mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\boldsymbol{x},\boldsymbol{y}) d\pi(\boldsymbol{x},\boldsymbol{y}) \\ = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leqslant \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{aligned} \mathcal{Q}_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}}\{\varphi(y) + \omega(x,y)\}. \end{aligned}$$
his yields
$$\mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi}\left\{\int \mathcal{Q}_{\omega}\varphi\,d\mu - \int \varphi\,d\nu\right\}, \end{aligned}$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, μ , $\nu \in \mathcal{P}_q(\mathcal{X})$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

т

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\boldsymbol{X},\boldsymbol{y}) d\pi(\boldsymbol{X},\boldsymbol{y}) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leqslant \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{aligned} \mathcal{Q}_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x,y)\}, \\ \text{his yields} \quad \mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, μ , $\nu \in \mathcal{P}_q(\mathcal{X})$,

$$\mathcal{T}_{q}(\mu,\nu) = W_{q}^{-q}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint d^{q}(x,y) d\pi(x,y)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

т

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\boldsymbol{X},\boldsymbol{y}) d\pi(\boldsymbol{X},\boldsymbol{y}) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leqslant \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{split} \mathcal{Q}_{\omega}\varphi(x) &= \inf_{y\in\mathcal{X}} \{\varphi(y) + \omega(x,y)\},\\ \text{his yields} \quad \mathcal{T}_{\omega}(\mu,\nu) &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{split}$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, $\mu, \nu \in \mathcal{P}_q(\mathcal{X})$,

$$\mathcal{T}_{q}(\mu,\nu) = W_{q}^{q}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint d^{q}(x,y) d\pi(x,y) = \inf_{(X,Y)} \mathbb{E}[d(X,Y)^{q}],$$

$$X \sim \mu, Y \sim \nu.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Second method, duality arguments : based on a generalized Kantorovich duality theorem for weak transport costs.

The classical Kantorovich dual theorem

T٢

If $\omega:\mathcal{X}\times\mathcal{X}\to [0.+\infty]$ is lower semi-continuous, then

$$\mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\boldsymbol{X},\boldsymbol{y}) d\pi(\boldsymbol{X},\boldsymbol{y}) = \sup_{(\varphi,\psi)} \left\{ \int \psi \, d\mu - \int \varphi \, d\nu \right\},$$

where the supremum runs over all bounded continuous functions ψ,φ on ${\mathcal X}$ such that

$$\psi(\mathbf{x}) - \varphi(\mathbf{y}) \leqslant \boldsymbol{\omega}(\mathbf{x}, \mathbf{y}), \qquad \forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$$

Given φ , we may replace ψ by the optimal function

$$\begin{split} \mathcal{Q}_{\boldsymbol{\omega}}\varphi(\boldsymbol{x}) &= \inf_{\boldsymbol{y}\in\mathcal{X}}\{\varphi(\boldsymbol{y}) + \boldsymbol{\omega}(\boldsymbol{x},\boldsymbol{y})\}.\\ \text{sis yields} \quad \mathcal{T}_{\boldsymbol{\omega}}(\mu,\nu) &= \sup_{\varphi}\left\{\int \mathcal{Q}_{\boldsymbol{\omega}}\varphi\,d\mu - \int\varphi\,d\nu\right\}, \end{split}$$

where the supremum runs over all bounded continuous functions φ on \mathcal{X} .

Usual example : the Wasserstein metric W_q , $q \ge 1$, $\mu, \nu \in \mathcal{P}_q(\mathcal{X})$,

$$\mathcal{T}_q(\mu,\nu) = W_q^q(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \iint d^q(x,y) d\pi(x,y) = \inf_{(X,Y)} \mathbb{E}[d(X,Y)^q],$$

 $X \sim \mu, Y \sim \nu$. Duality holds with $Q\varphi(x) = \inf_{y \in \mathcal{X}} \{\varphi(y) + d^q(x, y)\}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{ccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathfrak{c} : & (x, p) & \mapsto & \mathfrak{c}(x, p), \end{array}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

IUI WEAK CUSIS

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{ccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathbf{c} : & (x, \mathbf{p}) & \mapsto & \mathbf{c}(x, \mathbf{p}), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{ccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathbf{c} : & (\mathbf{x}, \mathbf{p}) & \mapsto & \mathbf{c}(\mathbf{x}, \mathbf{p}), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\mathbf{C}}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash \mathbf{p}}} \int_{\mathbf{C}(\mathbf{X}, \mathbf{p}_{\mathbf{X}}) d\mu(\mathbf{X}), \quad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int \mathcal{C}(x, p_x) d\mu(x), \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $T_c(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int \mathcal{C}(x, p_x) d\mu(x), \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For $c(x,p) = \int \omega(x,y) \, dp(y)$, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{rcl} & \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) \, dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_c(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_x(y) \, d\mu(x)}_{\mathcal{U}}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{rcl} & \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{\mathcal{C}}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash \mathcal{P}}} \int \mathcal{C}(x,p_x) d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) \, dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y) d\mu(x)}_{d\pi(x,y)}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathfrak{c} : & (x, p) & \mapsto & \mathfrak{c}(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \quad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{rcl} & \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For
$$c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$$
, with $\alpha : \mathbb{R} \to \mathbb{R}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities

Examples in discrete Weak transport costs.7

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathfrak{c} : & (x, p) & \mapsto & \mathfrak{c}(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{\mathsf{C}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_x(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{\mathbf{C}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(\mathbf{d}(\mathbf{x},\mathbf{y})) \, d\mathbf{p}_{\mathbf{X}}(\mathbf{y}) \right) \, d\mu(\mathbf{x})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathfrak{c} : & (x, p) & \mapsto & \mathfrak{c}(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \pi = \mu \oslash p}} \int c(x, p_{x}) d\mu(x), \qquad \mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{\mathsf{G}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_x(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{rcl} & \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

For $\gamma_0(d(x, y)) = \mathbb{1}_{x \neq y}$ and $\alpha(h) = h^2$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ \mathfrak{c} : & (x, p) & \mapsto & \mathfrak{c}(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\begin{aligned} \mathcal{T}_{\mathsf{C}}(\nu|\mu) &:= \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int \mathsf{C}(x,p_x) d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{aligned}$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

For $\gamma_0(d(x, y)) = \mathbb{1}_{x \neq y}$ and $\alpha(h) = h^2$, $\tilde{\mathcal{T}}_\alpha(\nu|\mu)$ is Marton's cost (1996) (or Dembo's cost (1997) for other convex functions α).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak optimal transport cost

Let us consider a measurable function

$$\begin{array}{cccc} \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) & \to & [0, +\infty] \\ c: & (x, p) & \mapsto & c(x, p), \end{array}$$

The weak optimal cost, $\mathcal{T}_{c}(\nu|\mu)$, associated to *c* is defined by

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\substack{\pi \in \Pi(\mu,\nu) \\ \pi = \mu \oslash p}} \int c(x,p_{x})d\mu(x), \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

Example 0 : For
$$c(x, p) = \int \omega(x, y) dp(y)$$
, with $\omega : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$,
$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x, y) \underbrace{dp_{x}(y)d\mu(x)}_{d\pi(x,y)} = \mathcal{T}_{\omega}(\mu, \nu),$$

is the usual Kantorovich optimal transport cost.

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) dp(y) \right)$, with $\alpha : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{T}_{c}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_{x}(y) \right) d\mu(x) = \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu),$$

For $\gamma_0(d(x, y)) = \mathbb{1}_{x \neq y}$ and $\alpha(h) = h^2$, $\tilde{\mathcal{T}}_\alpha(\nu|\mu)$ is Marton's cost (1996) (or Dembo's cost (1997) for other convex functions α).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

 $|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

dovidion inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [0, +\infty],$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\begin{split} \zeta_{c}(\nu|\mu) &:= \inf_{\pi \in \Pi(\mu,\nu)} \int c(x,p_{x}) d\mu(x) \\ &= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_{c} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

 T_{c}

$$\begin{aligned} (\nu|\mu) &:= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x) \\ &= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int \mathcal{R}_c \varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{\rho \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, d\rho + c(x, \rho) \right\}, \qquad x \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$c: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

 \mathcal{T}_{c}

$$\begin{aligned} \varepsilon(\nu|\mu) &:= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x) \\ &= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int \mathcal{R}_c \varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$\boldsymbol{\mathit{R}}_{\mathcal{C}}\varphi(\boldsymbol{x}) = \inf_{\boldsymbol{p}\in\mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, d\boldsymbol{p} + \boldsymbol{c}(\boldsymbol{x},\boldsymbol{p}) \right\}, \qquad \boldsymbol{x}\in\mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(x)| \leq a + b \gamma(d(x, x_0)), \quad \forall x \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

 \mathcal{T}_{c}

$$\begin{aligned} \varphi(\nu|\mu) &:= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x) \\ &= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int \mathcal{R}_c \varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{\rho \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, d\rho + c(x, \rho) \right\}, \qquad x \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(\mathbf{x})| \leq \mathbf{a} + \mathbf{b} \gamma(\mathbf{d}(\mathbf{x}, \mathbf{x}_0)), \quad \forall \mathbf{x} \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \rightarrow [0, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

$$\mathcal{T}_{c}(\nu|\mu) := \inf_{\pi \in \Pi(\mu,\nu)} \int c(x,p_{X}) d\mu(x)$$
$$= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int R_{c}\varphi \, d\mu - \int \varphi \, d\nu \right\},$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \qquad x \in \mathcal{X}.$$

Main assumptions for duality to hold :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(\mathbf{x})| \leq \mathbf{a} + \mathbf{b} \gamma(\mathbf{d}(\mathbf{x}, \mathbf{x}_0)), \quad \forall \mathbf{x} \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [\mathbf{0}, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

 \mathcal{T}_{c}

$$\begin{aligned} (\nu|\mu) &:= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_X) d\mu(x) \\ &= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int \mathcal{R}_c \varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \qquad x \in \mathcal{X}.$$

Main assumptions for duality to hold : $-p \mapsto c(x, p)$ is convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 $\Phi_{\gamma}(\mathcal{X})$: the set of continuous functions $\varphi: \mathcal{X} \to \mathbb{R}$ such that

$$|\varphi(\mathbf{x})| \leq \mathbf{a} + \mathbf{b} \gamma(\mathbf{d}(\mathbf{x}, \mathbf{x}_0)), \quad \forall \mathbf{x} \in \mathcal{X}.$$

 $\Phi_{\gamma,b}(\mathcal{X})$: the set of functions in $\Phi_{\gamma}(\mathcal{X})$ bounded from below.

Definition : duality for weak transport costs

One says that duality holds for the cost

$$\mathcal{C}: \mathcal{X} \times \mathcal{P}_{\gamma}(\mathcal{X}) \to [\mathbf{0}, +\infty],$$

if for all $\mu, \nu \in \mathcal{P}_{\gamma}(\mathcal{X})$, it holds

 \mathcal{T}_{c}

$$\begin{aligned} (\nu|\mu) &:= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x) \\ &= \sup_{\varphi \in \Phi_{\gamma,b}(\mathcal{X})} \left\{ \int \mathcal{R}_c \varphi \, d\mu - \int \varphi \, d\nu \right\}, \end{aligned}$$

where for $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$\mathcal{R}_{\mathcal{C}}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \qquad x \in \mathcal{X}.$$

Main assumptions for duality to hold :

 $-p \mapsto c(x, p)$ is convex, - semi-continuity assumptions.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs

for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{c}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathbf{C}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) \pi(d\mathbf{x},d\mathbf{y}) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathbf{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$\mathbf{Q}_{\omega}\varphi(x) = \inf_{p\in\mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x,y) \, dp(y) \right\} = \inf_{y\in\mathcal{X}} \left\{ \varphi(y) + \omega(x,y) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathbf{C}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) \pi(d\mathbf{x},d\mathbf{y}) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathbf{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$Q_{\omega}\varphi(x) = \inf_{p\in\mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x,y) \, dp(y) \right\} = \inf_{y\in\mathcal{X}} \left\{ \varphi(y) + \omega(x,y) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathsf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(\mathsf{d} x,\mathsf{d} y) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, \mathsf{d} \mu - \int \varphi \, \mathsf{d} \nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$Q_{\omega}\varphi(x) = \inf_{p\in\mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x,y) \, dp(y) \right\} = \inf_{y\in\mathcal{X}} \left\{ \varphi(y) + \omega(x,y) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathsf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y}) \pi(d\mathbf{x},d\mathbf{y}) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$\begin{aligned} & \mathcal{Q}_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}. \end{aligned}$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathsf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(\mathbf{x},\mathbf{y})\pi(d\mathbf{x},d\mathbf{y}) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega}\varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

with $\alpha : \mathbb{R}^+ \to [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathsf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

with $\alpha : \mathbb{R}^+ \to [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

$$\widetilde{\mathcal{T}}_{\alpha}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_x(y) \right) d\mu(x) \\ = \sup_{\varphi} \left\{ \int \widetilde{Q}_{\alpha} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathsf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$Q_{\omega}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x, y) \, dp(y) \right\} = \inf_{y \in \mathcal{X}} \left\{ \varphi(y) + \omega(x, y) \right\}.$$

Example 1 : For $c(x, p) = \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right)$

with $\alpha : \mathbb{R}^+ \rightarrow [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

$$\begin{split} \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_x(y) \right) d\mu(x) \\ &= \sup_{\varphi} \left\{ \int \widetilde{\mathcal{Q}}_{\alpha} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$\widetilde{Q}_{\alpha}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \alpha \left(\int \gamma(d(x, y)) \, dp(y) \right) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 0 : For $c(x, p) = \int \omega(x, y) dp(y)$.

$$\begin{split} \mathcal{T}_{\mathsf{c}}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \omega(x,y) \pi(dx,dy) = \mathcal{T}_{\omega}(\mu,\nu) \\ &= \sup_{\varphi} \left\{ \int \mathcal{Q}_{\omega} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with

$$\begin{aligned} Q_{\omega}\varphi(x) &= \inf_{p\in\mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \int \omega(x,y) \, dp(y) \right\} = \inf_{y\in\mathcal{X}} \left\{ \varphi(y) + \omega(x,y) \right\}. \end{aligned}$$

Example 1 : For $c(x,p) = \alpha \left(\int \gamma(d(x,y)) \, dp(y) \right)$

with $\alpha : \mathbb{R}^+ \to [0, +\infty]$ (lower semi-)continuous convex and $\alpha(0) = 0$.

