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1 High-dimensional convex bodies and concentration

• Lindeberg CLT principle
Historically via coupling, today sums of martingale increments
Condition is that total variance well spread for CLT convolutional effect

• Milman–Talagrand concentration principle = quantitative and nonlinear version

• Actually the concentration phenomenon is at the basis of statistical physics!

• The concentration phenomenon is important for high-dimensional stochastic models, in particular

– statistical mechanics

– randomized algorithms and randomized combinatorial optimization: TSP !

– high-dimensional geometry including convex bodies and vectors/matrices/tensors

• Simplest instance is second moment method

1.1 Archimedes on sphere and cylinder

Theorem 1.1. Maxwell: geometric characterization of isotropic Gaussians.

In Rn , n ≥ 2, a law is at the same time product and rotationally invariant iff it is N (0,σ2In), σ≥ 0.

At the origin of kinetic gas theory in statistical physics, before Boltzmann, maybe known to Herschel.

Proof. We reduce to smooth density f > 0 by regularizing by convolution with N (0,εIn). Then log f (x) =
h1(x1)+·· ·+hn(xn) = g (|x|2) gives h′

i (xi ) = 2g ′(|x|2)xi , and since n ≥ 2, using i ̸= j forces g ′ to be constant.

Theorem 1.2. Mehler: Euclidean spheres and Gaussians.

(i) Z ∼N (0, In) iff Z /|Z | and |Z | are independent with Z /|Z | ∼ Unif(Sn−1) and |Z |2 ∼χ2(n).

(ii) If X ∼ Unif(
p

nSn−1), then projRk (X ) = (X1, . . . , Xk )
d−−−−→

n→∞ N (0, Ik ), for all fixed k ≥ 1.

(iii) If X ∼ Unif(
p

nSn−1), then 〈X ,θ〉 d−−−−→
n→∞ N (0,1) for all choices of θ ∈Sn−1.

Diaconis and Freedman, and Stroock, discovered that this was due to Mehler (1866), not to Poincaré or Borel.
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Proof.

(i) Spherical coordinates: e−
|x|2

2 dx = r n−1e−
r 2
2 dr dσ.

(ii) We have X
d=p

nZ /|Z |, Z ∼ N (0, In) by (i), but (Z1, . . . , Zk ) ∼ N (0, Ik ) while |Z |/pn −−−−→
n→∞ 1 in probability

by the LLN. Therefore
p

n(Z1, . . . , Zk )/|Z | −−−−→
n→∞ N (0, Ik ) in law by the Slutsky lemma. Alternatively, we can

couple the uniform laws on spheres by an infinite sequence Z1, Z2, . . . of iid N (0,1), and the SLLN to get
|Z |/pn −−−−→

n→∞ 1 a.s. therefore
p

n(Z1, . . . , Zk )/|Z | −−−−→
n→∞ (Z1, . . . , Zk ) a.s. hence in law.

(iii) By rotational invariance, we can take θ = e1, and the result follows then from (ii) with k = 1.

Corollary 1.3. High-dimensional concentration around equators and orthogonality.

(i) If X ∼ Unif(
p

nSn−1), then for all r ≥ 0 and all choices of θ ∈Sn−1, denoting Hθ := (Rθ)⊥,

P(distRn (X , Hθ) ≥ r ) −−−−→
n→∞ P(|Z | ≥ r ) ≤ e−

r 2
2 , Z ∼N (0,1).

(ii) If X ,Y ∼ Unif(Sn−1) are independent, then for all r ≥ 0,

P(
p

n|〈X ,Y 〉| ≥ r ) −−−−→
n→∞ P(|Z | ≥ r ) ≤ e−

r 2
2 , Z ∼N (0,1).

Proof.

(i) distRn (X , Hθ) = |〈X ,θ〉|, the law does not depend on θ. The equator is Eθ := Hθ∩
p

nSn−1.

(ii) By Fubini–Tonelli, independence of X and Y , and rotational invariance of the uniform law on the sphere

P(|〈pnX ,Y 〉| ≥ r ) =
∫ (∫

1|〈pnx,y〉|≥rPX (dx)
)
PY (dy) =

∫
P(|〈pnX , y〉| ≥ r )PY (dy) =P(|〈pnX ,e1〉| ≥ r ).

Alternatively, (X ,Y ) = ( Z
|Z | ,

Z ′
|Z ′| ), Z and Z ′ independent ∼N (0, In), and by CLT, LLN, and Slutsky lemma,

p
n〈X ,Y 〉 =p

n

∑n
i=1 Zi Z ′

i

(
p

n(1+o(1)))2
=

∑n
i=1 Zi Z ′

ip
n

(1+o(1)) −→
n→∞ N (0,1).

