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High dimensional filtering - Introduction

B We study the filtering problem for partially observed high

dimensional deterministic dynamical systems.

B Such models are widely used in weather forecasting and

engineering.

B Consider an ODE of the form du
dt = F (u), where u : R+ → Rd .

B This is usually discretisation of a PDE.

B In the case of non-linear F , such ODEs often exhibit chaotic

behaviour.
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B We assume F to be quadratic, which leads to ODEs of the form

du
dt

= F (u) = −Au −B(u,u) + f , (1)

B where u : R+ → Rd is a dynamical system,

B A is a linear operator ( d × d matrix)

B B is a bilinear form (d × d × d array) causing nonlinearity,

B f ∈ Rd is a constant vector, the so-called forcing term.
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B We make the following assumption.

Assumption 1 (Trapping ball assumption)

Assume that for some R > 0, we have 〈F (v), v〉 < 0 for every

v ∈ Rd with ‖v‖ = R .

B Let BR := {v ∈ Rd : ‖v‖ ≤ R}. Under Assumption 1, for every

initial point v ∈ BR , a unique solution of (1), denoted by v(t),

exists for every t ≥ 0. In particular, v(0) = v , and ‖v(t)‖ ≤ R .
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B The observations happen at times ti = ih, for 0 ≤ i ≤ k , h > 0.

B h is the assimilation time step

B T = tk is the size of the observation window.

B We assume that the noisy observations are of dimension do,

Yi := Hu(ti ) + Zi ,

B where H : Rd → Rdo is a linear observation operator, and

B Zi are i.i.d. random vectors with distribution N(0, σ2
Z Ido

).
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B Problem: how to estimate u(0) (smoothing) or u(T ) (filtering)

given observations Y0:k .

B The partial observations and the non-linearity makes this hard.

B A theoretical solution is to take some prior u ∼ q, and set

usm := E(u(0)|Y0:k), ufi := E(u(T )|Y0:k).

B These are optimal in MSE, i.e. for any ûsm(Y0:k), ûfi(Y0:k),

E(‖usm − u(0)‖2) ≤ E(‖ûsm(Y0:k)− u(0)‖2),

E(‖ufi − u(T )‖2) ≤ E(‖ûfi(Y0:k)− u(T )‖2).

B However, computing them in high dimensions is difficult.
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Filtering methods

B In the case of linear dynamics, and Gaussian prior, the filtering

distribution is Gaussian, so we can use the Kalman filter

B There are several variants of the Kalman filter for non-linear

dynamics: Extended Kalman filter, Ensemble Kalman filter, etc.

B There are also variational methods such as 3D-Var and 4D-Var.

B Their consistency for non-linear dynamics is unknown in general.

B [Sanz-Alonso and Stuart, 2015] has shown consistency of the

3D-Var filter for some non-linear ODEs, strong assumptions on do.
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The 4D-Var method

B The 4D-Var method (see [Talagrand and Courtier, 1987])

consists of finding the MAP for the smoother, and propagating it

forward to the filter

B Key idea: the gradient of the log-likelihood can be computed at

O(d) cost by adjoint equation, total cost of finding MAP is O(d)

B This allows weather models with dimension d = 109 and higher

B It is the most frequently used data assimilation method in

weather forecasting centres. First implemented in ECMWF in 1997.
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B In practice, the conditioning of the Hessian can be bad due to

the partiality of the observations

B This makes gradient descent inefficient

B Newton and Gauss-Newton methods with linear solvers based on

Preconditioned Conjugate Gradient (PCG) work much better

B Key point: although the Hessian H cannot be stored,

matrix-vector products Hv can be computed with O(d) cost
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Assumption on the observations

Assumption 2 (Recoverability from partial observations)

Suppose that ‖u‖ < R , and there is an index j ∈ N such that the

system of equations in v defined as

H
d iu(t)

dt i

∣∣∣∣
t=0

= H
d iv(t)

dt i

∣∣∣∣
t=0

for every 0 ≤ i ≤ j

has a unique solution v := u in BR , and

span

{
∇u

(
H

d iu(t)

dt i

∣∣∣∣
t=0

)
l

: 0 ≤ i ≤ j , 1 ≤ l ≤ do

}
= Rd .
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B Assumption 2 implies in particular that there is a constant

c(u,T ) > 0 depending on u but independent of h and σZ such

that for every v ∈ BR ,

k∑
l=0

‖Hv(tl )−Hu(tl )‖2 ≥ c(u,T )

h
‖v − u‖2.