$$\begin{split} \widetilde{\mathcal{T}}_{\alpha}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \int \alpha \left(\int \gamma(d(x,y)) \, dp_x(y) \right) d\mu(x) \\ &= \sup_{\varphi} \left\{ \int \widetilde{\mathcal{Q}}_{\alpha} \varphi \, d\mu - \int \varphi \, d\nu \right\}, \qquad \mu,\nu \in \mathcal{P}_{\gamma}(\mathcal{X}), \end{split}$$

with
$$\widetilde{\mathbf{Q}}_{\alpha}\varphi(x) = \inf_{p\in\mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + \alpha \left(\int \gamma(d(x,y)) \, dp(y) \right) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2 :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2 : Let μ_0 denotes a reference probability measure on \mathcal{X} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2 : Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p \ll \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$\boldsymbol{c}(\boldsymbol{x},\boldsymbol{p}) = \int \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}}{d\mu_0}(\boldsymbol{y}) \right) d\mu_0(\boldsymbol{y}), \quad \text{if } \boldsymbol{p} << \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{aligned} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta\left(\gamma(d(x,y)) \frac{dp_x}{d\mu_0}(y)\right) d\mu_0(y) d\mu(x) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{aligned}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p << \mu_0,$$

and $c(x, p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{aligned} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}_{\boldsymbol{x}}}{d\mu_{0}}(\boldsymbol{y}) \right) \boldsymbol{d}\mu_{0}(\boldsymbol{y}) \boldsymbol{d}\mu(\boldsymbol{x}) \\ &\geq \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{aligned}$$

$$\widehat{\mathcal{T}}_{\beta}(\nu|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{\beta}\varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},\,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$\boldsymbol{c}(\boldsymbol{x},\boldsymbol{p}) = \int \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d\boldsymbol{p}}{d\mu_0}(\boldsymbol{y}) \right) d\mu_0(\boldsymbol{y}), \quad \text{if } \boldsymbol{p} << \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{dp_{\boldsymbol{x}}}{d\mu_0}(\boldsymbol{y}) \right) d\mu_0(\boldsymbol{y}) d\mu(\boldsymbol{x}) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\widehat{\mathcal{T}}_{\beta}(\nu|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{\beta} \varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},$$

$$\widehat{Q}_{\beta}\varphi(\mathbf{x}) = \inf_{\mathbf{p}\in\mathcal{P}_{\gamma}(\mathbf{X})} \left\{ \int \varphi(\mathbf{y}) \, d\mathbf{p}(\mathbf{y}) + \int \beta \left(\gamma(d(\mathbf{x},\mathbf{y})) \frac{d\mathbf{p}}{d\mu_0}(\mathbf{y}) \right) d\mu_0(\mathbf{y}) \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p << \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d p_{\boldsymbol{x}}}{d \mu_0}(\boldsymbol{y}) \right) d \mu_0(\boldsymbol{y}) d \mu(\boldsymbol{x}) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\widehat{\mathcal{T}}_{\beta}(\nu|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{\beta}\varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},\,$$

$$\widehat{\mathbf{Q}}_{\beta}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(X)} \left\{ \int \varphi(y) \, dp(y) + \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y) \right\}.$$

Particular case : a Talagrand's cost for $\gamma_0(u) = \mathbb{1}_{u \neq 0}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p << \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d p_{\boldsymbol{x}}}{d \mu_0}(\boldsymbol{y}) \right) d \mu_0(\boldsymbol{y}) d \mu(\boldsymbol{x}) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\widehat{\mathcal{T}}_{\beta}(\nu|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{\beta}\varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},$$

$$\widehat{\mathbf{Q}}_{\beta}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(X)} \left\{ \int \varphi(y) \, dp(y) + \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y) \right\}.$$

Particular case : a Talagrand's cost for $\gamma_0(u) = \mathbb{1}_{u \neq 0}$,

$$c(x,p) = \int \beta \left(\mathbb{1}_{x \neq y} \frac{dp}{d\mu_0}(y) \right) d\mu_0(y),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 2: Let μ_0 denotes a reference probability measure on \mathcal{X} .

$$c(x,p) = \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y), \quad \text{if } p << \mu_0,$$

and $c(x,p) = +\infty$ otherwise, with $\beta : \mathbb{R}^+ \to [0, +\infty]$, convex and $\beta(0) = 0$.

$$\begin{split} \widehat{\mathcal{T}}_{\beta}(\nu|\mu) &= \inf_{\pi \in \Pi(\mu,\nu)} \iint \beta \left(\gamma(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})) \frac{d p_{\boldsymbol{x}}}{d \mu_0}(\boldsymbol{y}) \right) d \mu_0(\boldsymbol{y}) d \mu(\boldsymbol{x}) \\ &\geqslant \widetilde{\mathcal{T}}_{\beta}(\nu|\mu) \end{split}$$

$$\widehat{\mathcal{T}}_{eta}(
u|\mu) = \sup_{\varphi} \left\{ \int \widehat{\mathcal{Q}}_{eta} \varphi(x) \, d\mu(x) - \int \varphi(y) \, d\nu(y) \right\},$$

$$\widehat{\mathbf{Q}}_{\beta}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(X)} \left\{ \int \varphi(y) \, dp(y) + \int \beta \left(\gamma(d(x,y)) \frac{dp}{d\mu_0}(y) \right) d\mu_0(y) \right\}.$$

Particular case : a Talagrand's cost for $\gamma_0(u) = \mathbb{1}_{u \neq 0}$,

$$c(x,p) = \int \beta \left(\mathbb{1}_{x \neq y} \frac{dp}{d\mu_0}(y) \right) d\mu_0(y)$$

used by Talagrand (1996) as a main ingredient to reach deviation inequalities for supremum of empirical processes with Bernstein's bounds, see also S. (2007).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3 :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{\mathcal{Q}}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$
with $\overline{Q}_{\theta} \varphi(x) = \inf_{\rho \in \mathcal{P}_1(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{\mathcal{Q}}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_1(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p\in\mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^{m}} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \left(x - z \right) \right\}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = \underline{Q}_{\theta}\overline{\varphi}(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = \underline{Q}_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities

Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{p, \int y \, dp(y) = z} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = Q_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex. From this observation we get

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\overline{\varphi} \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \overline{\varphi} \, d\mu - \int \overline{\varphi} \, d\nu \right\},\,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{\substack{p, \int y \, dp(y) = z}} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = Q_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex. From this observation we get

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\overline{\varphi} \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \overline{\varphi} \, d\mu - \int \overline{\varphi} \, d\nu \right\},$$

where the supremum runs over all convex Lipschitz functions $\overline{\varphi} : \mathbb{R}^m \to \mathbb{R}$ bounded from below,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem [GRST '15] : Examples of weak costs for which duality holds

Example 3: Barycentric variant of Marton's cost function when $\mathcal{X} \subset \mathbb{R}^m$.

$$c(x,p) = \theta\left(x - \int y \, dp(y)\right), \qquad p \in \mathcal{P}_1(\mathcal{X}),$$

with $\theta : \mathbb{R}^m \to [0, +\infty]$ (lower semi-)continuous convex and $\theta(0) = 0$.

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta \left(\int x - \int y \, dp_x(y) \right) d\mu(x)$$
$$= \sup_{\varphi} \left\{ \int \overline{Q}_{\theta} \varphi \, d\mu - \int \varphi \, d\nu \right\}$$

with $\overline{Q}_{\theta}\varphi(x) = \inf_{p \in \mathcal{P}_{1}(\mathcal{X})} \left\{ \int \varphi \, dp + \theta \left(x - \int y \, dp(y) \right) \right\}.$

Remark : This cost has strong connections with convex functions. Observe that

$$\overline{Q}_{\theta}\varphi(x) = \inf_{z \in \mathbb{R}^m} \left\{ \underbrace{\left(\inf_{\substack{p, \int y \, dp(y) = z}} \int \varphi \, dp \right)}_{:=\overline{\varphi}(z)} + \theta \, (x - z) \right\} = Q_{\theta}\overline{\varphi}(x).$$

The function $\overline{\varphi}$ is convex. From this observation we get

$$\overline{\mathcal{T}}_{\theta}(\nu|\mu) = \sup_{\overline{\varphi} \text{ convex}} \left\{ \int \mathcal{Q}_{\theta} \overline{\varphi} \, d\mu - \int \overline{\varphi} \, d\nu \right\},\,$$

where the supremum runs over all convex Lipschitz functions $\overline{\varphi} : \mathbb{R}^m \to \mathbb{R}$ bounded from below, and $Q_{\theta}\overline{\varphi}$ is the usual infimum-convolution operator.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(\mathbf{x} - z)\}, \quad \mathbf{x} \in \mathbb{R}^m$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x-z)\}, \quad x \in \mathbb{R}^m$$

Particular case :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$Q_{\theta}\psi(x) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad x \in \mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{T}_{\theta} = \overline{T}_{1}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \text{ convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad \mathbf{x} \in \mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad \mathbf{x} \in \mathbb{R}^n$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{T}_{\theta} = \overline{T}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

 $Q_1\psi=\psi.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta} \psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(x - z)\}, \quad \mathbf{x} \in \mathbb{R}^n$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{T}_{\theta} = \overline{T}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

 $Q_1\psi=\psi.$

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|]$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{\mathbf{z}\in\mathbb{R}^m} \{\psi(\mathbf{z}) + \theta(\mathbf{x} - \mathbf{z})\}, \quad \mathbf{x}\in\mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_{1}$, $Q_{\theta}\psi = Q_{1}\psi$ is 1-Lipschitz, $Q_{1}\psi = \psi$.

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(\mathbf{x} - z)\}, \quad \mathbf{x} \in \mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{T}_{\theta} = \overline{T}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

$$Q_1\psi=\psi.$$

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport

inequalities examples

characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(\mathbf{x} - z)\}, \quad \mathbf{x} \in \mathbb{R}^m$$

Particular case : $\theta(x - z) = |x - z|$, $\overline{T}_{\theta} = \overline{T}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

 $Q_1\psi=\psi.$

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_{1}(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$;

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(\mathbf{x} - z)\}, \quad \mathbf{x} \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

 $Q_1\psi=\psi.$

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_1(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, \mathbf{d}\mu \leqslant \int \psi \, \mathbf{d}\nu,$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{z \in \mathbb{R}^m} \{\psi(z) + \theta(\mathbf{x} - z)\}, \quad \mathbf{x} \in \mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

 $Q_1\psi=\psi.$

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_1(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, \mathbf{d}\mu \leqslant \int \psi \, \mathbf{d}\nu$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

Theorem. [Strassen 1965]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^m)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{\mathbf{z}\in\mathbb{R}^m} \{\psi(\mathbf{z}) + \theta(\mathbf{x} - \mathbf{z})\}, \quad \mathbf{x}\in\mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

 $Q_1\psi=\psi.$

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_1(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, \mathbf{d}\mu \leqslant \int \psi \, \mathbf{d}\nu$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

Theorem. [Strassen 1965]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^m)$. Then $\mu \leq_C \nu$ if and only if

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

$$\overline{\mathcal{T}}_{ heta}(
u|\mu) = \sup_{\psi \quad ext{convex}} \left\{ \int \mathcal{Q}_{ heta}\psi \, d\mu - \int \psi \, d\nu
ight\},$$

with

$$\mathbf{Q}_{\theta}\psi(\mathbf{x}) = \inf_{\mathbf{z}\in\mathbb{R}^m} \{\psi(\mathbf{z}) + \theta(\mathbf{x} - \mathbf{z})\}, \quad \mathbf{x}\in\mathbb{R}^m$$

Particular case : $\theta(x-z) = |x-z|$, $\overline{\mathcal{T}}_{\theta} = \overline{\mathcal{T}}_1$, $Q_{\theta}\psi = Q_1\psi$ is 1-Lipschitz,

 $Q_1\psi=\psi.$

Proposition. [GRST 2015]

$$\overline{\mathcal{T}}_1(\nu|\mu) = \inf_{(X,Y)} \mathbb{E}[|X - \mathbb{E}[Y|X]|] = \sup_{\psi \text{ convex, 1-Lipschitz}} \left\{ \int \psi \, d\mu - \int \psi \, d\nu \right\}.$$

Application : A simple proof of a result by Strassen Let $\mu, \nu \in \mathcal{P}_1(\mathbb{R}^m)$; one says that μ is dominated by ν in the convex order sense, $\mu \leq_C \nu$, if

$$\int \psi \, \mathbf{d}\mu \leqslant \int \psi \, \mathbf{d}\nu,$$

for all convex $\psi : \mathbb{R}^m \to \mathbb{R}$.

Theorem. [Strassen 1965]

Let $\mu, \nu \in \mathcal{P}(\mathbb{R}^m)$. Then $\mu \leq_C \nu$ if and only if there exists a martingale (X, Y) $(\mathbb{E}[Y|X] = X)$, where X follows the law μ and Y the law ν .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost

Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{C} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y dp_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{C} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result

Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}^{\textit{mart}}_{\omega}(\nu|\mu) := \inf_{\pi \in \Pi^{\textit{mart}}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

ivial tillgale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbb{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int c(x,p_x) d\mu(x),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

viai tingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbb{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}^{mart}_{\omega}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x, y) \, d\pi(x, y) + \int i(x, p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x, p_x) d\mu(x),$$

with $c(x,p) := \int \omega(x,y) dp(y) + i(x,p)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}^{mart}_{\omega}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int c(x,p_x) d\mu(x),$$

with
$$c(x,p) := \int \omega(x,y) dp(y) + i(x,p)$$
. The cost *c* is convex in *p*.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbf{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) := \inf_{\pi \in \Pi^{mart}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x),$$

with $c(x,p) := \int \omega(x,y) dp(y) + i(x,p)$. The cost *c* is convex in *p*. The dual Kantorovich Theorem for weak cost applies

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Example 4 : The martingale transport problem on the line. Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ such that $\mu \leq_{\mathbb{C}} \nu$. According to Strassen Theorem,

$$\Pi^{mart}(\mu,\nu) := \left\{ \pi \in \Pi(\mu,\nu), \pi = \mu \oslash \rho, \int y d\rho_x(y) = x \, \mu\text{-almost surely} \right\} \neq \emptyset$$

By definition, the martingale optimal cost associated to $\omega : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is

$$\mathcal{T}^{\textit{mart}}_{\omega}(\nu|\mu) := \inf_{\pi \in \Pi^{\textit{mart}}(\mu,\nu)} \iint \omega(x,y) \, d\pi(x,y).$$

How to express this martingale cost as a weak cost?

For
$$x \in \mathbb{R}$$
, $p \in \mathcal{P}_1(\mathbb{R})$, let $i(x, p) = \begin{cases} 0, & \text{if } \int y \, dp(y) = x, \\ +\infty, & \text{otherwise.} \end{cases}$

Observe that the function *i* is convex in *p*, and one has

$$\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \left\{ \iint \omega(x,y) \, d\pi(x,y) + \int i(x,p_x) d\mu(x) \right\}$$
$$= \inf_{\pi \in \Pi(\mu,\nu)} \int \mathcal{C}(x,p_x) d\mu(x),$$

with $c(x, p) := \int \omega(x, y) dp(y) + i(x, p)$. The cost *c* is convex in *p*. The dual Kantorovich Theorem for weak cost applies and we recover the duality result by Beighböck-Henry-Labordère-Penker (2013).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost

Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on ${\mathbb R}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport

inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result

Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martinoale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x, y) = 0.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint W \, d\pi = \inf_{f,g,h} \left\{ \int f \, d\mu + \int g \, d\nu \right\},\,$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0, \omega = -W$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\mathbf{\tau}\in\Pi^{mart}(\mu,\nu)}\iint \mathbf{W}\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x,y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0, \omega = -w$. $\sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint w d\pi = -\mathcal{T}_{\omega}^{mart}(\nu|\mu)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\mathbf{r}\in\Pi^{mart}(\mu,\nu)}\iint \mathbf{W}\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$. $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi = -\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{g} \left\{ \int (-R_{c}g) d\nu + \int g d\mu \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality \leq is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$, $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$. $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi = -\mathcal{T}_{\omega}^{mart}(\nu|\mu) = \inf_{g} \left\{ \int (-R_{c}g) d\nu + \int g d\mu \right\}$ $\geq \int (-R_{c}g_{0}) d\nu + \int g_{0} d\mu - \varepsilon.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi \geq \int (-R_c g_0) d\nu + \int g_0 d\mu - \varepsilon$.