• Isoperimetric inequality for uniform distribution µ on Sn−1

Discovered by Paul Lévy, Erhard Schmidt independently, inspired by isoperimetry for Lebesgue
For all A ⊂Sn−1, µ(A+B(0,r )) ≥µ(C +B(0,r )) for all r ≥ 0, where C is spherical cap with µ(C ) =µ(A).
Generalized to positively curved Riemannian manifolds by Mikhaïl Gromov
Revisited and generalized to infinite dimension by Dominique Bakry and Michel Ledoux

• Gaussian isoperimetry for µ=N (0, Ik ) on Rk

For all A ⊂Rk , µ(A+B(0,r )) ≥µ(H +B(0,r )) for all r ≥ 0, where H is a half-space with µ(H) =µ(A).
Formulated by Vladimir Sudakov and Boris Tsirelson, Christer Borell independently
Functional form by Sergey Bobkov, revisited and generalized by Dominique Bakry and Michel Ledoux

Actually the law of the projections can be computed explicitly.

Lemma 1.4. Spherical projections.

(i) If X = (X1, . . . , Xn) ∼ Unif(Sn−1), then |(X1, . . . , Xk )|2 = X 2
1 +·· ·+X 2

k ∼ Beta
( k

2 , n−k
2

)
for all 1 ≤ k ≤ n−1.

(ii) If X ∼ Unif(Sn−1), then 〈X ,θ〉 ∼ Beta[−1,1](
n−1

2 , n−1
2 ) with density ∝ (1−x2)

n−3
2+ , for all θ ∈Sn−1.

(iii) If X ∼ Unif(Sn−1), then projRk (X ) follows the multivariate Beta with density ∝ (1−|x|2)
n−k−2

2+ .
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• (ii) : arcsine if n = 2, uniform if n = 3, semicircle if n = 4.

(ii) : we recover
p

n〈X ,θ〉 d−−−−→
n→∞ N (0,1) via (1− x2

n )
n−3

2 −−−−→
n→∞ e−

1
2 x2

.

(ii) : the interpretation with spherical harmonics is known as the Funk–Hecke formula.

• (iii) : case k = 1 (projection on a diameter) gives (ii) by rotational invariance

(iii) : we recover projRk (X )
d−−−−→

n→∞ N (0, Ik ) via (1− |x|2
n )

n−k−2
2 −−−−→

n→∞ e−
1
2 |x|2 .

(iii) : multivariate Beta or Barenblatt profile (nonlinear PDE : porous media equation ∂t u =∆(um), m > 1)

Proof.

(i) From X
d= Z

|Z | , Z ∼N (0, In), we get

X 2
1 +·· ·+X 2

k
d= Z 2

1 +·· ·+Z 2
k

(Z 2
1 +·· ·+Z 2

k )+ (Z 2
k+1 +·· ·+Z 2

n )
= χ2(k)

χ2(k)+χ2(n −k)
= Beta

(k

2
,

n −k

2

)
More generally, marginal of Dirichlet distribution : Gamma(a,1)

Gamma(a,1)+Gamma(b,1) = Beta(a,b).

(ii) By rotational invariance and (i) k = 1, 〈X ,θ〉2 d= 〈X ,e1〉2 = X 2
1 ∼ Beta( 1

2 , n−1
2 ), then

p· and symmetrize.

(iii) Same as for (ii) using rotational symmetrization.

Theorem 1.5. Archimedes sphere and cylinder : direct and reverse form.

(i) If X ∼ Unif(Sn−1), n ≥ 3, then projRn−2 (X ) ∼ Unif(Bn−2).

(ii) If Z ∼N (0, In), n ≥ 1, and E ∼ Exp(1) are independent, then Zp
|Z |2+2E

∼ Unif(Bn).

• (i) we cannot replace n −2 by n −k for k ̸= 2.
(i) n = 3 says that the projection on a diameter is uniform. Geometrically, it is equivalent to Archimedes
historical result : if we place a sphere in a tight cylinder then the surfaces are the same, and this remains the
case for the surface between arbitrary parallel planes orthogonal to the cylinder. This allowed Archimedes
to compute the surface of the sphere. His method is a precursor of infinitesimal calculus.

• Do not confuse with Archimedes principle and Eurêka.

• Archimedes of Syracuse (-287 – -212) was so proud of this discovery that the picture of it was engraved on
his tombstone. This helped his admirer Cicero (-106 – -43) to identify it in -75, 150 years after his murder
by a Roman soldier during the siege of Syracuse.

• Both sides of the Fields Medal are devoted to this theorem! Taught in high schools before modern maths.

• (ii) Useful for simulation and proofs, extends to Bn
p via ∝ e−t p

(Barthe–Guédon–Mendelson–Naor 2005).

