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Introduction

Gibbs measures are (non-product) measures on the
con�guration space S Zd , d ≥ 2.

In this talk: S = {−1,+1} (spins) for simplicity but any �nite
set S is ok.

Abstract:
At su�ciently high temperature, we have a Gaussian
concentration bound.
In fact, such a bound holds in Dobrushin’s uniqueness
regime.
For some Gibbs measures at su�ciently low temperature,
we have a ‘stretched exponential’ concentration bound.
These bounds have many consequences.



Boltzmann-Gibbs kernel

γ
(β)
Λ (ω|η) =

exp
(
− βHΛ(ω|η)

)
Z (β)

Λ (η)
, Λ b Zd , ω, η ∈ S Zd

.

 (DLR equation) Gibbs measures on S Zd depending on η in
general.
Parameter β ≥ 0: inverse temperature.
Special case: β = 0 (in�nite temperature)
 uniform product measure ( Gaussian concentration bound).



The ferromagnetic Ising model (Markov random
field)

HΛ(ω|η) = −
∑
i,j∈Λ
‖i−j‖1=1

ωi ωj −
∑

i∈∂Λ, j/∈Λ
‖i−j‖1=1

ωi ηj

ηj = +1, ∀j ∈ Zd (“+-boundary condition”), gives rise to µ+.

Fact (d ≥ 2): there exists a unique Gibbs measure µ for all β < βc ,
whereas there are several ones for all β > βc , depending on η, in fact, two
extremal ones: µ+ and µ− (i.e., ergodic under the shift action).



Phase transition for d = 2

β increases from left to right
‘+’↔ black, ‘−’↔ white

βc = (1/2) sinh−1(1) ≈ 0.4407



The magnetization

Mn(ω) :=
∑

i∈Cn
s0(Ti ω), where s0(ω) = ω0, be the total

magnetization in Cn, and where (Ti ω)j = ωj−i (shift operator).
Then

Mn(ω)

(2n + 1)d

is the magnetization per spin in Cn. For any shift-invariant
probability measure ν on S Zd ,

Eν

[
Mn(ω)

(2n + 1)d

]
= Eν [s0]

is the mean magnetization per site (magnetization, for short) wrt
ν.
The following is well-known for the Ising model (d ≥ 2):

for β < βc , Eµ[s0] = 0 ;
for β > βc , Eµ+ [s0] 6= 0.



Concentration for the Ising model



Let F : S Zd → R and

`i(F) = sup
ω∈S Zd

|F(ω(i))− F(ω)|, i ∈ Zd ,

where ω(i) is obtained from ω by �ipping the spin at i.

Theorem: Gaussian concentration bound (β < β)

Let µ be the (unique) Gibbs measure for the Ising model. There
exists a constant D > 0 such that, for all functions F with∑

i∈Zd `i(F)2 < +∞, one has

Eµ
[

exp(F − Eµ(F))
]
≤ exp

(
D
∑
i∈Zd

`i(F)2
)
.

Remark. As shown by C. Külske, the Gaussian concentration
bound holds in the Dobrushin uniqueness regime with
D = 2(1− c(γ))−2, where c(γ) is Dobrushin’s contraction
coe�cient.



Recall that the Gaussian concentration implies that for all u ≥ 0
one has

µ
(
ω ∈ S Zd

: |F(ω)−Eµ[F ]| ≥ u
)
≤ 2 exp

(
− u2

4D
∑

i∈Zd `i(F)2

)
.

Remark. All local functions satisfy
∑

i∈Zd `i(F)2 < +∞.



At su�ciently low temperature, we can gather all moment bounds to ob-
tain the following. We denote by µ+ the Gibbs measure for the +-phase
of the Ising model.

Theorem: Stretched-exponential concentration bound (β > β)
There exists % = %(β) ∈ (0, 1) and c% > 0 such that for all functions F
with

∑
i∈Zd `i(F)2 < +∞, for all u ≥ 0, one has

µ+
(
ω ∈ S Zd

: |F(ω)− Eµ+ [F ]| ≥ u
)
≤ 4 exp

(
− c% u%(∑

i∈Zd `i(F)2
) %

2

)
.



The basic ingredients in proofs

1 2

45 3

6

7 8 9 10

Enumeration of Zd :

e : Zd → N

(≤ i) := {j ∈ Zd : e(j) ≤ e(i)}

F≤i : σ−�eld generated by ωj, j ≤ i

We have F − E[F ] =
∑
i∈Z2

∆i, ∆i := E[F |F≤i]− E[F |F<i]

and
∆i ≤ (D ω≤i`(F))i

where D ω≤i
i,j := P̂i,+,−

(
ω

(1)
j 6= ω

(2)
j
)

where we maximally couple

P(·|ω<i,+i) and P(·|ω<i,−i).



Applications

Other models besides the standard Ising model: Potts, long-range
Ising, etc.