Observe that $i(x, p) = \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y \, dp(y) - x \right),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\mathbf{r}\in\Pi^{mart}(\mu,\nu)}\iint \mathbf{W}\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},\,$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi \geq \int (-R_c g_0) d\nu + \int g_0 d\mu - \varepsilon$.

Observe that $i(x, p) = \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y \, dp(y) - x \right)$, it follows that $f_0(x) := -R_c g_0(x)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x,y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$.
 $\sup_{\pi \in \Pi^{mart}(\mu,\nu)} \iint w d\pi \geq \int (-R_c g_0) d\nu + \int g_0 d\mu - \varepsilon$.

Observe that $i(x,p) = \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y \, dp(y) - x \right)$, it follows that $f_0(x) := -R_c g_0(x) = \sup_p \inf_{\gamma \in \mathbb{R}} \left\{ -\int g_0 dp + \int w(x,y) dp(y) - \int \gamma \cdot (y-x) dp(y) \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x,y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$.
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi \geq \int (-R_c g_0) d\nu + \int g_0 d\mu - \varepsilon$.

Observe that
$$i(x,p) = \sup_{\substack{\gamma \in \mathbb{R} \\ p \in \mathbb{R} \\ q \in$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0$, $\omega = -w$.
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w d\pi \geq \int (-R_c g_0) d\nu + \int g_0 d\mu - \varepsilon$.

Observe that
$$i(x,p) = \sup_{\substack{\gamma \in \mathbb{R} \\ p \in \mathbb{R}}} \gamma \cdot \left(\int y \, dp(y) - x \right)$$
, it follows that
 $f_0(x) := -R_c g_0(x) = \sup_{p} \inf_{\substack{\gamma \in \mathbb{R} \\ y \in \mathbb{R}}} \left\{ -\int g_0 dp + \int w(x,y) dp(y) - \int \gamma \cdot (y-x) dp(y) \right\}$
 $= \inf_{\substack{\gamma \in \mathbb{R} \\ y \in \mathbb{R}}} \sup_{y} \left\{ -g_0(y) + w(x,y) - \gamma \cdot (y-x) \right\}$
 $\ge -g_0(y) + w(x,y) - \gamma(x) \cdot (y-x) - \varepsilon.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities examples

characterisation on R

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0, \omega = -w$.

$$\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w \, d\pi \geq \int (-R_c g_0) \, d\nu + \int g_0 \, d\mu - \varepsilon.$$

Observe that
$$i(x, p) = \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y \, dp(y) - x \right)$$
, it follows that
 $f_0(x) := -R_c g_0(x) = \sup_p \inf_{\gamma \in \mathbb{R}} \left\{ -\int g_0 \, dp + \int w(x, y) \, dp(y) - \int \gamma \cdot (y - x) \, dp(y) \right\}$
 $= \inf_{\gamma \in \mathbb{R}} \sup_y \left\{ -g_0(y) + w(x, y) - \gamma \cdot (y - x) \right\}$
 $\ge -g_0(y) + w(x, y) - \gamma(x) \cdot (y - x) - \varepsilon.$
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w \, d\pi \ge \inf_{f_0, g_0, \gamma} \left\{ \int f_0 \, d\mu + \int g_0 \, d\nu \right\} - \varepsilon,$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Theorem : [B and al.,2013]

Let $w : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a upper semi-continuous function, bounded from above.

$$\sup_{\pi\in\Pi^{mart}(\mu,\nu)}\iint W\,d\pi = \inf_{f,g,h}\left\{\int f\,d\mu + \int g\,d\nu\right\},$$

where the infimum runs over all measurable bounded functions f, g, h such that for all $x, y \in \mathbb{R}$, $w(x, y) \leq f(x) + g(y) + h(x)(y - x)$.

idea of the proof : The inequality
$$\leq$$
 is obvious since for all $\pi \in \Pi^{mart}(\mu, \nu)$,
 $\int h(x)(y-x) d\pi(x, y) = 0$. For the reverse inequality \geq : let $\varepsilon > 0, \omega = -w$.
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w \, d\pi \geq \int (-R_c g_0) \, d\nu + \int g_0 \, d\mu - \varepsilon$.

Observe that
$$i(x, p) = \sup_{\gamma \in \mathbb{R}} \gamma \cdot \left(\int y \, dp(y) - x \right)$$
, it follows that
 $f_0(x) := -R_c g_0(x) = \sup_{p} \inf_{\gamma \in \mathbb{R}} \left\{ -\int g_0 \, dp + \int w(x, y) \, dp(y) - \int \gamma \cdot (y - x) \, dp(y) \right\}$
 $= \inf_{\gamma \in \mathbb{R}} \sup_{y} \left\{ -g_0(y) + w(x, y) - \gamma \cdot (y - x) \right\}$
 $\ge -g_0(y) + w(x, y) - \gamma(x) \cdot (y - x) - \varepsilon.$
 $\sup_{\pi \in \Pi^{mart}(\mu, \nu)} \iint w \, d\pi \ge \inf_{f_0, g_0, \gamma} \left\{ \int f_0 \, d\mu + \int g_0 \, d\nu \right\} - \varepsilon,$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities examples

characterisation on ${\ensuremath{\mathbb R}}$

Transport inequality on the symmetric group introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Weak transport costs.14

over all f_0, g_0, γ , $f_0(x) + g_0(y) + \gamma(x) \cdot (y - x) + \varepsilon \ge w(x, y)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $\mathbf{T}_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant \mathbf{a}_1 H(\nu_1|\mu) + \mathbf{a}_2 H(\nu_2|\mu) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality :
$$\widetilde{T}_2(\nu_2|\nu_1) \leq \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{C}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality :
$$\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$$

Proposition : Dual characterization for weak transport-entropy inequalities.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality :
$$\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$$

Proposition : Dual characterization for weak transport-entropy inequalities. If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{c}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality : $\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$

Proposition : Dual characterization for weak transport-entropy inequalities. If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

```
i) \mu satisfies T_c(a_1, a_2) (a_1, a_2 > 0)
```

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{C}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\boldsymbol{\mu}) + a_2 H(\nu_2|\boldsymbol{\mu}) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality :
$$\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$$

Proposition : Dual characterization for weak transport-entropy inequalities. If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

- i) μ satisfies $T_c(a_1, a_2)$ $(a_1, a_2 > 0)$
- ii) For all functions $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}} d\mu\right)^{a_{2}} \left(\int e^{-\frac{\varphi}{a_{1}}} d\mu\right)^{a_{1}} \leq 1$$

$$R_{c}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{\int \varphi(y) dp(y) + c(x,p)\right\}, \qquad x \in \mathcal{X}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

.....

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Definition : Weak transport-entropy inequality $T_c(a_1, a_2)$

The measure $\mu \in \mathcal{P}_{\gamma}(\mathcal{X})$ satisfies the transport-entropy inequality $T_{c}(a_{1}, a_{2})$, $a_{1}, a_{2} > 0$,

 $\mathcal{T}_{\mathbf{C}}(\nu_1|\nu_2) \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu) \qquad \nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X}).$

Marton's inequality :
$$\widetilde{T}_2(\nu_2|\nu_1) \leqslant \frac{2}{s}H(\nu_1|\mu^n) + \frac{2}{1-s}H(\nu_2|\mu^n), \forall s \in (0,1).$$

Proposition : Dual characterization for weak transport-entropy inequalities. If the Kantorovich duality holds for the weak cost T_c , then the following statements are equivalents :

- i) μ satisfies $T_c(a_1, a_2)$ $(a_1, a_2 > 0)$
- ii) For all functions $\varphi \in \Phi_{\gamma,b}(\mathcal{X})$,

$$\left(\int e^{\frac{R_{C}\varphi}{a_2}} d\mu\right)^{a_2} \left(\int e^{-\frac{\varphi}{a_1}} d\mu\right)^{a_1} \leq 1$$
$$R_{C}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{\int \varphi(y) dp(y) + c(x,p)\right\}, \qquad x \in \mathcal{X}.$$

ii) is a generalisation of the so-called (convex) τ -property introduced by Maurey (1990) to recover Talagrand's concentration results.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

 $\mathcal{T}_{c}(\nu_{1}|\nu_{2}) \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{c}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{c}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(\mathsf{X})} \left\{ \int \mathsf{R}_{\mathsf{C}}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1} \mathsf{H}(\nu_{1}|\mu) + a_{2} \mathsf{H}(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_1|\nu_2) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}}\varphi \, d\nu_2 - \int \varphi \, d\nu_1 \right\} \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_2\left(\int \frac{R_c\varphi}{a_2}\,d\nu_2-H(\nu_2|\mu)\right)+a_1\left(\int -\frac{\varphi}{a_1}\,d\nu_1-H(\nu_1|\mu)\right)\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathbf{C}}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int \mathbf{R}_{\mathbf{C}} \varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leq a_{1} H(\nu_{1}|\mu) + a_{2} H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_{2}\left(\int \frac{R_{c}\varphi}{a_{2}}\,d\nu_{2}-H(\nu_{2}|\mu)\right)+a_{1}\left(\int -\frac{\varphi}{a_{1}}\,d\nu_{1}-H(\nu_{1}|\mu)\right)\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{c}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{c}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leq a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_2\left(\int \frac{R_c\varphi}{a_2}\,d\nu_2-H(\nu_2|\mu)\right)+a_1\left(\int -\frac{\varphi}{a_1}\,d\nu_1-H(\nu_1|\mu)\right)\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$, and all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$

$$a_2\left(\int \frac{R_c\varphi}{a_2}\,d\nu_2-H(\nu_2|\mu)\right)+a_1\left(\int -\frac{\varphi}{a_1}\,d\nu_1-H(\nu_1|\mu)\right)\leqslant 0.$$

By optimizing over all ν_1, ν_2 we get

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{c}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{c}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leq a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} \, d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} \, d\nu_1 - H(\nu_1 | \mu) \right\} \leq 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_1|\nu_2) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}}\varphi \, d\nu_2 - \int \varphi \, d\nu_1 \right\} \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} d\nu_1 - H(\nu_1 | \mu) \right\} \leq 0.$$

Since
$$\sup_{\nu \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \psi \, d\nu - H(\nu|\mu) \right\} = \log \int e^{\psi} \, d\mu, \quad \forall \psi \in \Phi_{\gamma,b}(\mathcal{X}),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_{1}|\nu_{2}) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}}\varphi \, d\nu_{2} - \int \varphi \, d\nu_{1} \right\} \leqslant a_{1}H(\nu_{1}|\mu) + a_{2}H(\nu_{2}|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} d\nu_1 - H(\nu_1 | \mu) \right\} \leq 0.$$

Since
$$\sup_{\nu \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \psi \, d\nu - H(\nu|\mu) \right\} = \log \int e^{\psi} \, d\mu, \quad \forall \psi \in \Phi_{\gamma,b}(\mathcal{X}),$$

it follows that

$$a_2\log\int e^{R_c\varphi/a_2}\,d\mu+a_1\log\int e^{-\varphi/a_1}\,d\mu\leqslant 0.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Assume that for all $\nu_1, \nu_2 \in \mathcal{P}_{\gamma}(\mathcal{X})$,

$$\mathcal{T}_{\mathsf{C}}(\nu_1|\nu_2) = \sup_{\varphi \in \Phi_{\gamma,b}(X)} \left\{ \int R_{\mathsf{C}}\varphi \, d\nu_2 - \int \varphi \, d\nu_1 \right\} \leqslant a_1 H(\nu_1|\mu) + a_2 H(\nu_2|\mu),$$

Therefore, for all $\varphi \in \Phi_{\gamma,b}(X)$,

$$a_2 \sup_{\nu_2} \left\{ \int \frac{R_c \varphi}{a_2} \, d\nu_2 - H(\nu_2 | \mu) \right\} + a_1 \sup_{\nu_1} \left\{ \int -\frac{\varphi}{a_1} \, d\nu_1 - H(\nu_1 | \mu) \right\} \leqslant 0.$$

Since
$$\sup_{\nu \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \psi \, d\nu - H(\nu|\mu) \right\} = \log \int e^{\psi} \, d\mu, \quad \forall \psi \in \Phi_{\gamma,b}(\mathcal{X}),$$

it follows that

$$a_2\log\int e^{R_c\varphi/a_2}\,d\mu+a_1\log\int e^{-\varphi/a_1}\,d\mu\leqslant 0.$$

or equivalently

$$\left(\int e^{R_{c}\varphi/a_{2}}\,d\mu\right)^{a_{2}}\left(\int e^{-\varphi/a_{1}}\,d\mu\right)^{a_{1}}\leqslant1$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c\varphi}}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leq 1$$

where $R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leq 1$$

where $R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$

Let $A \subset \mathcal{X}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{\rm c}\varphi}{a_2}}d\mu\right)^{a_2}\left(\int e^{-\frac{\varphi}{a_1}}d\mu\right)^{a_1}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{\mathcal{A}}(x) := \begin{cases} 0 \text{ if } x \in \mathcal{A}, \\ +\infty \text{ otherwise,} \end{cases}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leq 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{c}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_{\mathcal{C}}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$
and $R_{c}i_{A}(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_{A}dp + c(x,p) \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{\mu_{0}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$
and $R_{c}i_{A}(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_{A} dp + c(x,p) \right\} = \inf_{p,p(A)=1} c(x,p)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

We assume that for all measurable functions $\varphi: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ bounded from below

$$\left(\int e^{\frac{H_{Q}\varphi}{a_2}}d\mu\right)^{a_2}\left(\int e^{-\frac{\varphi}{a_1}}d\mu\right)^{a_1}\leqslant 1$$

where
$$R_{\mathcal{C}}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_{A}(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_{A}}{a_{1}}} d\mu = \mu(A),$
and $R_{c}i_{A}(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_{A}dp + c(x,p) \right\} = \inf_{p,p(A)=1} c(x,p) := c(x,A)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