B [Paulin et al., 2018] has shown several consistency results for the

4D-Var under Assumptions 1 and 2.
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Gaussian approximation

Theorem 1 (Gaussian approximation of smoother)

For quadratic dynamics, under some mild assumptions on u, q and

h, there are some constants C
(1)
TV, C

(2)
TV, C

(1)
W , C

(2)
W depending on u

and T and a multivariate normal distribution µsm
G (·|Y0:k) such that

P
[
dTV(µsm(·|Y0:k), µsm

G (·|Y0:k)) ≤ (C
(1)
TV + C

(2)
TV log2(1/ε))σZ

√
h

& dW(µsm(·|Y0:k), µsm
G (·|Y0:k)) ≤ (C

(1)
W + C

(2)
W log2(1/ε))σ2

Zh
∣∣u]

≥ 1− ε for every ε > 0.
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Theorem 2 (Gaussian approximation of filter)

For quadratic dynamics, under some mild assumptions on u, q and

h, there are some constants D
(1)
TV, D

(2)
TV, D

(1)
W , D

(2)
W depending on u

and T and a multivariate normal distribution µfi
G(·|Y0:k) such that

P
[
dTV(µfi(·|Y0:k), µfi

G(·|Y0:k)) ≤ (D
(1)
TV + D

(2)
TV log2(1/ε))σZ

√
h

& dW(µfi(·|Y0:k), µfi
G(·|Y0:k)) ≤ (D

(1)
W + D

(2)
W log2(1/ε))σ2

Zh
∣∣u]

≥ 1− ε for every ε > 0.
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Asymptotic optimality of MAP estimators

Theorem 3 (Asymptotic optimality of MAP for smoother)

For quadratic dynamics, under some mild assumptions on u, q and

h, there are constants S sm
max > 0, C sm

MAP depending on u and T such

that for σZ

√
h ≤ S sm

max, we have

E
[
‖ûsm

MAP − u‖2|u
]

E [‖usm − u‖2|u]
≤ 1 + C sm

MAP · σZ

√
h.
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Theorem 4 (Asymptotic optimality of MAP for filter)

Let ûfi := ûsm
MAP(T ). For quadratic dynamics, under some mild

assumptions on u, q and h, there are constants Sfi
max > 0, C fi

MAP

depending on u and T such that for σZ

√
h ≤ Sfi

max, we have

E
[
‖ûfi − u(T )‖2|u

]
E
[
‖ufi − u(T )‖2|u

] ≤ 1 + C fi
MAP · σZ

√
h.
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Newton’s method

B The negative log-likelihood (excluding the normalising constant)

is of the form

J(v) := − log(q(v)) +
1

2σ2
Z

k∑
i=0

‖Yi −Hv(ti )‖2. (2)

B Newton’s method is defined recursively as

xi+1 := xi − (∇2J(xi ))−1 · ∇J(xi ) for i ∈ N. (3)
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Theorem 5 (Convergence of Newton’s method to MAP)

Under some mild assumptions of u, q, h, for every 0 < ε ≤ 1, there

are finite constants S sm
max(u,T , ε), N sm(u,T ) and

Dsm
max(u,T ) ∈ (0,N sm(u,T )] such that for σZ

√
h ≤ S sm

max(u,T , ε),

if the initial point x0 ∈ BR satisfies ‖x0 − u‖ < Dsm
max(u,T ), then

P
(
xi is well defined and ‖xi − ûsm

MAP‖ ≤ N sm(u,T )

(
‖x0 − u‖
N sm(u,T )

)2i

for every i ∈ N
∣∣u) ≥ 1− ε. (4)
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Initial estimator

B For Newton’s method to work, we need to have an initial

estimator x0 satisfying that ‖x0 − u‖ < Dsm
max(u,T )

B Suppose that Φ̂(0), . . . , Φ̂(j) are estimators of

Hu, . . . ,H d ju(t)
dt j

∣∣∣
t=0

based on Y0:k .