Ergodic sums in arbitrarily shaped volumes;
Fluctuations in the Shannon-McMillan-Breiman theorem;
First occurrence of a pattern of a con�guration in another
con�guration;
Bounding d-distance by relative entropy;
Fattening patterns;
Speed of convergence of the empirical measure;
Almost-sure central limit theorems.



Application 1: “speed” of convergence of the
empirical measure

Take Λ b Zd and ω ∈ S Zd and let

EΛ(ω) =
1
|Λ|
∑
i∈Λ

δTi ω

where (Ti ω)j = ωj−i (shift operator).

Let µ be an ergodic measure on S Zd . If (Λn)n is a sequence of
cube ↑ Zd (more generally, a van Hove sequence), then

EΛn(ω)
n→∞−−−−→
weakly

µ.

Question: If µ is a Gibbs measure, what is the “speed” of this
convergence?



Kantorovich distance on the set of probability measures on
S Zd :

dKanto(µ1, µ2) = sup
G:S Zd→R
G 1−Lipshitz

(Eµ1(G)− Eµ2(G))

where |G(ω)− G(ω′)| ≤ d(ω, ω′) = 2−k , where k is the
sidelength of the largest cube in which ω and ω′ coincide.

Lemma. Let µ be a probability measure and

F(ω) = sup
G:S Zd→R
G 1−Lipshitz

(
1
|Λ|
∑
i∈Λ

G(Tiω)− Eµ(G)

)
.

Then ∑
i∈Zd

`i(F)2 ≤ cd
|Λ|

where cd > 0 depends only on d. Proof



Ising model at high & low temperature

Gaussian concentration for the empirical measure (β < β)

Let µ be the (unique) Gibbs measure of the Ising model. There
exists a constant C > 0 such that, for all Λ b Zd and for all
u ≥ 0, one has

µ
{
ω ∈ S Zd

:
∣∣∣dKanto(EΛ(ω), µ)− Eµ

[
dKanto(EΛ(·), µ)

]∣∣∣ ≥ u
}

≤ 2 exp
(
− C |Λ|u2).



We denote by µ+ the Gibbs measure for the +-phase of the Ising
model.

Stretched-exponential concentration for the empirical measure
(β > β)
There exist % = %(β) ∈ (0, 1) and a constant c% > 0 such that, for
all Λ b Zd and for all u ≥ 0, one has

µ+
{
ω ∈ S Zd

:
∣∣∣dKanto(EΛ(ω), µ+)− Eµ+

[
dKanto(EΛ(·), µ+)

]∣∣∣ ≥ u
}

≤ 4 exp
(
−c%|Λ|

%
2 u%
)
.



Can we estimate Eµ
[
dKanto(EΛ(·), µ)

]
?

Let
L =

{
G : S Zd → R : G 1-Lipschitz

}
and

ZΛ
G :=

1
|Λ|
∑
i∈Λ

(G ◦ Ti − Eµ(G)) , Λ b Zd .

Then
Eµ
[
dKanto(EΛ(·), µ)

]
= Eµ

(
sup
G∈L
ZΛ
G

)
.

Notice that we have functions de�ned on a Cantor space, which
is really di�erent from the case of, say, [0, 1]k ⊂ Rk .



Theorem

Let µ be a probability measure on S Zd satisfying the Gaussian
concentration bound. Then

Eµ [dKanto (EΛ(·), µ)] �

|Λ|
− 1

2 (1+log |S |)−1 if d = 1

exp

(
− 1

2

(
log |Λ|
log |S |

)1/d
)

if d ≥ 2.

For (aΛ) and (bΛ) indexed by �nite subsets of Zd we denote
aΛ � bΛ if, for every sequence (Λn) such that |Λn| → +∞ as
n→ +∞, we have lim supn

log aΛn
log bΛn

≤ 1.

It is possible to get bounds but they are really messy.



Application 2: Almost-sure central limit theorems
(only part of the story)

This application shows that one can also get limit theorems out of
concentration inequalities.

Informal statement:
If you know that the central limit theorem holds for some
function f : S Zd → R wrt to a shift-invariant probability
measure, and if you can prove that this measure satis�es a
moment concentration bound of order 2, then the almost-sure
central limit theorem holds in the sense of Kantorovich distance.



Given f : S Zd → R and ν a shift-invariant probability measure
on S Zd , the usual form of the CLT is: for all u ∈ R

lim
n→∞

ν

{
ω ∈ S Zd

:

∑
i∈Cn

f (Tiω)

(2n + 1)
d
2
≤ u

}
= G0,σf

(
(−∞, u]

)
where

σ2
f =

∑
i∈Zd

∫
f · f ◦ Ti dν ∈ (0,+∞)

and where G0,σf is the Gaussian measure with mean 0 and
variance σf .



The CLT can be re-written as

lim
n→∞

Eν

[
1{∑

i∈Cn f (Ti·)/(2n+1)
d
2≤u
}] = G0,σf

(
(−∞, u]

)
.