We assume that for all measurable functions $\varphi : \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{C}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_{\mathcal{C}}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\varphi(x) = i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases}$$

since $\int e^{-\frac{i_A}{a_1}} d\mu = \mu(A)$,

and
$$R_c i_A(x) = \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x, p) \right\} = \inf_{p, p(A) = 1} c(x, p) := c(x, A),$$

we get the following type of Talagrand's concentration result

e ionowing type of falagrand's concentration result

$$\left(\int e^{\frac{c(x,A)}{a_2}}d\mu(x)\right)^{a_2}\mu(A)^{a_1}\leqslant 1.$$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{H_{C}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_A}{a_1}} d\mu &= \mu(A), \end{cases} \\ \text{and } R_c i_A(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \end{cases} \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}} d\mu(x)\right)^{a_2} \mu(A)^{a_1} \leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X} \setminus \mathbf{A}_t) = \mu(\{\mathbf{x} \in \mathcal{X}, \mathbf{C}(\mathbf{x}, \mathbf{A}) > t\})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{R_{0}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leq 1$$

where
$$R_{\mathcal{C}}\varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x,p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_A}{a_1}} d\mu &= \mu(A), \end{cases} \\ \text{and } R_c i_A(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \end{cases} \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}}d\mu(x)\right)^{a_2}\mu(A)^{a_1}\leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X}\setminus A_t) = \mu(\{x \in \mathcal{X}, \mathbf{C}(x, \mathbf{A}) > t\}) \leq e^{-t/a_2} \int e^{\frac{\mathbf{C}(x, \mathbf{A})}{a_2}} d\mu(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{H_{C}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_A}{a_1}} d\mu &= \mu(A), \end{cases} \\ \text{and } R_c i_A(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \end{cases} \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}}d\mu(x)\right)^{a_2}\mu(A)^{a_1}\leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X}\backslash A_t) = \mu\big(\{x \in \mathcal{X}, c(x, A) > t\}\big) \leq e^{-t/a_2} \int e^{\frac{c(x, A)}{a_2}} d\mu(x).$$

It follows that $\mu(\mathcal{X}\setminus A_t)^{a_2}\mu(A)^{a_1} \leq e^{-t}, \quad \forall t > 0.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

We assume that for all measurable functions $\varphi:\mathcal{X}\to\mathbb{R}\cup\{+\infty\}$ bounded from below

$$\left(\int e^{\frac{H_{C}\varphi}{a_{2}}}d\mu\right)^{a_{2}}\left(\int e^{-\frac{\varphi}{a_{1}}}d\mu\right)^{a_{1}}\leqslant 1$$

where
$$R_c \varphi(x) = \inf_{p \in \mathcal{P}_{\gamma}(\mathcal{X})} \left\{ \int \varphi \, dp + c(x, p) \right\}, \quad x \in \mathcal{X}.$$

Let $A \subset \mathcal{X}$. Applying this inequality to the function

$$\begin{split} \varphi(x) &= i_A(x) := \begin{cases} 0 \text{ if } x \in A, \\ +\infty \text{ otherwise,} \end{cases} \\ \text{since } \int e^{-\frac{i_A}{a_1}} d\mu &= \mu(A), \end{cases} \\ \text{and } R_c i_A(x) &= \inf_{p \in \mathcal{P}(\mathcal{X})} \left\{ \int i_A dp + c(x,p) \right\} \\ &= \inf_{p, p(A) = 1} c(x,p) := c(x,A), \end{cases} \\ \text{we get the following type of Talagrand's concentration result} \end{split}$$

$$\left(\int e^{\frac{c(x,A)}{a_2}}d\mu(x)\right)^{a_2}\mu(A)^{a_1}\leqslant 1.$$

By Markov inequality,

$$\mu(\mathcal{X}\backslash A_t) = \mu\big(\{x \in \mathcal{X}, \mathbf{C}(x, \mathbf{A}) > t\}\big) \leqslant e^{-t/a_2} \int e^{\frac{\mathbf{C}(x, \mathbf{A})}{a_2}} d\mu(x).$$

It follows that $\mu(\mathcal{X}\setminus A_t)^{a_2}\mu(A)^{a_1} \leqslant e^{-t}, \quad \forall t > 0.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Examples of weak transport inequality in product spaces Universal transport inequalities

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality

Let
$$s \in (0, 1)$$
. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\tilde{T}_c(1/(1-s), 1/s)$, where

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality

Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality

Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_c(1/(1-s), 1/s)$, where $c(x, p) = \alpha_s \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{\mathsf{T}}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{\mathsf{T}}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{T}_c(1/(1 - s), 1/s)$, where

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\hat{T}_c(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_s \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_{s} \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\hat{T}_c(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_s \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\hat{T}_c(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_s \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum_{i=1}^{n} c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{T}_c(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_s \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

• Any product probability measure μ^n satisfies $\tilde{T}_{c^n}(1/(1-s), 1/s)$ and $\hat{T}_{c^n}(1/(1-s), 1/s)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{T}_c(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_s \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

- Any product probability $\dot{\text{me}}$ has a satisfies $\tilde{T}_{c^n}(1/(1-s), 1/s)$ and $\hat{T}_{c^n}(1/(1-s), 1/s)$.
- Any product probability measure μ^n a Dim-Free Concentration property

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{\mathbf{T}}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_{s} \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

- Any product probability $\overline{\text{Tre}}^n$ satisfies $\tilde{\text{T}}_{c^n}(1/(1-s), 1/s)$ and $\hat{\text{T}}_{c^n}(1/(1-s), 1/s)$.
- Any product probability measure μⁿ a Dim-Free Concentration property
 → Improves some Talagrand's results (1996) for product measures
 (convex hull method).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{T}_c(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_s \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

- Any product probability $\dot{\text{me}}$ has a satisfies $\tilde{T}_{c^n}(1/(1-s), 1/s)$ and $\hat{T}_{c^n}(1/(1-s), 1/s)$.
- Any product probability measure μⁿ a Dim-Free Concentration property
 → Improves some Talagrand's results (1996) for product measures
 (convex hull method).

- Gives Bernstein deviation's bounds for suprema of empirical processes (S. 07)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{\mathbf{T}}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_{s} \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

- Any product probability $\dot{\text{me}}$ has a satisfies $\tilde{T}_{c^n}(1/(1-s), 1/s)$ and $\hat{T}_{c^n}(1/(1-s), 1/s)$.
- Any product probability measure μⁿ a Dim-Free Concentration property
 → Improves some Talagrand's results (1996) for product measures
 (convex hull method).

- Gives Bernstein deviation's bounds for suprema of empirical processes (S. 07) \rightarrow an alternative method to the Ledoux entropy method (Herbst argument).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{\mathbf{T}}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_{s} \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

- Any product probability $\overline{\text{tre}}$ has μ^n satisfies $\widetilde{T}_{c^n}(1/(1-s), 1/s)$ and $\widehat{T}_{c^n}(1/(1-s), 1/s)$.
- Any product probability measure μⁿ a Dim-Free Concentration property
 → Improves some Talagrand's results (1996) for product measures
 (convex hull method).

- Gives Bernstein deviation's bounds for suprema of empirical processes (S. 07) \rightarrow an alternative method to the Ledoux entropy method (Herbst argument).

 Extented to non-product measures, with mixing conditions (S. 2000, Marton 2003), Dobrushing contitions (Paulin 2014).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Universal transport inequalities

Theorem [Dembo 1996] : A universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widetilde{T}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \alpha_{s} \left(\int \mathbb{1}_{x \neq y} dp(y) \right), \qquad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}),$

and $\alpha_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function ($\alpha_s(h) \ge h^2/2$).

Theorem [S. 2007] : Another universal weak transport entropy inequality Let $s \in (0, 1)$. Any measure $\mu \in \mathcal{P}(\mathcal{X})$ satisfies $\widehat{\mathbf{T}}_{c}(1/(1-s), 1/s)$, where $c(x, p) = \int \beta_{s} \left(\int \mathbb{1}_{x \neq y} \frac{dp}{d\mu}(y) \right) d\mu(y), \quad x \in \mathcal{X}, p << \mu,$

and $\beta_s : \mathbb{R}^+ \to \mathbb{R}^+ \cup \{+\infty\}$ is an (optimal) convex function.

As for Marton's transport inequality, weak transport inequalities tensorize with

 $c^{n}(x,p) = \sum c(x_{i},p_{i}), \quad x = (x_{1},\ldots,x_{n}).$

- Any product probability $\overline{\text{tre}}$ has μ^n satisfies $\widetilde{T}_{c^n}(1/(1-s), 1/s)$ and $\widehat{T}_{c^n}(1/(1-s), 1/s)$.
- Any product probability measure μⁿ a Dim-Free Concentration property
 → Improves some Talagrand's results (1996) for product measures
 (convex hull method).

- Gives Bernstein deviation's bounds for suprema of empirical processes (S. 07) \rightarrow an alternative method to the Ledoux entropy method (Herbst argument).

 Extented to non-product measures, with mixing conditions (S. 2000, Marton 2003), Dobrushing contitions (Paulin 2014).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Examples of weak transport-entropy inequalities in discrete spaces

Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Examples of weak transport-entropy inequalities in discrete spaces

Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{\mathbf{T}}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$\mathcal{C}_{\mathcal{S}}(x,p) = \theta_{\mathcal{S}}\left(x - \int y dp(y)\right), \qquad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities

Examples in discrete

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \qquad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_{s}(h) \sim_{0^{+}} \frac{h^{2}}{2(1-q)}$, and $\theta_{s}(h) \sim_{0^{-}} \frac{h^{2}}{2q}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities

Examples in discrete

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$\mathcal{C}_{\mathcal{S},n}(x,p) = n \theta_{\mathcal{S}}\left(\frac{1}{n}\left(x - \int y dp(y)\right)\right), \qquad x \in \{0, 1, \dots, n\}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$c_{s,n}(x,p) = n\theta_s\left(\frac{1}{n}\left(x - \int y dp(y)\right)\right), \qquad x \in \{0,1,\ldots,n\}.$$

 θ_s is the same cost function as for the Bernoulli measure.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Examples of weak transport-entropy inequalities in discrete spaces Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \quad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_s(h) \sim_{0^+} \frac{h^2}{2(1-q)}$, and $\theta_s(h) \sim_{0^-} \frac{h^2}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$c_{\mathbf{s},\mathbf{n}}(x,p) = \mathbf{n}\,\theta_{\mathbf{s}}\left(\frac{1}{\mathbf{n}}\left(x - \int y dp(y)\right)\right), \qquad x \in \{0,1,\ldots,n\}.$$

 θ_s is the same cost function as for the Bernoulli measure.

Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Examples of weak transport-entropy inequalities in discrete spaces Barycentric transport inequalities

Proposition [S. 2003] : Weak transport inequalities for the Bernoulli measure

The Bernoulli measure μ_q on $\mathcal{X} = \{0, 1\}$ with parameter $q = \mu_q(1)$ satisfies $\overline{T}_{c_s}(1/(1-s), 1/s), s \in (0, 1)$ where

$$C_{s}(x,p) = \theta_{s}\left(x - \int y dp(y)\right), \qquad x \in \{0,1\}, p \in \mathcal{P}(\{0,1\})$$

with $\theta_{s}(h) \sim_{0^{+}} \frac{h^{2}}{2(1-q)}$, and $\theta_{s}(h) \sim_{0^{-}} \frac{h^{2}}{2q}$.

As a consequence, the product measure μ_q^n on $\{0, 1\}^n$ satisfies $\overline{\mathbf{T}}_{c_s^n}(1/(1-s), 1/s)$, and by projection arguments $((x_1, \ldots, x_n) \mapsto \sum_{i=1}^n x_i)$,

Proposition [GRST 2015] : Weak transport inequalities for the binomial law The Binomial law $\mu_{q,n}$ on $\{0, 1, ..., n\}$ satisfies $\overline{T}_{c_{s,n}}(1/(1-s), 1/s)$ with

$$C_{s,n}(x,p) = n \theta_s \left(\frac{1}{n} \left(x - \int y dp(y) \right) \right), \qquad x \in \{0, 1, \dots, n\}.$$

 θ_s is the same cost function as for the Bernoulli measure.

Proposition [GRST 2015] : Weak transport inequalities for the Poisson measure

Choose $q = \lambda/n$, $\lambda > 0$, and use the weak convergence as $n \to +\infty$ of the binomial law $\mu_{\lambda/n,n}$ to the Poisson measure $p_{\lambda}(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, $k \in \mathbb{N}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

 $\theta(t) = t^2$, $\forall t \leq t_o$, for some $t_o > 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities

Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

 $\text{For } a > 0, \text{ let } \quad \theta_a(t) = \theta(at) \quad , \, t \in \mathbb{R}.$

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{\mathbf{a}}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{\mathbf{a}} \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_a}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_a \left(\int x - \int y \, dp_x(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{\textit{a}}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{\textit{a}}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

ii) There exists b > 0 such that for all u > 0, $\sup_{u} (U_{\mu}(x+u) - U_{\mu}(x)) \leq \frac{1}{b} \theta^{-1} (u+t_o^2),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

ii) There exists b > 0 such that for all u > 0, $\sup_{x} (U_{\mu}(x+u) - U_{\mu}(x)) \leqslant \frac{1}{b} \theta^{-1}(u+t_{o}^{2}),$ where $U_{\mu}(x) := \begin{cases} F_{\mu}^{-1} \left(1 - \frac{1}{2}e^{-|x|}\right), & \text{if } x \ge 0, \\ F_{\mu}^{-1} \left(e^{-|x|}\right), & \text{if } x \leqslant 0. \end{cases}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities

Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

ii) There exists b > 0 such that for all u > 0, $\sup_{x} (U_{\mu}(x+u) - U_{\mu}(x)) \leqslant \frac{1}{b} \theta^{-1}(u+t_{o}^{2}),$ where $U_{\mu}(x) := \begin{cases} F_{\mu}^{-1} \left(1 - \frac{1}{2}e^{-|x|}\right), & \text{if } x \ge 0, \\ F_{\mu}^{-1} \left(e^{-|x|}\right), & \text{if } x \leqslant 0. \end{cases}$

Used by Strzelecka-Strzelecki-Tkocz (2017) to show that any symmetric probability measure with log-concave tails satisfies a barycentric transport inequality with optimal cost, up to a universal constant.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on ${\ensuremath{\mathbb R}}$

Transport inequality on the symmetric group

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let $\theta : \mathbb{R} \to \mathbb{R}^+$ be a symmetric convex cost function satisfying

$$\theta(t) = t^2$$
, $\forall t \leq t_o$, for some $t_o > 0$.

For a > 0, let $\theta_a(t) = \theta(at)$, $t \in \mathbb{R}$.

For any $\mu, \nu \in \mathcal{P}(\mathbb{R})$, we consider the barycentric transport cost

$$\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) = \inf_{\pi \in \Pi(\mu,\nu)} \int \theta_{a} \left(\int x - \int y \, dp_{x}(y) \right) d\mu(x).$$

Theorem : [Gozlan-Roberto-S.-Shu-Tetali 2017]

Let $\mu \in \mathcal{P}(\mathbb{R})$. The following propositions are equivalent :

i) There exists a > 0 such that for all $\nu \in \mathcal{P}(\mathbb{R})$,

 $\overline{\mathcal{T}}_{\theta_{a}}(\nu|\mu) \leqslant \textit{H}(\nu|\mu), \quad \text{and} \quad \overline{\mathcal{T}}_{\theta_{a}}(\mu|\nu) \leqslant \textit{H}(\nu|\mu).$

ii) There exists b > 0 such that for all u > 0, $\sup_{x} (U_{\mu}(x+u) - U_{\mu}(x)) \leqslant \frac{1}{b} \theta^{-1}(u+t_{o}^{2}),$ where $U_{\mu}(x) := \begin{cases} F_{\mu}^{-1} \left(1 - \frac{1}{2}e^{-|x|}\right), & \text{if } x \ge 0, \\ F_{\mu}^{-1} \left(e^{-|x|}\right), & \text{if } x \leqslant 0. \end{cases}$

Used by Strzelecka-Strzelecki-Tkocz (2017) to show that any symmetric probability measure with log-concave tails satisfies a barycentric transport inequality with optimal cost, up to a universal constant.