Proof.

(i) The law of Y := (X1, . . . , Xn−2) is supported in Bn−2 and is rotationally invariant. Next, the lemma gives

|Y |2 ∼ Beta( n−2
2 ,1), with density ∝ r

n−4
2 , hence |Y | has density ∝ r (r 2)

n−4
2 = r n−3.

(ii) Follows from (i) used for dimension n +2 and Z 2
n+1 +Z 2

n+2 ∼ (χ2(1))∗2 = Gamma( 2
2 , 1

2 ) = Exp( 1
2 ).

Corollary 1.6. CLT for the uniform distribution on the ball.

If X ∼ Unif(
p

nBn) then 〈X ,θ〉 d−−−−→
n→∞ N (0,1) for all θ ∈Sn−1.

• The analogue of the CLT for spheres.
It is probably the most accessible CLT for a non-product convex body.
Enriches the CLT already obtained: spheres (non-convex), and cube (product).
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• All directions are the same due to rotational invariance. This CLT for the convex body Bn is valid for all
directions, while for certain convex bodies such as the cube, certain directions are impossible for the CLT.

• In particular, for θ = e1, we get X1
d−−−−→

n→∞ N (0,1), while for θ = ( 1p
n

, . . . , 1p
n

), we get X1+···+Xnp
n

d−−−−→
n→∞ N (0,1).

Proof. By the reverse Archimedes theorem, X
d=p

nZ /
√

|Z |2 +2E where Z ∼ N (0, In) and E ∼ Exp(1) are inde-
pendent, but 〈Z ,θ〉 ∼N (0, |θ|2) =N (0,1) while |Z |2 +2E = n(1+o(1)) by the LLN.

Unif(
p

nBn) ≈ Unif(
p

nSn−1) ≈N (0, In) ≈ Unif({−1,1}n)

Figure 1: Equivalences in high dimension n. Useful for modelling and in particular spin systems in statistical
mechanics. Geometrically, the sphere with the uniform law behaves like a convex set, and a discrete cube.

Log-concave probability measure = Boltzmann–Gibbs measures with convex energy ∝ e−V

Functional generalization or relaxation of uniform distribution on convex bodies 1K
|K | ∝ e−∞1K c

Theorem 1.7. Klartag : CLT for convex bodies or log-concave measures.

If X is log-concave with E(X ) = 0 and Cov(X ) = In , then there exists εn ↘ 0 and δn ↘ 0 and a measurable
subsetΘn ⊂Sn−1 such that |Θn | ≥ (1−δn)|Sn−1| and supθ∈Θn

∥∥Law(〈X ,θ〉)−N (0,1)
∥∥

TV ≤ εn .

For the cube X ∼ Unif([−p3,
p

3]n), the directions θ ∈ {±e1, . . . ,±en} are obviously impossible.

About the proof. Major achievement of probabilistic and geometric functional analysis. Show that |X | is concen-
trated around

p
n (thin-shell phenomenon) and then use the CLT for

p
nSn−1. The equivalence between thin-

shell bounds and the Gaussian approximation property of typical marginal distributions goes back to Vladimir
Sudakov, Persi Diaconis and David Freedman, and Keith Ball, among others.

1.2 Thin-shell phenomenon

Theorem 1.8. Thin-shell phenomenon.

If X1, . . . , Xn are iid real random variables with m1 = E(X1) = 0, m2 = E(X 2
1 ) = 1, and m4 = E(X 4

1 ) <∞, then

|X |−p
n =p

n
( |X |p

n
−1

)
d−−−−→

n→∞ N (0, m4−1
4 ) where X := (X1, . . . , Xn).

Proof. By the LLN, |X |2
n → m2 = 1 a.s. hence | |X |p

n
−1|→ 0 a.s. By the CLT for (X 2

i )
i≥1

,
p

n
( |X |2

n −1
)→N (0,m4 −1)

in law, and then, by the delta method for
p· at point 1, we get

p
n

( |X |p
n
−1

)→N (0, m4−1
4 ) in law.

• How about X ∼ Unif(K ) for a convex body K , EX = 0 and Cov(X ) = EX X ⊤ = In (aka isotropic position).

• For all 1 ≤ p ≤∞, X ∼ Unif(Bn
p ) has the symmetries of the cube, so E(X ) = 0, Cov(X ) = E(X 2

1 )In = E(|X |2)
n In .

The convex body sB n
p = B n

p (s) with s = 1/
√
E(X 2

1 ) =
√

n/E(|X |2) is isotropic.

• The cube B∞(
p

3) = (
p

3[−1,1])n is isotropic.