B If there is a function G : (Rdo)j+1 → Rd independent of u such

that G
(
Hu, . . . ,H d ju(t)

dt j

∣∣∣
t=0

)
= u, then we can use

G (Φ̂(0), . . . , Φ̂(j)) as an initial estimator.
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Lorenz 96’ model

B The Lorenz 96’ model is a d dimensional chaotic ODE of the

form
d

dt
ui = −ui−1ui−2 + ui−1ui+1 − ui + f . (5)

B The indices are understood modulo d , and usually f := 8.

B This is of the form (1), and we also have 〈B(v , v), v〉 = 0 for

every v ∈ Rd .

B Therefore the trapping ball assumption holds for R > |f | ·
√
d .
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Choice of F

B We observe either

1. coordinates 1, 2, 3, 7, 8, 9, . . ..

2. coordinates 1, 2, 3.

B By rearrangement of the ODE, we have

ui =
(

dui−1

dt − f + ui−1 + ui−2ui−3

)
/ui−2, and

ui =
(
f − dui+2

dt − ui+2 + ui+1ui+3

)
/ui+1.

B The un-observed coordinates are expressed in terms of the

observed coordinates and derivatives of order 1 or d(d − 3)/3e.
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Idea of proofs

B Denote Φt(v) := Hv(t).

B The prior-free negative log-likelihoods of the smoother and its Gaussian

approximation are

l sm(v) :=
k∑

i=0

(
‖Φti (v)− Φti (u)‖2 + 2 〈Φti (v)− Φti (u),Zi〉

)
, and

l smG (v) := (v − u)TAk(v − u) + 2 〈v − u,Bk〉 , where

Ak :=
k∑

i=0

(
(JΦti (u))TJΦti (u) + J2Φti (u)[·, ·,Zi ]

)
,

Bk :=
k∑

i=0

(JΦti (u))T · Zi .
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B Using matrix concentration inequalities ([Tropp, 2015]), it follows

that Ak is pos. def. with high probability when σZ

√
h is small.

B Using concentration inequalities for empirical processes, one can

show the following type of results.

Proposition 1 (Bound on the difference |l sm(v )− l smG (v )|)

Under mild assumptions on u and h, for any 0 < ε ≤ 1, σZ > 0,

P
(
|l sm(v)− l smG (v)| ≤ ‖v − u‖3 · C2(u,T ) + C3(u,T , ε)σZ

√
h

h

for every v ∈ BR

∣∣∣∣u) ≥ 1− ε.
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B The next lemma is used in the proof of Proposition 1. It is based

of Corollary 13.2 and Theorem 5.8 of [Boucheron et al., 2013].

Lemma 1

For every l ∈ N, define the sets

Tl := {(r , s1, . . . , sl ) ∈ [0, 2R]×Bl
1 : u+rs1 ∈ BR}, T l := BR×Bl

1.

For any two points (r , s1, . . . , sl ), (r , s ′1, . . . , s ′l ) ∈ Tl , let

dl ((r , s1, . . . , sl ), (r , s ′1, . . . , s
′
l )) :=

|r − r ′|
2R

+
l∑

i=0

‖si − s ′i‖. (6)
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B Let Z0, . . . ,Zk be i.i.d. do dimensional standard normal random vectors,

B Let ϕ0, . . . , ϕk : Tl → Rdo be functions that are L-Lipschitz with respect

to the distance dl on Tl , and satisfy that ‖ϕi (r , s1, . . . , sl )‖∞ ≤ M for any

0 ≤ i ≤ k .