 \rightarrow comparison results for weak and strong moments for random vectors of independent coordinates with log-concave tails.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities

Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{\mathcal{H}}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)}, \qquad \sigma, \tau \in S_{n}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{\mathcal{H}}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)}, \qquad \sigma, \tau \in S_{n}$$

 μ_o : the uniform distribution on S_n ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(A_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(\mathbf{A}_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0,$$

where $A_t := \{ \sigma \in S_n, d_H(\sigma, A) \leq t \}, \quad d_H(\sigma, A) = \inf_{\tau \in A} d_H(\sigma, \tau).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(A_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0,$$

where $A_t := \{ \sigma \in S_n, d_H(\sigma, A) \leq t \}, \quad d_H(\sigma, A) = \inf_{\tau \in A} d_H(\sigma, \tau).$

Proof based on Hoeffding's inequality - martingale method.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities Examples in discrete

 S_n : the group of permutations from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$. d_H : the Hamming distance on S_n

$$d_{H}(\sigma,\tau) := \sum_{i=1}^{n} \mathbb{1}_{\sigma(i)\neq\tau(i)}, \qquad \sigma,\tau \in S_{n}$$

 μ_o : the uniform distribution on S_n , $\mu_o(\sigma) = \frac{1}{n!}$.

Theorem : [Maurey 1979]

For any subset $A \subset S_n$ such that $\mu_o(A) \ge 1/2$,

$$\mu_o(A_t) \ge 1 - 2e^{-\frac{t^2}{64n}}, \qquad \forall t \ge 0,$$

where $A_t := \{ \sigma \in S_n, d_H(\sigma, A) \leq t \}, \quad d_H(\sigma, A) = \inf_{\tau \in A} d_H(\sigma, \tau).$

Proof based on Hoeffding's inequality - martingale method.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Convex-hull method on S_n :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{H}(\sigma, \mathbf{A}) := \inf_{\tau \in \mathbf{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{\rho \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\rho(\tau).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{\rho \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\rho(\tau).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad \boldsymbol{c}(\sigma, \boldsymbol{A}) := \inf_{\boldsymbol{p} \in \mathcal{P}(\boldsymbol{A})} \boldsymbol{c}(\sigma, \boldsymbol{p}) = \inf_{\boldsymbol{p} \in \mathcal{P}(\boldsymbol{A})} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\boldsymbol{p}(\tau) \right)^2$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities

Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{\mathcal{P} \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} d\mathcal{P}(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_{H}^{2}(\sigma, A)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_{H}^{2}(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{S_n} e^{\mathcal{C}(\sigma, A)/16} d\mu_o(\sigma) \leqslant \frac{1}{\mu_o(A)}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_{H}^{2}(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{c(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leqslant \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{c(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leqslant \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(\mathbf{A}_{c,r}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Improved concentration result by Talagrand for μ_o

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{c(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leq \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(\mathbf{A}_{\mathbf{c},\mathbf{r}}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

where $A_{c,r} = \{ \sigma \in S_n, c(\sigma, A) \leq r \}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Improved concentration result by Talagrand for μ_o

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\underset{\text{convex-hull}}{\longrightarrow} \quad c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{\mathcal{S}_n} e^{c(\sigma, \mathcal{A})/16} d\mu_o(\sigma) \leq \frac{1}{\mu_o(\mathcal{A})}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(A_{c,r}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

where $A_{c,r} = \{ \sigma \in S_n, c(\sigma, A) \leq r \}$.

 $A_{c,r} \subset A_{\sqrt{nr}},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Improved concentration result by Talagrand for μ_o

Convex-hull method on S_n : Let $A \subset S_n$ and $\sigma \in S_n$,

$$d_{\mathcal{H}}(\sigma, \mathcal{A}) := \inf_{\tau \in \mathcal{A}} \sum_{i=1}^{n} \mathbb{1}_{\sigma(i) \neq \tau(i)} = \inf_{p \in \mathcal{P}(\mathcal{A})} \sum_{i=1}^{n} \int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau).$$

$$\xrightarrow{} c(\sigma, A) := \inf_{p \in \mathcal{P}(A)} c(\sigma, p) = \inf_{p \in \mathcal{P}(A)} \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp(\tau) \right)^{2}.$$

By Cauchy-Schwarz inequality, $c(\sigma, A) \ge \frac{1}{n} d_H^2(\sigma, A)$.

Theorem. [Talagrand 1995]

For any subset $A \subset S_n$,

$$\int_{S_n} e^{c(\sigma,A)/16} d\mu_o(\sigma) \leq \frac{1}{\mu_o(A)}.$$

By Markov's inequality, if $\mu_o(A) \ge 1/2$, then

$$\mu_o(A_t) \ge \mu_o(A_{c,r}) \ge 1 - 2e^{-r/16}, \qquad u \ge 0,$$

where $A_{c,r} = \{ \sigma \in S_n, c(\sigma, A) \leq r \}$.

 $A_{c,r} \subset A_{\sqrt{nr}}$, setting $t = \sqrt{nr}$ we recover Maurey's concentration inequality.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

.....

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :
 - **1** We consider a larger class of measures \mathcal{M} , defined on subgroups G of S_n .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :
 - **1** We consider a larger class of measures \mathcal{M} , defined on subgroups G of S_n .
 - 2 We prove some "weak" transport-entropy inequalities for $\mu \in \mathcal{M}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

- 2002 C. McDiarmid extends Talagrand's results to uniform law on product of symmetric groups.
- 2003 M.J. Luczak and McDiarmid → uniform law on locally acting groups of permutations.
- 2017 S. Extensions of Luczak-McDiarmid-Talagrand's results :
 - **1** We consider a larger class of measures \mathcal{M} , defined on subgroups G of S_n .
 - 2 We prove some "weak" transport-entropy inequalities for $\mu \in \mathcal{M}$,

Transport-entropy inequalities for $\mu \implies$ Concentration properties for μ .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_n,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\boldsymbol{\theta}^{|\boldsymbol{\sigma}|}}{\boldsymbol{\theta}^{(n)}}, \boldsymbol{\sigma} \in \boldsymbol{S}_{n}$$

where

• $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_n$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_{n}$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_n,$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

 $(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

xampies in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_{n}$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

```
Transport inequality on the symmetric group
```

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\boldsymbol{\mu}^{\boldsymbol{\theta}}(\sigma) = \frac{\boldsymbol{\theta}^{|\sigma|}}{\boldsymbol{\theta}^{(n)}}, \sigma \in S_n$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$ and

$$\mathbb{P}(U_i=i)=\frac{\theta}{\theta+i-1}, \quad \mathbb{P}(U_i=1)=\cdots=\mathbb{P}(U_i=i-1)=\frac{1}{\theta+i-1}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

```
Transport inequality on the symmetric group
```

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_n$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$ and

$$\mathbb{P}(U_i=i)=\frac{\theta}{\theta+i-1}, \quad \mathbb{P}(U_i=1)=\cdots=\mathbb{P}(U_i=i-1)=\frac{1}{\theta+i-1}.$$

Particular case : $\theta = 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

```
Transport inequality on the symmetric group
```

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

 μ^{θ} : the Ewens distribution of parameter $\theta > 0$ on the symmetric group S_n ,

$$\mu^{\theta}(\sigma) = \frac{\theta^{|\sigma|}}{\theta^{(n)}}, \sigma \in S_{n}$$

where

- $|\sigma|$ is the number of cycles in the cycle decomposition of σ ,
- $\theta^{(n)}$ is the Pochhammer symbol defined by $\theta^{(n)} = \frac{\Gamma(\theta + n)}{\Gamma(\theta)}$,

$$\Gamma(\theta) = \int_0^{+\infty} s^{\theta-1} e^{-s} ds$$

Result : The Chinese restaurant process. μ^{θ} is the law of the product of transpositions

$$(n, U_n)(n-1, U_{n-1})\cdots(2, U_2),$$

where the U_i 's are independent random variables with values in $\{1, \ldots, i\}$ and

$$\mathbb{P}(U_i=i)=\frac{\theta}{\theta+i-1}, \quad \mathbb{P}(U_i=1)=\cdots=\mathbb{P}(U_i=i-1)=\frac{1}{\theta+i-1}.$$

Particular case : $\theta = 1$, μ^{θ} is the uniform distribution on S_n , $\mu^{\theta} = \mu_o$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

```
Transport inequality on the symmetric group
```

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Let us define the weak-transport cost :

 $\widehat{T}_2(\nu_2|\nu_1)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n} \frac{W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),}{\text{where } W_1 \text{ is the Wasserstein distance on } \mathcal{P}(S_n) \text{ associated to } \frac{d_H}{d_H}.$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2)$, where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leq \widehat{T}_2(\nu_2|\nu_1) \leq W_1(\nu_1,\nu_2)$, where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \widehat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2)$, where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{\mathcal{S}_n} e^{s\hat{\mathbf{Q}}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{\mathcal{S}_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{\mathbf{Q}}\varphi(\sigma) = \inf_{\boldsymbol{p}\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) d\boldsymbol{p}(\tau) + \hat{\boldsymbol{c}}(\sigma, \boldsymbol{p}) \right\}, \quad \sigma \in S_n,$$

P-M Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strasson's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leqslant \hat{T}_2(\nu_2|\nu_1) \leqslant W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leqslant 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples

characterisation on $\ensuremath{\mathbb{R}}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leq \widehat{T}_2(\nu_2|\nu_1) \leq W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{\mathcal{S}_n} e^{s\hat{Q}_{\varphi}} d\mu^{\theta}\right)^{1/s} \left(\int_{\mathcal{S}_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1}) \text{ and } \mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on P

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leq \widehat{T}_2(\nu_2|\nu_1) \leq W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{\mathcal{S}_n} e^{s\hat{Q}_{\varphi}} d\mu^{\theta}\right)^{1/s} \left(\int_{\mathcal{S}_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1}) \text{ and } \mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on P

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leq \widehat{T}_2(\nu_2|\nu_1) \leq W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{\mathcal{S}_n} e^{s\hat{Q}_{\varphi}} d\mu^{\theta}\right)^{1/s} \left(\int_{\mathcal{S}_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1}) \text{ and } \mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on P

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leq \widehat{T}_2(\nu_2|\nu_1) \leq W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{S_n} e^{s\widehat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1}) \text{ and } \mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on P

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

Let us define the weak-transport cost :

$$\widehat{T}_{2}(\nu_{2}|\nu_{1}) := \inf_{\substack{\pi \in \Pi(\nu_{1},\nu_{2}) \\ \pi = \nu_{1} \oslash p}} \int \sum_{i=1}^{n} \left(\int \mathbb{1}_{\sigma(i) \neq \tau(i)} dp_{\sigma}(\tau) \right)^{2} d\nu_{1}(\sigma).$$

By Cauchy-Schwarz inequality $\frac{1}{n}W_1^2(\nu_1,\nu_2) \leq \widehat{T}_2(\nu_2|\nu_1) \leq W_1(\nu_1,\nu_2),$ where W_1 is the Wasserstein distance on $\mathcal{P}(S_n)$ associated to d_H .

Theorem : [S. 2017]

For all $s \in (0, 1)$,

$$\frac{1}{20}\widehat{T}_2(\nu_2|\nu_1) \leqslant \frac{1}{s}H(\nu_1|\mu^{\theta}) + \frac{1}{1-s}H(\nu_2|\mu^{\theta}), \ \forall \nu_1, \nu_2 \in \mathcal{P}(S_n),$$

or equivalently, for all function $\varphi : S_n \to \mathbb{R}$, one has

$$\left(\int_{\mathcal{S}_n} e^{s\hat{Q}_{\varphi}} d\mu^{\theta}\right)^{1/s} \left(\int_{\mathcal{S}_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

where
$$\hat{Q}\varphi(\sigma) = \inf_{p\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) dp(\tau) + \hat{c}(\sigma, p) \right\}, \quad \sigma \in S_n,$$

with $\hat{c}(\sigma, p) = \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} dp(\tau) \right)^2.$

Key properties for the proof : The Chinese restaurant process,

 $\mu^{\theta}(\sigma) = \mu^{\theta}(\sigma^{-1}) \text{ and } \mu^{\theta}(\sigma) = \mu^{\theta}(t^{-1}\sigma t) \quad \forall t \in S_n.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on P

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete Weak transport costs.25

Application to concentration on S_n

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

iuncional mequalities

Examples in discrete

Application to concentration on S_n

$$\left(\int_{S_n} e^{s\tilde{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s \hat{Q} \varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \neq \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that

$$\begin{split} \widetilde{\mathbf{Q}}\varphi(\sigma) &= \inf_{\boldsymbol{p}\in\mathcal{P}(S_n)} \left\{ \int \varphi(\tau) d\boldsymbol{p}(\tau) + \frac{1}{20} \sum_{i=1}^n \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} d\boldsymbol{p}(\tau) \right)^2 \right\} \\ &\geqslant \varphi(\sigma) - \sup_{\boldsymbol{p}} \sum_{i=1}^n \left[\alpha_i(\sigma) \int \mathbf{1}_{\sigma(i)\neq\tau(i)} d\boldsymbol{p}(\tau) - \frac{1}{20} \left(\int \mathbf{1}_{\sigma(i)\neq\tau(i)} d\boldsymbol{p}(\tau) \right)^2 \right] \\ &\geqslant \varphi(\sigma) - \sum_{i=1}^n \sup_{l\geq 0} \left\{ \alpha_i(\sigma) l - \frac{l^2}{20} \right\} \\ &= \varphi(\sigma) - 5 \sum_{i=1}^n \alpha_i^2(\sigma) \\ &= \varphi(\sigma) - 5 |\boldsymbol{\alpha}(\sigma)|_2^2, \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on ${\mathbb R}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that

 $\widetilde{\boldsymbol{Q}}\varphi(\sigma) \geq \varphi(\sigma) - 5|\alpha(\sigma)|_2^2,$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

minimization problem

definition curvature in discrete spaces

functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\widehat{\mathbf{Q}}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that $\widetilde{\mathbf{Q}}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$, Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities
The Schrödinger

minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that $\widetilde{\mathbf{Q}}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$, Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.

As $s \rightarrow 0$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that
$$\widetilde{\mathbf{Q}}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$

Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.

As
$$s \to 0$$
, $e^{\mu(\widetilde{Q}\varphi)} \int e^{-\varphi} d\mu \leqslant 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that
$$\widetilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\widetilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Examples in discrete

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \ne \tau(i)} \quad \forall \sigma, \tau \in S_n.$$

It follows that
$$\widetilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\widetilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.