The ASCLT consists in replacing Eν by a point-wise logarithmic
average and get an almost-sure version of the CLT: for all u ∈ R

lim
N→∞

1
logN

N∑
n=1

1
n
1{∑

i∈Cn f (Ti ω)/(2n+1)
d
2≤u
} = G0,σf

(
(−∞, u]

)
for ν-a.e. ω.



ASCLT for the magnetization in the Ising model

We will only formulate two results for f = s0 (magnetization).

To state the theorems, de�ne

dKanto(ν1, ν2) = sup (Eν1(g)− Eν2(g))

where the sup is taken over all functions g : R→ R that are
1-Lipschitz.

Metrizes the weak topology on the set of probability measures on
R with a �rst moment.



High-temperature Ising model

Theorem

Let β < β. Then, for µ-a.e. ω ∈ S Zd , we have

lim
N→∞

dKanto

 1
logN

N∑
n=1

1
n
δ
Mn(ω)/(2n+1)

d
2
,G0,σ2

 = 0

where
σ2 =

∑
i∈Zd

∫
s0 · s0 ◦ Ti dµ ∈ (0,∞).



Low-temperature Ising model

Theorem

Let β > β. Then, for µ+-a.e. ω ∈ S Zd , we have

lim
N→∞

dKanto

 1
lnN

N∑
n=1

1
n
δ

(Mn(ω)−Eµ+ [s0])/(2n+1)
d
2
,G0,σ2

 = 0

where
σ2 =

∑
i∈Zd

∫
s0 · s0 ◦ Ti dµ+ ∈ (0,∞).



Some open questions

1 ‘Close the gap’ between β and β.
2 Write the proof in the low temperature regime in the setting

of Pirogov-Sinai theory.
3 Get the optimal % in

exp

(
− c% u%(∑

i∈Zd `i(F)2
) %

2

)
.
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DLR equation

µ is a Gibbs measure for a given potential Φ if, for all Λ b Zd

and for all A ∈ B(S Zd
)

µ(A) =

∫
dµ(η)

∑
ω′∈Λ

γΛ(ω′|η)1A(ω′ΛηΛc)

where Φ is a real-valued function having two arguments: a �nite
subset of Zd and a con�guration ω ∈ S Zd , and where

HΛ(ω|η) =
∑

Λ′∩Λ6=∅

Φ(Λ′, ωΛηZd\Λ)

where Λ′ runs through the set of �nite subsets of Zd .

Boltzmann-Gibbs kernel



Dobrushin contraction coe�cient

Let
Ci, j(γ) = sup

ω,ω′∈S Zd

ω
Zd\j=ω

′
Zd\j

‖γ{i}(·|ω)− γ{i}(·|ω′)‖∞.

Then in our context Ci,j only depends on i − j and we de�ne

c(γ) =
∑
i∈Zd

C0,i(γ).

Dobrushin’s uniqueness regime: c(γ) < 1.

Gaussian concentration bound



van Hove sequence

A sequence (Λn)n of nonempty �nite subsets of Zd is said to tend
to in�nity in the sense of van Hove if, for each i ∈ Zd , one has

lim
n→+∞

|Λn| = +∞ and lim
n→+∞

|(Λn + i)\Λn|
|Λn|

= 0.

Empirical measure



Proof of the Lemma

Let ω, ω′ ∈ S Zd and G : S Zd → R be a 1-Lipschitz function.
Without loss of generality, we can assume that Eµ(G) = 0. We
have ∑

i∈Λ

G(Ti ω) ≤
∑
i∈Λ

G(Ti ω′) +
∑
i∈Λ

d(Ti ω, Ti ω′).

Taking the supremum over 1-Lipschitz functions thus gives

F(ω)− F(ω′) ≤
∑
i∈Λ

d(Ti ω, Tiω′).

We can interchange ω and ω′ in this inequality, whence

|F(ω)− F(ω′)| ≤
∑
i∈Λ

d(Ti ω, Ti ω′).



Now we assume that there exists k ∈ Zd such that ωj = ω′j for
all j 6= k. This means that d(Ti ω, Ti ω′) ≤ 2−‖k−i‖∞ for all
i ∈ Zd , whence

`k(F) ≤
∑
i∈Λ

2−‖k−i‖∞ .

Therefore, using Young’s inequality,

∑
i∈Zd

`i(F)2 ≤
∑
k∈Zd

∑
i∈Zd

1Λ(i) 2−‖k−i‖∞

2

≤
∑
i∈Zd

1Λ(i)×

 ∑
k∈Zd

2−‖k‖∞

2

.

We thus obtain the desired estimate with
cd =

(∑
k∈Zd 2−‖k‖∞

)2
. �

Kantorovich distance


	Gibbs measures
	The ferromagnetic Ising model
	Concentration inequalities for the Ising model: two regimes
	Some generalities
	Two applications: empirical measure & ASCLT

	Appendix