B Then Wl := sup(r ,s1,...,sl)∈Tl
∑k

i=0 〈ϕi (r , s1, . . . , sl ),Zi〉 satisfies that for

any 0 < ε ≤ 1,

P(Wl ≥ C (l)(u, k , ε)) ≤ ε for (7)

C (l)(u, k , ε) := 10(l + 1)L
√

(k + 1)(ld + 1)do +

√
2(k + 1)Mdo log

(
1

ε

)
.
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From the definitions, we have

l sm(v) =
k∑

i=0

‖Φti (v)− Φti (u)‖2 + 2
k∑

i=0

〈Φti (v)− Φti (u),Zi〉 , and

l smG (v) =
k∑

i=0

‖JΦti (u) · (v − u)‖2 +
k∑

i=0

J2Φti (u)[v − u, v − u,Zi ]

+ 2
k∑

i=0

〈JΦti (u) · (v − u),Zi〉 , (8)

|l sm(v)− l smG (v)| ≤
k∑

i=0

∣∣‖Φti (v)− Φti (u)‖2 − ‖JΦti (u) · (v − u)‖2
∣∣

+ 2

∣∣∣∣∣
k∑

i=0

〈
Φti (v)− Φti (u)− JΦti (u) · (v − u)− 1

2
J2Φti (u)[v − u, v − u, ·],Zi

〉∣∣∣∣∣ .
(9)
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B The first term in the right hand side of the above inequality can be

upper bounded by C1(u,T )
h ‖v − u‖3 for some constant C1(u,T ).

B For the second term, for (r , s) ∈ T1, r > 0, let

ϕi (r , s) :=

(
Φti (u + rs)− Φti (u)− JΦti (u) · sr − 1

2
J2Φti (u)[rs, rs, ·]

)
/r 3.

For r = 0, this can be continuously extended as

ϕi (0, s) := lim
r→0

ϕi (r , s) =
1

6
J3Φti (u)[s, s, s, ·].

B We define W1 := sup(r ,s)∈T1
∑k

i=0 〈ϕi (r , s),Zi〉, and

W ′
1 := sup(r ,s)∈T1

∑k
i=0 〈−ϕi (r , s),Zi〉.
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B The second term in (9) is bounded by 2‖v − u‖3 max(W1,W
′
1).

B The Lipschitz coefficient of ϕi can be bounded via the partial

derivatives, and the claim of Proposition 1 now follows by Lemma 1.
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Proposition 2

Suppose that Ω ⊂ Rd is an open set, and g : Ω→ R is a 3 times

continuously differentiable function satisfying that

1. g has a local minimum at a point x∗ ∈ Ω,

2. there exists a radius r ∗ > 0 and constants CH > 0, LH <∞

such that B(x∗, r ∗) ⊂ Ω, ∇2g(x) � CH · Id for every

x ∈ B(x∗, r ∗), and ∇2g(x) is LH-Lipschitz on B(x∗, r ∗).
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Suppose that ‖x0 − x∗‖ < min
(
r ∗, 2CH

LH

)
. Then

xi+1 := xi − (∇2g(xi ))−1 · ∇g(xi ) always stay in B(x∗, r ∗), and

‖xi − x∗‖ ≤ 2CH

LH
·
(

LH

2CH
‖x0 − x∗‖

)2i

for every i ∈ N.

B The constants CH (Hessian lower bound) and LH (Hessian

Lipschitz constant) can be bounded for the log-likelihood of the

smoothing distribution using concentration inequalities.
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Flow-dependent 4D-Var

B Due to the chaotic nature of the systems, likelihood is

multimodal if T is too large

B Thus T has to be kept sufficiently short, and previous windows

are taken into account by the prior (background) distribution

B In [Paulin et al., 2017], we have proposed a flow-dependent

Gaussian background distributions by propagating forward the

current Gaussian approximations via the dynamics from the

previous b windows for some b ≥ 1.
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B If Z ∼ N(m,P−1), then for a continuously differentiable function

ϕ, ϕ(Z ) is approximately distributed as

N

(
ϕ(m),

[(
(Jϕ(m))−1

)T
P(Jϕ(m))−1

]−1
)
.