As $s \rightarrow 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\hat{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \neq \tau(i)} \qquad \forall \sigma, \tau \in S_n.$$

It follows that
$$\widetilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\widetilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.
As $s \to 1$, $\int e^{\widetilde{Q}\varphi} d\mu \ e^{-\mu(\varphi)} \le 1$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

$$\left(\int_{S_n} e^{s\bar{Q}\varphi} d\mu^{\theta}\right)^{1/s} \left(\int_{S_n} e^{-(1-s)\varphi} d\mu^{\theta}\right)^{1/(1-s)} \leq 1,$$

Assume φ is a configuration function : there exist functions $\alpha_i : S_n \to \mathbb{R}^+$ such that

$$\varphi(\tau) \ge \varphi(\sigma) - \sum_{i=1}^{n} \alpha_i(\sigma) \mathbb{1}_{\sigma(i) \neq \tau(i)} \qquad \forall \sigma, \tau \in S_n.$$

It follows that
$$\tilde{Q}\varphi(\sigma) \ge \varphi(\sigma) - 5|\alpha(\sigma)|_2^2$$
,
Let $\mu = \mu^{\theta}$ and $\mu(\varphi) = \int \varphi \, d\mu$.
As $s \to 0$, $e^{\mu(\tilde{Q}\varphi)} \int e^{-\varphi} d\mu \le 1$, $\int e^{-\varphi} d\mu \le e^{-\mu(\varphi) + 5\mu(|\alpha|_2^2)}$.
As $s \to 1$, $\int e^{\tilde{Q}\varphi} d\mu \ e^{-\mu(\varphi)} \le 1$, $\int e^{\varphi - 5|\alpha|_2^2} d\mu \le e^{\mu(\varphi)}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Examples of configuration functions on S_n .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

• $\varphi(\sigma) = |\sigma|_k$: number of cycles of lengh k in the cycle decomposition of σ .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

• $\varphi(\sigma) = |\sigma|_k$: number of cycles of lengh *k* in the cycle decomposition of σ . $|\sigma|_1$: the number of fixed points by σ .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

φ(σ) = |σ|_k: number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁: the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

φ(σ) = |σ|_k: number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁: the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
 $\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger

minimization problem

curvature in discrete spaces

functional inequalities

Examples in discrete

φ(σ) = |σ|_k : number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁ : the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
 $\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$,

and

L

$$\mu^{\theta}(|\sigma|_k \geqslant \mathbf{m}_k + t) \leqslant \exp\left(-\frac{t^2}{20k(\mathbf{m}_k + t)}\right).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger

minimization problem

definition

curvature in discrete spaces functional inequalities

Examples in discrete

Examples of configuration functions on S_n .

φ(σ) = |σ|_k : number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁ : the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
 $\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$

and

$$\mu^{\theta}(|\sigma|_k \ge m_k + t) \le \exp\left(-\frac{t^2}{20k(m_k + t)}\right).$$

•
$$\varphi(\sigma) = \sup_{t \in \mathcal{F}} \sum_{k=1}^{n} a_{k,\sigma(k)}^{t}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

φ(σ) = |σ|_k : number of cycles of lengh k in the cycle decomposition of σ.
 |σ|₁ : the number of fixed points by σ.

Let
$$m_k = \int |\sigma|_k d\mu(\sigma)$$
. We get for all $t \ge 0$,
 $\mu^{\theta}(|\sigma|_k \le m_k - t) \le \exp\left(-\frac{t^2}{20km_k}\right)$

and

$$\mu^{\theta}(|\sigma|_k \ge m_k + t) \le \exp\left(-\frac{t^2}{20k(m_k + t)}\right).$$

•
$$\varphi(\sigma) = \sup_{t \in \mathcal{F}} \sum_{k=1}^{n} a_{k,\sigma(k)}^{t}$$
, with $0 \le a_{k,\sigma(k)}^{t} \le M$, then for all $t \ge 0$,

$$\mu^{\theta}(\varphi \leqslant \mu^{\theta}(\varphi) - t) \leqslant \exp\left(-\frac{t^2}{20\mu^{\theta}(\psi)}
ight),$$

and

$$\mu^{\theta}(\varphi \ge \mu^{\theta}(\varphi) + t) \le \exp\left(-\frac{t^2}{20(\mu^{\theta}(\psi) + Mt)}\right),$$

where
$$\psi(\sigma) = \sup_{t \in \mathcal{F}} \sum_{k=1}^{n} (a_{k,\sigma(k)}^{t})^{2} \leq M\varphi(\sigma).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

The Schrödinger minimization problem

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 \mathcal{X} : the state space of an homogenous Markov process,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 ${\mathcal X}$: the state space of an homogenous Markov process, ${\mathcal X}$ is discrete.

L : the infinitesimal generator.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

- L: the infinitesimal generator.
- $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x).$$

 $P_t = e^{tL}$: the Markov semi-group,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x).$$

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x)$$

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$,

 $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited , right-continuous, piecewise constant paths

 $\omega = (\omega_t)_{t \in [0,1]} \quad \in \mathcal{X}^{[0,1]}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x)$$

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$,

 $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited , right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

$$m(x)L(x,y) = m(y)L(y,x)$$

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

 $\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}.$

 X_t : the projection map, $X_t : \omega \mapsto \omega_t$ For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t # Q$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{0}^{\gamma} = m$ and generator L^{γ} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \chi^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

 $\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}.$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{0}^{\gamma} = m$ and generator L^{γ} .

Since *m* is an invariante measure for the Markov semi-group,

 $\boldsymbol{R}_t^{\boldsymbol{\gamma}} = \boldsymbol{m}, \qquad \forall t \in [0, 1].$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \chi^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

 $\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}.$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{0}^{\gamma} = m$ and generator L^{γ} .

Since *m* is an invariante measure for the Markov semi-group,

 $\boldsymbol{R}_t^{\boldsymbol{\gamma}} = \boldsymbol{m}, \qquad \forall t \in [0, 1].$

 $R_{0,1}^{\gamma} := (X_0, X_1) \# R^{\gamma},$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

The Schrödinger minimization problem Notations :

 $\mathcal X$: the state space of an homogenous Markov process, $\mathcal X$ is discrete.

L : the infinitesimal generator. $L^{\gamma} = \gamma L, \ \gamma > 0$ is the temperature.

m : a reversible mesure on \mathcal{X} , m(x) > 0, $\forall x \in \mathcal{X}$, for all $x, y \in \mathcal{X}$,

m(x)L(x,y) = m(y)L(y,x).

 $P_t = e^{tL}$: the Markov semi-group, $P_t^{\gamma} = e^{tL^{\gamma}} = P_{\gamma t}$, $\Omega \subset \mathcal{X}^{[0,1]}$: the set of left-limited, right-continuous, piecewise constant paths

$$\omega = (\omega_t)_{t \in [0,1]} \in \mathcal{X}^{[0,1]}$$

 X_t : the projection map, $X_t: \omega \mapsto \omega_t$

For any $Q \in \mathcal{M}(\Omega)$, $Q_t = X_t \# Q$

 R^{γ} : As reference measure on Ω , let R^{γ} be the Markov path measure with initial measure $R_{0}^{\gamma} = m$ and generator L^{γ} .

Since *m* is an invariante measure for the Markov semi-group,

 $\boldsymbol{R}_t^{\boldsymbol{\gamma}} = \boldsymbol{m}, \qquad \forall t \in [0, 1].$

$$\begin{split} R_{0,1}^{\gamma} &:= (X_0, X_1) \# R^{\gamma}, \text{ for all } x, y \in \mathcal{X}, \\ R_{0,1}^{\gamma}(x, y) &= m(x) P_{\gamma}(x, y), \qquad R_{0,1}^{\gamma} = m \oslash P_{\gamma}. \end{split}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to m.

• The dynamic Schrödinger problem associated to R^{γ} is

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

 The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^{γ} is to minimize $H(\pi | R_{0,1}^{\gamma})$ over all $\pi \in \Pi(\mu_0, \mu_1)$.

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\hat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to R^{γ} ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to R^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0 = x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1 = y) = h_1(y). \end{cases}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to R^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0 = x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1 = y) = h_1(y). \end{cases} \begin{cases} f(x) \mathcal{P}_{\gamma}g(x) = h_0(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_1(y). \end{cases}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to \mathbb{R}^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_{1})|X_{0} = x) = h_{0}(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_{0})|X_{1} = y) = h_{1}(y). \end{cases} \begin{cases} f(x) \mathcal{P}_{\gamma}g(x) = h_{0}(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_{1}(y). \end{cases}$

The static problem is reached for

$$\widehat{Q}_{0,1}^{\gamma} = (X_0, X_1) \# \widehat{Q}^{\gamma}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to \mathbb{R}^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_1)|X_0=x) = h_0(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_0)|X_1=y) = h_1(y). \end{cases} \begin{cases} f(x) \mathcal{P}_{\gamma}g(x) = h_0(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_1(y). \end{cases}$

The static problem is reached for

 $\widehat{Q}_{0,1}^{\gamma} = (X_0, X_1) \# \widehat{Q}^{\gamma}.$

For all $x, y \in \mathcal{X}$,

 $\widehat{Q}_{0,1}^{\gamma}(x,y) = f(x)g(y)R_{0,1}^{\gamma}(x,y)$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Let $\mu_0, \mu_1 \in \mathcal{P}(X)$ (with finite support) with density h_0 and h_1 with respect to *m*.

- The dynamic Schrödinger problem associated to R^γ is to minimize H(Q|R^γ) over all Q ∈ P(Ω) such that Q₀ = μ₀, Q₁ = μ₁.
- The static Schrödinger problem associated to R^γ is to minimize H(π|R^γ_{0,1}) over all π ∈ Π(μ₀, μ₁).

Theorem : [see C. Léonard 2013]

1 The dynamic and static Schrödinger problems have same minimum value,

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = \inf_{\pi \in \Pi(\mu_{0},\mu_{1})} H(\pi | R_{0,1}^{\gamma}).$

2 The dynamic problem is reached for the so called Schrödinger bridge $\widehat{Q}^{\gamma} \in \mathbb{P}(\Omega)$, with density $f(X_0)g(X_1)$ with respect to \mathbb{R}^{γ} , where $f, g: \mathcal{X} \to \mathbb{R}$ satisfy the so called Schrödinger system

 $\begin{cases} f(x) \mathbb{E}_{R^{\gamma}}(g(X_{1})|X_{0} = x) = h_{0}(x), \\ g(y) \mathbb{E}_{R^{\gamma}}(f(X_{0})|X_{1} = y) = h_{1}(y). \end{cases} \begin{cases} f(x) \mathcal{P}_{\gamma}g(x) = h_{0}(x), \\ g(y) \mathcal{P}_{\gamma}f(y) = h_{1}(y). \end{cases}$

The static problem is reached for

 $\widehat{Q}_{0,1}^{\gamma} = (X_0, X_1) \# \widehat{Q}^{\gamma}.$

For all $x, y \in \mathcal{X}$,

$$\widehat{Q}_{0,1}^{\gamma}(x,y) = f(x)g(y)R_{0,1}^{\gamma}(x,y) = f(x)g(y)m(x)P_{\gamma}(x,y).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

 $H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash \rho|m \oslash P^{\gamma})$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1), \quad \pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

 $T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $\boldsymbol{c}(\boldsymbol{x},\boldsymbol{p}) = \boldsymbol{H}(\boldsymbol{p}|\boldsymbol{P}_{\boldsymbol{x}}^{\gamma}), \quad \boldsymbol{x} \in \mathcal{X}, \boldsymbol{p} \in \mathcal{P}(\mathcal{X}).$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|\boldsymbol{R}_{0,1}^{\gamma}) = H(\mu_0 \oslash \boldsymbol{p} | \boldsymbol{m} \oslash \boldsymbol{P}^{\gamma}) = H(\mu_0 | \boldsymbol{m}) + \int H(\boldsymbol{p}_x | \boldsymbol{P}_x^{\gamma}) \, d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_1|\mu_0) := \inf_{\substack{\pi \in \Pi(\mu_0, \mu_1) \\ \pi = \mu_0 \oslash p}} \int H(p_x|P_x^{\gamma}) d\mu_0(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_{1}|\mu_{0}) := \inf_{\substack{\pi \in \Pi(\mu_{0}, \mu_{1}) \\ \pi = \mu_{0} \oslash p}} \int H(p_{x}|P_{x}^{\gamma}) d\mu_{0}(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$T_{\mathcal{S}}(\mu_1|\mu_0) = \sup_{\psi} \left\{ \int R_c \psi \, d\mu_0 - \int \psi \, d\mu_1 \right\},\,$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|\boldsymbol{R}_{0,1}^{\gamma}) = H(\mu_0 \oslash \boldsymbol{p} | \boldsymbol{m} \oslash \boldsymbol{P}^{\gamma}) = H(\mu_0 | \boldsymbol{m}) + \int H(\boldsymbol{p}_x | \boldsymbol{P}_x^{\gamma}) \, d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_{1}|\mu_{0}) := \inf_{\substack{\pi \in \Pi(\mu_{0}, \mu_{1}) \\ \pi = \mu_{0} \oslash p}} \int H(p_{x}|P_{x}^{\gamma}) d\mu_{0}(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$T_{S}(\mu_{1}|\mu_{0}) = \sup_{\psi} \left\{ \int R_{c}\psi \, d\mu_{0} - \int \psi \, d\mu_{1} \right\},$$

with $R_{c}\psi(x) = \inf_{\rho \in \mathcal{P}(X)} \left\{ \int \psi \, d\rho + H(\rho|P_{x}^{\gamma}) \right\}$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_{1}|\mu_{0}) := \inf_{\substack{\pi \in \Pi(\mu_{0}, \mu_{1}) \\ \pi = \mu_{0} \oslash p}} \int H(p_{x}|P_{x}^{\gamma}) d\mu_{0}(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$T_{\mathcal{S}}(\mu_1|\mu_0) = \sup_{\psi} \left\{ \int R_c \psi \, d\mu_0 - \int \psi \, d\mu_1 \right\},\,$$

with
$$R_c\psi(x) = \inf_{p\in\mathcal{P}(X)} \left\{ \int \psi dp + H(p|P_x^{\gamma}) \right\} = -\log P^{\gamma}(e^{-\psi})(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

From the decomposition $R_{0,1}^{\gamma} = m \oslash P^{\gamma}$, one has for all $\pi \in \Pi(\mu_0, \mu_1)$, $\pi = \mu_0 \oslash p$,

$$H(\pi|R_{0,1}^{\gamma}) = H(\mu_0 \oslash p|m \oslash P^{\gamma}) = H(\mu_0|m) + \int H(p_x|P_x^{\gamma}) d\mu_0(x),$$

and therefore, taking the infimum over all $\pi \in \Pi(\mu, \nu)$

$$T_{S}^{\gamma}(\mu_{0},\mu_{1}) = H(\mu_{0}|m) + T_{S}(\mu_{1}|\mu_{0}),$$

with

$$T_{\mathcal{S}}(\mu_{1}|\mu_{0}) := \inf_{\substack{\pi \in \Pi(\mu_{0}, \mu_{1}) \\ \pi = \mu_{0} \oslash p}} \int H(p_{x}|P_{x}^{\gamma}) d\mu_{0}(x).$$

 $T_S(\mu_1|\mu_0)$ is a weak transport cost associated to the cost

 $c(x,p) = H(p|P_x^{\gamma}), \quad x \in \mathcal{X}, p \in \mathcal{P}(\mathcal{X}).$

Since $p \mapsto H(p|P_x^{\gamma})$ is convex, the Kantorovich duality theorem holds,

$$\mathcal{T}_{\mathcal{S}}(\mu_1|\mu_0) = \sup_{\psi} \left\{ \int \mathcal{R}_c \psi \, d\mu_0 - \int \psi \, d\mu_1 \right\},$$

with
$$R_c\psi(x) = \inf_{p\in\mathcal{P}(X)} \left\{ \int \psi dp + H(p|P_x^{\gamma}) \right\} = -\log P^{\gamma}(e^{-\psi})(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces functional inequalities Examples in discrete

Question : Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

• The Bakry-Emery curvature condition (1985) - Γ₂-calculus,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

• The Bakry-Emery curvature condition (1985) - Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities ,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities ,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Curvature in discrete setting

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities ,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...

We will focus on the approach by C. Leonard in discrete,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Curvature in discrete setting

 $\ensuremath{\textbf{Question}}$: Is there a "good" notion of curvature in discrete setting from which we can recover

- transport-entropy inequalities,
- · Poincaré inequalities ,
- modified log-Sobolev inequalities, hypercontractivity,
- Prékopa-Leindler types of inequalities,
- concentration properties...

Several notions of curvature have been proposed on discrete spaces to extend the lower bound on Ricci-curvature in Riemannian geometry.

- The Bakry-Emery curvature condition (1985) Γ_2 -calculus, the exponential curvature-dimension condition Bauer-Horn-Lin-Lippner-Mangoubi-Yau (2013)
- The coarse Ricci curvature, Ollivier (2009), Lin-Lu-Yau (2010).
- Lott-Sturm-Villani definition of curvature.
 - Rough curvature bounds, Bonciocat-Sturm (2009),
 - The entropic Ricci curvature, Erbar-Maas (2013), Mielke (2013),
 - Geodesic convexity property of entropy along interpolation paths : Gozlan-Roberto-S.-Tetali (2014), Hillion (2014), C. Leonard (2013-2014)

see also Maas-Erbar-Tetali (2015), Erbar-Fathi (2016), Fathi-Shu (2018),...

We will focus on the approach by C. Leonard in discrete, following the recent approach by G. Conforti (2018) in continuous spaces when *L* is a diffusion generator $Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla)$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

$$(\hat{Q}_t^{\gamma})_{t \in [0,1]}$$
 is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$. By reversibility, $\hat{Q}_t^{\gamma}(z) = m(z) P_t f(z) P_{1-t} g(z), \quad z \in \mathcal{X}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$. By reversibility, $\hat{Q}_t^{\gamma}(z) = m(z) P_t f(z) P_{1-t} g(z), \quad z \in \mathcal{X}.$

 $\hat{Q}_{t}^{\gamma}(z)) = \sum_{x,y} \nu_{t}^{x,y}(z) \; \hat{Q}_{0,1}^{\gamma}(x,y), \quad \text{with} \quad \nu_{t}^{x,y}(z) := \frac{m(z)P_{t}^{\gamma}(z,x)P_{1-t}^{\gamma}(z,y)}{m(x)P_{1}^{\gamma}(x,y)}.$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$. By reversibility, $\hat{Q}_t^{\gamma}(z) = m(z) P_t f(z) P_{1-t} g(z), \quad z \in \mathcal{X}.$

 $\hat{Q}_{t}^{\gamma}(z)) = \sum_{x,y} \nu_{t}^{x,y}(z) \; \hat{Q}_{0,1}^{\gamma}(x,y), \quad \text{with} \quad \nu_{t}^{x,y}(z) := \frac{m(z)P_{t}^{\gamma}(z,x)P_{1-t}^{\gamma}(z,y)}{m(x)P_{1}^{\gamma}(x,y)}.$

A curvature definition [Conforti 2018-Léonard 2013]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$. By reversibility, $\hat{Q}_t^{\gamma}(z) = m(z) P_t f(z) P_{1-t} g(z), \quad z \in \mathcal{X}.$

$$\hat{Q}_{t}^{\gamma}(z)) = \sum_{x,y} \nu_{t}^{x,y}(z) \ \hat{Q}_{0,1}^{\gamma}(x,y), \quad \text{with} \quad \nu_{t}^{x,y}(z) := \frac{m(z)P_{t}^{\gamma}(z,x)P_{1-t}^{\gamma}(z,y)}{m(x)P_{1}^{\gamma}(x,y)}$$

A curvature definition [Conforti 2018-Léonard 2013]

The space (\mathcal{X}, L, m) has Ricci-curvature bounded from below by $\kappa, \kappa \in \mathbb{R}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$. By reversibility, $\hat{Q}_t^{\gamma}(z) = m(z) P_t f(z) P_{1-t} g(z), \quad z \in \mathcal{X}.$

$$\hat{Q}_{t}^{\gamma}(z)) = \sum_{x,y} \nu_{t}^{x,y}(z) \ \hat{Q}_{0,1}^{\gamma}(x,y), \quad \text{with} \quad \nu_{t}^{x,y}(z) := \frac{m(z)P_{t}^{\gamma}(z,x)P_{1-t}^{\gamma}(z,y)}{m(x)P_{1}^{\gamma}(x,y)}$$

A curvature definition [Conforti 2018-Léonard 2013]

The space (\mathcal{X}, L, m) has Ricci-curvature bounded from below by $\kappa, \kappa \in \mathbb{R}$, if for all $\mu_0, \mu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support, $\mu_0 << m, \mu_1 << m$, for all $\gamma > 0$,

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$. By reversibility, $\hat{Q}_t^{\gamma}(z) = m(z) P_t f(z) P_{1-t} g(z), \quad z \in \mathcal{X}.$

$$\hat{Q}_{t}^{\gamma}(z)) = \sum_{x,y} \nu_{t}^{x,y}(z) \ \hat{Q}_{0,1}^{\gamma}(x,y), \quad \text{with} \quad \nu_{t}^{x,y}(z) := \frac{m(z)P_{t}^{\gamma}(z,x)P_{1-t}^{\gamma}(z,y)}{m(x)P_{1}^{\gamma}(x,y)}$$

A curvature definition [Conforti 2018-Léonard 2013]

The space (\mathcal{X}, L, m) has Ricci-curvature bounded from below by $\kappa, \kappa \in \mathbb{R}$, if for all $\mu_0, \mu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support, $\mu_0 \ll m, \mu_1 \ll m$, for all $\gamma > 0$,

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

where for $\gamma \neq 0$,

$$a_{\gamma}(t) = rac{1 - e^{-\gamma t}}{1 - e^{-\gamma}}, \quad c_{\gamma}(t) = rac{\cosh(\gamma/2) - \cosh(\gamma(2t - 1)/2)}{\sinh(\gamma/2)}, \quad t \in (0, 1).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Definition : Schrödinger path

Given μ_0 and $\mu_1 \in \mathcal{P}(\mathcal{X})$ with finite support. The Schrödinger path associated to L^{γ} with reversible measure *m*, is

$$\widehat{Q}_t^{\gamma} := X_t \# \widehat{Q}^{\gamma}, \quad t \in [0, 1]$$

where \hat{Q}^{γ} is the Schrödinger bridge associated to L^{γ} and *m* for μ_0 and μ_1 .

 $(\hat{Q}_t^{\gamma})_{t \in [0,1]}$ is a path that interpolates between $\hat{Q}_0^{\gamma} = \mu_0$ and $\hat{Q}_1^{\gamma} = \mu_1$. By reversibility, $\hat{Q}_t^{\gamma}(z) = m(z) P_t f(z) P_{1-t} g(z), \quad z \in \mathcal{X}.$

$$\hat{Q}_{t}^{\gamma}(z)) = \sum_{x,y} \nu_{t}^{x,y}(z) \ \hat{Q}_{0,1}^{\gamma}(x,y), \quad \text{with} \quad \nu_{t}^{x,y}(z) := \frac{m(z)P_{t}^{\gamma}(z,x)P_{1-t}^{\gamma}(z,y)}{m(x)P_{1}^{\gamma}(x,y)}$$

A curvature definition [Conforti 2018-Léonard 2013]

The space (\mathcal{X}, L, m) has Ricci-curvature bounded from below by $\kappa, \kappa \in \mathbb{R}$, if for all $\mu_0, \mu_1 \in \mathcal{P}(\mathcal{X})$ with bounded support, $\mu_0 \ll m, \mu_1 \ll m$, for all $\gamma > 0$,

 $H(\widehat{Q}_t^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_0|m) + a_{\kappa\gamma}(t) \ H(\mu_1|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_0,\mu_1),$

where for $\gamma \neq 0$,

$$a_{\gamma}(t) = \frac{1 - e^{-\gamma t}}{1 - e^{-\gamma}}, \quad c_{\gamma}(t) = \frac{\cosh(\gamma/2) - \cosh(\gamma(2t - 1)/2)}{\sinh(\gamma/2)}, \quad t \in (0, 1).$$

$$a_{\kappa\gamma}(1-t) \xrightarrow[\gamma \to 0]{} 1-t, \quad a_{\kappa\gamma}(t) \xrightarrow[\gamma \to 0]{} t, \quad \frac{\mathcal{C}_{\kappa\gamma}(t)}{\gamma} \xrightarrow[\gamma \to 0]{} \kappa t(1-t).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

• In continuous setting (Léonard 2013, Conforti 2018) :

 $Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_t^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_0|m) + a_{\kappa\gamma}(t) \ H(\mu_1|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_0,\mu_1),$

• In continuous setting (Léonard 2013, Conforti 2018) :

 $Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $CD(\kappa, \infty)$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_t^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_0|m) + a_{\kappa\gamma}(t) \ H(\mu_1|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_0,\mu_1),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $CD(\kappa, \infty)$, since

$$a_{\kappa\gamma}(1-t) \xrightarrow[\gamma \to 0]{} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \xrightarrow[\gamma \to 0]{} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \longrightarrow \widehat{Q}_t^0$,

constant speed geodesic for W_2 .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $CD(\kappa, \infty)$, since

$$a_{\kappa\gamma}(1-t) \underset{\gamma \to 0}{\longrightarrow} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \underset{\gamma \to 0}{\longrightarrow} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\geq \kappa$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $\textit{CD}(\kappa,\infty),$ since

$$a_{\kappa\gamma}(1-t) \xrightarrow[\gamma \to 0]{} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \xrightarrow[\gamma \to 0]{} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\ge \kappa$.

• In discrete setting,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $\textit{CD}(\kappa,\infty),$ since

$$a_{\kappa\gamma}(1-t) \underset{\gamma \to 0}{\longrightarrow} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \underset{\gamma \to 0}{\longrightarrow} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\ge \kappa$.

• In discrete setting, $c_{\kappa\gamma}(t) T_{L\gamma}(\mu_0, \mu_1) \xrightarrow{\sim} 0$!!!

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U}dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $\textit{CD}(\kappa,\infty),$ since

$$a_{\kappa\gamma}(1-t) \underset{\gamma \to 0}{\longrightarrow} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \underset{\gamma \to 0}{\longrightarrow} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\ge \kappa$.

• In discrete setting, $c_{\kappa\gamma}(t) T_{L\gamma}(\mu_0, \mu_1) \xrightarrow{\gamma \to 0} 0 :!!!$

If $\kappa > 0$, the curvature condition implies

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_t^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_0|m) + a_{\kappa\gamma}(t) \ H(\mu_1|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_0,\mu_1),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U}dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $\textit{CD}(\kappa,\infty),$ since

$$a_{\kappa\gamma}(1-t) \underset{\gamma \to 0}{\longrightarrow} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \underset{\gamma \to 0}{\longrightarrow} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\ge \kappa$.

- In discrete setting, $c_{\kappa\gamma}(t) T_{L^{\gamma}}(\mu_0, \mu_1) \xrightarrow[\gamma \to 0]{} 0 :!!!$
 - If $\kappa > 0$, the curvature condition implies
 - a weak transport inequality :

$$T_{L^{\gamma}}(\mu_{0},\mu_{1}) \leq \frac{a_{\kappa\gamma}(1-t)}{c_{\kappa\gamma}(t)} H(\mu_{0}|m) + \frac{a_{\kappa\gamma}(t)}{c_{\kappa\gamma}(t)} H(\mu_{1}|m).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $\textit{CD}(\kappa,\infty),$ since

$$a_{\kappa\gamma}(1-t) \xrightarrow[\gamma \to 0]{} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \xrightarrow[\gamma \to 0]{} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\ge \kappa$.

- In discrete setting, $c_{\kappa\gamma}(t) T_{L^{\gamma}}(\mu_0, \mu_1) \xrightarrow[\gamma \to 0]{} 0 :!!!$
 - If $\kappa > 0$, the curvature condition implies
 - a weak transport inequality :

$$T_{L^{\gamma}}(\mu_{0},\mu_{1}) \leq \frac{a_{\kappa\gamma}(1-t)}{c_{\kappa\gamma}(t)} H(\mu_{0}|m) + \frac{a_{\kappa\gamma}(t)}{c_{\kappa\gamma}(t)} H(\mu_{1}|m).$$

• the modified log-Sobolev inequality (mLSI) : $\mu_0 = h_0 m$,

$$H(\nu_0|m) \leq \frac{1}{2\kappa} \sum_{x, w \in \mathcal{X}} (\log h_0(w) - \log h_0(x))(h_0(w) - h_0(x))L(x, w)m(x).$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_t^{\gamma}|m) \leqslant a_{\kappa\gamma}(1-t) \ H(\mu_0|m) + a_{\kappa\gamma}(t) \ H(\mu_1|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_0,\mu_1),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $\textit{CD}(\kappa,\infty),$ since

$$a_{\kappa\gamma}(1-t) \underset{\gamma \to 0}{\longrightarrow} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \underset{\gamma \to 0}{\longrightarrow} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\ge \kappa$.