B For a parameter b ≥ 1, we first set P−b := Pfix

B Then set P−b+1 = (J−1
−b )T (P−b + D−b)J−1

−b , . . .

B P−k+1 = (J−1
−k )T (P−k + D−k)J−1

−k , . . .

B P0 = (J−1
−1 )T (P−1 + D−1)J−1

−1 is the flow-dependent precision

matrix for the current interval.
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The following figure illustrates the definition of the prior in a

flow-dependent way:

...
DD-1

t0-Tt0-bT t0 t0+T
D-b

P-b P-b+1

D-b+1

P0
t0-(b-1)T

Figure: Definition of the prior precision matrices in a flow-dependent way. D−k

corresponds to the Hessian of the negative log-likelihood terms from the data in
the interval [t0 − kT , t0 − (k − 1)T ).

B The matrix-vector products Hv are at most b times more

expensive to compute than for fixed background covariances, still

O(d) cost.
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Simulations

B Consider the shallow-water equations, [Salmon, 2015],

∂u

∂t
=

(
−∂u
∂y

+ f

)
v − ∂

∂x

(
1

2
u2 + gh

)
+ ν∇2u − cbu; (10)

∂v

∂t
= −

(
∂v

∂x
+ f

)
u − ∂

∂y

(
1

2
v 2 + gh

)
+ ν∇2v − cbv ; (11)

∂h

∂t
= − ∂

∂x
((h + o)u)− ∂

∂y
((h + o)v). (12)

B Here, u and v are the velocities in the x and y directions, and h

is the the height of the wave, o is the depth of the ocean.
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B The shallow water equations are applied in tsunami modelling.

B [Saito et al., 2011] estimate the initial distribution of the

tsunami waves after the 2011 Japan earthquake.

B They use data from 17 locations in the ocean, where the wave

heights were observed continuously in time.

B We have used these estimates as our initial condition for the

heights, and set the initial velocities to zero (as they are unknown).

B Using publicly available bathymetry data for o, and the above

described initial condition, we have run a simulation of 40 minutes

for our model.
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B We have tested the efficiency of the data assimilation methods

also on this simulated dataset, considering a time interval from 10

to 40 minutes.

B Thus the initial condition corresponds to the value of the model

after 10 minutes.

B The following figures show the evolution of the waves according

to our model, and the results of the data assimilation experiments.

B We have assumed that the heights are observed everywhere, and

the velocities are only observed at 49 points.
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Figure: The height of the tsunami waves (in meters) at 0 mins (grid size
n = 336).
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Figure: Evolution of the height of the tsunami waves at 10 mins (grid size
n = 336).
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Figure: The height of the tsunami waves at 20 mins (grid size n = 336).
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Figure: The height of the tsunami waves at 30 mins (grid size n = 336).
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Figure: The height of the tsunami waves at 40 mins (grid size n = 336).
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Tsunami model 336x336 grid 30 mins, observation scenario 2
3D-Var (run time 71s)
ENKF 100 particles (5438s)
Localized ENKF 200 particles (11388s)
4D-Var b=0 (6295s)
4D-Var b=1 (12620s)
4D-Var b=2 (52842s)

Figure: Relative error of estimates of velocities for tsunami data, all methods.
Setting: n = 336, k = 30, T = 5mins, σZ = 10−2, ∆ = 2km.
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3DVAR (run time 39s)
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Figure: Relative errors in the case of synthetic data for all methods. Setting:
n = 21, k = 1080, T = 3h, σZ = 10−2, ∆ = 10km.
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Conclusion

B By starting Newton’s method at an appropriate initial point

(based on derivatives), we can find the MAP with high probability.

B Flow-dependent prior distributions can improve the performance.

B This method is competitive with state-of-the art data

assimilation techniques for the shallow-water equations.

B Performs better than ENKF and localised ENKF at the same

computational cost when the background and forecast error

covariances are non-localised due to longer assimilation windows.
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Open problems

B Consistency for the flow-dependent case

B Generalise results to infinite dimensional nonparameteric setting.
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	Introduction
	Theory
	Idea of proofs
	Flow-dependent 4D-Var
	References