- In discrete setting, $c_{\kappa\gamma}(t) T_{L^{\gamma}}(\mu_0, \mu_1) \xrightarrow[\gamma \to 0]{} 0 :!!!$
 - If $\kappa > 0$, the curvature condition implies
 - a weak transport inequality :

$$T_{L^{\gamma}}(\mu_0,\mu_1) \leq \frac{a_{\kappa\gamma}(1-t)}{c_{\kappa\gamma}(t)} H(\mu_0|m) + \frac{a_{\kappa\gamma}(t)}{c_{\kappa\gamma}(t)} H(\mu_1|m).$$

• the modified log-Sobolev inequality (mLSI) : $\mu_0 = h_0 m$,

$$H(\nu_0|m) \leqslant \frac{1}{2\kappa} \sum_{x, w \in \mathcal{X}} (\log h_0(w) - \log h_0(x))(h_0(w) - h_0(x))L(x, w)m(x).$$

(Proof : by differentiating at point t = 0 and then $\gamma \rightarrow \infty$)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

 $H(\widehat{Q}_{t}^{\gamma}|m) \leq a_{\kappa\gamma}(1-t) \ H(\mu_{0}|m) + a_{\kappa\gamma}(t) \ H(\mu_{1}|m) - c_{\kappa\gamma}(t) \ T_{L^{\gamma}}(\mu_{0},\mu_{1}),$

• In continuous setting (Léonard 2013, Conforti 2018) :

$$Lf = \frac{1}{2}(\Delta f - \nabla U \cdot \nabla f), \qquad dm = e^{-U} dvol,$$

The definition of curvature is equivalent to the Bakry-Emery curvature condition $\textit{CD}(\kappa,\infty),$ since

$$a_{\kappa\gamma}(1-t) \xrightarrow[\gamma \to 0]{} 1-t, \quad \frac{c_{\kappa\gamma}(t)}{\gamma} tT_{L^{\gamma}}(\mu_0,\mu_1) \xrightarrow[\gamma \to 0]{} \kappa t(1-t) \frac{W_2^2(\mu_0,\mu_1)}{2},$$

and $\widehat{Q}_t^{\gamma} \xrightarrow[\gamma \to 0]{} \widehat{Q}_t^0$, constant speed geodesic for W_2 . It recovers the Lott-Sturm-Villani definition of Ricci curvature $\ge \kappa$.

- In discrete setting, $c_{\kappa\gamma}(t) T_{L^{\gamma}}(\mu_0, \mu_1) \xrightarrow[\gamma \to 0]{} 0 :!!!$
 - If $\kappa > 0$, the curvature condition implies
 - a weak transport inequality :

$$T_{L^{\gamma}}(\mu_0,\mu_1) \leq \frac{a_{\kappa\gamma}(1-t)}{c_{\kappa\gamma}(t)} H(\mu_0|m) + \frac{a_{\kappa\gamma}(t)}{c_{\kappa\gamma}(t)} H(\mu_1|m).$$

• the modified log-Sobolev inequality (mLSI) : $\mu_0 = h_0 m$,

$$H(\nu_0|m) \leqslant \frac{1}{2\kappa} \sum_{x,w \in \mathcal{X}} (\log h_0(w) - \log h_0(x))(h_0(w) - h_0(x))L(x,w)m(x).$$

(Proof : by differentiating at point t = 0 and then $\gamma \rightarrow \infty$)

Consequence : The best constant α in mLSI satisfies $\alpha \ge \kappa$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$. Let $t \in (0, 1)$ and $\gamma > 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$. Let $t \in (0, 1)$ and $\gamma > 0$. Then for any positive functions F, G, H on \mathcal{X} satisfying

$$\exp\left[\log H \, d\nu_t^{x,y} \ge F(x)^{a_{\kappa\gamma}(1-t)} \, G(y)^{a_{\kappa\gamma}(t)}, \qquad x, y, z \in \mathcal{X},\right]$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

(1)

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities Dual characterization

to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$. Let $t \in (0, 1)$ and $\gamma > 0$. Then for any positive functions F, G, H on \mathcal{X} satisfying

$$\exp\int \log H \, d\nu_t^{x,y} \ge F(x)^{a_{\kappa\gamma}(1-t)} \, G(y)^{a_{\kappa\gamma}(t)}, \qquad x, y, z \in \mathcal{X},$$

one has for any positive function $K : \mathcal{X} \to \mathbb{R}^+$,

$$\int H \, dm \ge \left(\int \frac{F^{\frac{a_{\kappa\gamma}(1-t)}{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}}{K^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}} \, dm\right)^{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)} \left(\int G(P_{\gamma}K)^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(t)}} \, dm\right)^{a_{\kappa\gamma}(t)}$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

(1)

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$. Let $t \in (0, 1)$ and $\gamma > 0$. Then for any positive functions F, G, H on \mathcal{X} satisfying

$$\exp\left[\log H \, d\nu_t^{\mathbf{x},\mathbf{y}} \ge F(\mathbf{x})^{\mathbf{a}_{\kappa\gamma}(1-t)} \, \mathbf{G}(\mathbf{y})^{\mathbf{a}_{\kappa\gamma}(t)}, \qquad \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X},\right]$$

one has for any positive function $K : \mathcal{X} \to \mathbb{R}^+$,

$$\int H \, dm \ge \left(\int \frac{F^{\frac{a_{\kappa\gamma}(1-t)}{c_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}}{K^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}} \, dm\right)^{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)} \left(\int G(P_{\gamma}K)^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(t)}} \, dm\right)^{a_{\kappa\gamma}(t)}$$

• Choosing K = 1, we get for any F, G, H satisfying (1),

$$\int H dm \ge \left(\int F^{\frac{a_{\kappa\gamma}(1-t)}{1-a_{\kappa\gamma}(t)}} dm\right)^{1-a_{\kappa\gamma}(t)} \left(\int G dm\right)^{a_{\kappa\gamma}(t)}.$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

(1)

(t)

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$. Let $t \in (0, 1)$ and $\gamma > 0$. Then for any positive functions F, G, H on \mathcal{X} satisfying

$$\exp \int \log H \, d\nu_t^{x,y} \ge F(x)^{a_{\kappa\gamma}(1-t)} \, G(y)^{a_{\kappa\gamma}(t)}, \qquad x, y, z \in \mathcal{X},$$

one has for any positive function $K : \mathcal{X} \to \mathbb{R}^+$,

$$\int H \, dm \ge \left(\int \frac{F^{\frac{a_{\kappa\gamma}(1-t)}{c_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}}{K^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}} \, dm\right)^{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)} \left(\int G(P_{\gamma}K)^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(t)}} \, dm\right)^{a_{\kappa\gamma}(t)}$$

• Choosing K = 1, we get for any F, G, H satisfying (1),

$$\int Hdm \ge \left(\int F^{\frac{a_{\kappa\gamma}(1-t)}{1-a_{\kappa\gamma}(t)}} dm\right)^{1-a_{\kappa\gamma}(t)} \left(\int Gdm\right)^{a_{\kappa\gamma}(t)}.$$

This property also implies mLSI when $\kappa > 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

(1)

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$. Let $t \in (0, 1)$ and $\gamma > 0$. Then for any positive functions F, G, H on \mathcal{X} satisfying

$$\exp\left[\log H \, d\nu_t^{x,y} \ge F(x)^{a_{\kappa\gamma}(1-t)} \, G(y)^{a_{\kappa\gamma}(t)}, \qquad x, y, z \in \mathcal{X},\right]$$

one has for any positive function $K : \mathcal{X} \to \mathbb{R}^+$,

$$\int H \, dm \ge \left(\int \frac{F^{\frac{a_{\kappa\gamma}(1-t)}{c_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}}{K^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}} \, dm\right)^{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)} \left(\int G(P_{\gamma}K)^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(t)}} \, dm\right)^{a_{\kappa\gamma}(t)}$$

• Choosing K = 1, we get for any F, G, H satisfying (1),

$$\int H dm \geqslant \left(\int F^{\frac{a_{\kappa\gamma}(1-t)}{1-a_{\kappa\gamma}(t)}} dm\right)^{1-a_{\kappa\gamma}(t)} \left(\int G dm\right)^{a_{\kappa\gamma}(t)}.$$

This property also implies mLSI when $\kappa > 0$.

 Choosing F = G = H = 1 we get the following reverse-hypercontractivity result :

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

(1)

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Theorem [S. 2018] : Discrete Prékopa-Leindler inequality (PLI)

Assume (\mathcal{X}, m, L) has Ricci curvature lower bounded by $\kappa, \kappa \in \mathbb{R}$. Let $t \in (0, 1)$ and $\gamma > 0$. Then for any positive functions F, G, H on \mathcal{X} satisfying

$$\exp\left[\log H \, d\nu_t^{x,y} \ge F(x)^{a_{\kappa\gamma}(1-t)} \, G(y)^{a_{\kappa\gamma}(t)}, \qquad x, y, z \in \mathcal{X},\right]$$

one has for any positive function $K : \mathcal{X} \to \mathbb{R}^+$,

$$\int H \, dm \ge \left(\int \frac{F^{\frac{a_{\kappa\gamma}(1-t)}{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}}{K^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)}}} \, dm\right)^{a_{\kappa\gamma}(1-t)-c_{\kappa\gamma}(t)} \left(\int G(P_{\gamma}K)^{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(t)}} \, dm\right)^{a_{\kappa\gamma}(t)}$$

• Choosing K = 1, we get for any F, G, H satisfying (1),

$$\int H dm \geqslant \left(\int F^{\frac{a_{\kappa\gamma}(1-t)}{1-a_{\kappa\gamma}(t)}} dm\right)^{1-a_{\kappa\gamma}(t)} \left(\int G dm\right)^{a_{\kappa\gamma}(t)}.$$

This property also implies mLSI when $\kappa > 0$.

 Choosing *F* = *G* = *H* = 1 we get the following reverse-hypercontractivity result : for any *t* ∈ (0, 1), *γ* > 0,

$$\| P_{\gamma} K \|_{\frac{c_{\kappa\gamma}(t)}{a_{\kappa\gamma}(t)}} \leq \| K \|_{-\frac{c_{\kappa\gamma}(t)}{1-a_{\kappa\gamma}(t)}}, \qquad (\kappa > 0)$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

(1)

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Examples of discrete space with curvature bounded from below [S. 2018]

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m*: the counting measure. **Result** : $\kappa \ge 0$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \begin{pmatrix} d(z,x) \\ d(x,y) \end{pmatrix} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} ,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \begin{pmatrix} d(z,x) \\ d(x,y) \end{pmatrix} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \begin{pmatrix} d(z,x) \\ d(x,y) \end{pmatrix} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} . • $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \begin{pmatrix} d(z,x) \\ d(x,y) \end{pmatrix} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} . • $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

 $L(x, \sigma_i(x)) = 1$ for all $i \in \{1, ..., n\}$, L(x, x) = -n,

m : the uniform probability measure on $\{0, 1\}^n$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} . • $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

 $L(x,\sigma_i(x)) = 1$ for all $i \in \{1,\ldots,n\}$, L(x,x) = -n,

m : the uniform probability measure on $\{0, 1\}^n$.

```
Result : \kappa \ge 4.
```

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. It provides the optimal constant in mLSI.

Result :
$$\kappa \ge 4$$
.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities Examples in discrete

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu^{x,y}_t(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbbm{1}_{[x,y]}(z),$$

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on $\mathbb{Z},$ and we get a new PLI on $\mathbb{Z}.$

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014),

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

• $\mathcal{X} = S_n$, the symmetric group,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

• $\mathcal{X} = S_n$, the symmetric group, with for all $x \in S_n$

$$L(x, \tau_{i,j}x) = 1$$
 for all transposition $\tau_{i,j}$, $L(x, x) = -\frac{n(n-1)}{2}$,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

• $\mathcal{X} = S_n$, the symmetric group, with for all $x \in S_n$

$$L(x, \tau_{i,j}x) = 1$$
 for all transposition $\tau_{i,j}$, $L(x, x) = -\frac{n(n-1)}{2}$,

 $m = \mu_o$: the uniform distribution on S_n .

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on \mathbb{Z} , and we get a new PLI on \mathbb{Z} .

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbbm{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

• $\mathcal{X} = S_n$, the symmetric group, with for all $x \in S_n$

$$L(x, \tau_{i,j}x) = 1$$
 for all transposition $\tau_{i,j}$, $L(x, x) = -\frac{n(n-1)}{2}$,

 $m = \mu_0$: the uniform distribution on S_n . **Result :** $\kappa \ge 4$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on $\mathbb{Z},$ and we get a new PLI on $\mathbb{Z}.$

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbbm{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

• $\mathcal{X} = S_n$, the symmetric group, with for all $x \in S_n$

$$L(x, \tau_{i,j}x) = 1$$
 for all transposition $\tau_{i,j}$, $L(x, x) = -\frac{n(n-1)}{2}$,

 $m = \mu_0$: the uniform distribution on S_n . **Result**: $\kappa \ge 4$.

Same order of curvature as in Maas-Erbar-Tetali (2015).

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on $\mathbb R$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities

Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \binom{d(z,x)}{d(x,y)} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on $\mathbb{Z},$ and we get a new PLI on $\mathbb{Z}.$

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbbm{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

• $\mathcal{X} = S_n$, the symmetric group, with for all $x \in S_n$

$$L(x, \tau_{i,j}x) = 1$$
 for all transposition $\tau_{i,j}$, $L(x, x) = -\frac{n(n-1)}{2}$,

 $m = \mu_0$: the uniform distribution on S_n . **Result :** $\kappa \ge 4$.

Same order of curvature as in Maas-Erbar-Tetali (2015).

 $\alpha \ge \kappa$, however $\alpha \ge 4$ is not the good order in mLSI,

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

```
Transport inequality on the symmetric group
```

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

• $\mathcal{X} = \mathbb{Z}$, for all $x \in \mathbb{Z}$, L(x, x + 1) = L(x, x - 1) = 1, L(x, x) = -2. *m* : the counting measure. **Result** : $\kappa \ge 0$. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} \begin{pmatrix} d(z,x) \\ d(x,y) \end{pmatrix} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one recovers Hillion's result on $\mathbb{Z},$ and we get a new PLI on $\mathbb{Z}.$

• $\mathcal{X} = \{0, 1\}^n$, the discrete cube, for all $x \in \{0, 1\}^n$

$$L(x,\sigma_i(x)) = 1$$
 for all $i \in \{1,\ldots,n\}$, $L(x,x) = -n$,

m : the uniform probability measure on $\{0, 1\}^n$. **Result :** $\kappa \ge 4$. It provides the optimal constant in mLSI. Observing that

$$\nu_t^{x,y}(z) \underset{\gamma \to 0}{\longrightarrow} t^{d(z,x)} (1-t)^{d(z,y)} \mathbb{1}_{[x,y]}(z),$$

one partially recover a curvature result on $\{0, 1\}^n$ by Gozlan-Roberto-S-Tetali (2014), without curvature term.

• $\mathcal{X} = S_n$, the symmetric group, with for all $x \in S_n$

$$L(x, \tau_{i,j}x) = 1$$
 for all transposition $\tau_{i,j}$, $L(x, x) = -\frac{n(n-1)}{2}$,

 $m = \mu_0$: the uniform distribution on S_n . **Result :** $\kappa \ge 4$.

Same order of curvature as in Maas-Erbar-Tetali (2015).

 $\alpha \ge \kappa$, however $\alpha \ge 4$ is not the good order in mLSI, According to Gao-Quastel (2003) Bobkov-Tetali (2006), $\alpha \ge Cn$.

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on R

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition curvature in discrete spaces functional inequalities Examples in discrete

P-M. Samson

introduction

Marton's inequality Talagrand's concentration

Kantorovich duality

for classical costs for weak costs

Examples of weak cost

Marton's type of cost Barycentric cost Strassen's result Martingale costs

Weak transport inequalities

Dual characterization to concentration

Universal transport inequalities

Barycentric transport inequalities

examples characterisation on ${\mathbb R}$

Transport inequality on the symmetric group

introduction

Ewens distribution

deviation inequalities

The Schrödinger minimization problem

definition

curvature in discrete spaces

functional inequalities

Examples in discrete

Weak transport costs.36

Thank you.