Product convex set. Components of X are iid Unif(
p

3[−1,1]), m1 = 0, m2 = 1, m4 = 9
5 ,

√
m4−1

4 = 1p
5
≈ 0.45.

The extremal points
{±p3

}n have norm
p

3n.

• The ball Bn = Bn
2 (1), non-product convex body, the components of X are dependent. The previous the-

orem does not apply but we can explore the phenomenon. Since |X | has density r ∈ [0,1] 7→ nr n−1, with
second moment n

n+2 , we get E(|X |2) = n
n+2 −−−−→

n→∞ 1, and
p

nX is isotropic in high-dimension. Moreover

E(|X |) = n

n +1
and Var(|X |) = n

n +2
−

( n

n +1

)2 = n

(n +2)(n +1)2 =O
( 1

n2

)
,

thus the theorem above extends : in high-dimension Unif(
p

nBn) is concentrated around
p

nSn−1.
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Theorem 1.9. Thin-shell : Klartag-Lehec 2025.

If X is log-concave with E(X ) = 0 and Cov(X ) = In then E((|X |−p
n)2) ≤C where C is universal.

Boaz Klartag → Vitali Milman, proof of the Dvoretzky theorem by concentration of measure.
Lehec → Bernard Maurey, proofs based on stochastic calculus in convex geometry and functional analysis.

About the proof. Major achievement of probabilistic and geometric functional analysis. Relies crucially on stochas-
tic calculus for interpolation (Eldan stochastic localization), and on coupling, among other tools.

If Var(|X |2) ≤C n for a universal constant C > 0 then E((|X |−p
n)2) ≤C . Indeed,

E((|X |−p
n)2) ≤ E

(
(|X |−p

n)2
( |X |+p

np
n

)2)≤ E((|X |2 −n)2)

n
= Var(|X |2)

n
≤C .

If X satisfies Poincaré for |·|2 then by isotropy Var(|X |2) ≤CE(|X |2) =C n. KLS conjecture on Poincaré.

1.3 Sudakov–Tsirelson or Borell theorem

Theorem 1.10. Sudakov–Tsirelson or Borell : concentration for Lipschitz functions.

If X ∼N (0, In) and f :Rn →R, then logEeθ f ≤ θ2

2 ∥ f ∥2
Lip +θE f (X ) for all θ ∈R, in particular

P( f (X ) ≤ E f (X )− r∥ f ∥Lip) ≤ e−
r 2
2 and P( f (X ) ≥ E f (X )+ r∥ f ∥Lip) ≤ e−

r 2
2 , r ≥ 0.

Proof. We reduce first to ∥ f ∥Lip = 1 and E f (X ) = 0 by dilation and translation. The concentration inequalities

come then from the exponential Markov inequality P(± f (X ) ≥ r ) ≤ infθ>0 e−θrEe±θ f ≤ e−supθ≥0(θr− θ2
2 ) = e−

r 2
2 .

To prove the Laplace bound logL(θ) := logEeθ f (X ) ≤ θ2

2 , we can assume that θ > 0, reduce to smooth f by ap-

proximation and Rademacher theorem, so ∥ f ∥Lip := supx ̸=y
| f (x)− f (y)|

|x−y | = ∥|∇ f |∥∞, and then rely on the covariance

representation with f and g = eθ f , θ ≥ 0, using the fact that Yα has the law of X for all α, namely

E f (X )eθ f (X ) = θ
∫ 1

0
E〈∇ f (Xα),∇ f (Yα)〉eθ f (Yα)dα

≤ θ
∫ 1

0
E|∇ f (Xα)||∇ f (Yα)|eθ f (Yα)dα

≤ θ
∫ 1

0
Eeθ f (Yα)dα= θEeθ f (X ),

which gives the differential inequality L′(θ) ≤ θL(θ) hence logEeθ f ≤ θ2

2 .

Theorem 1.11. Houdré : covariance representation.

If X ∼N (0, In), f , g :Rn →R with ∥|∇ f |∥∞ <∞ and ∥|∇g |∥∞ <∞, then

E f (X )g (X )−E f (X )Eg (X ) =
∫ 1

0
E〈(∇ f )(Xα), (∇g )(Yα)〉dα where

(
Xα

Yα

)
∼N

(
0,

(
In αIn

αIn In

))
.

Following Dominique Bakry and Michel Ledoux, we could use alternatively (Xα,Yα) := (X ,αX +
p

1−α2Y ),
Y independent copy of X , α= e−t , in relation with the Mehler formula for Ornstein–Uhlenbeck process, which
suggests extensions to non-negatively curved manifolds and infinite dimensional Markov diffusion operators.

Proof. The vectors X1(= Y1) and X have same law, while X0 and Y0 are independent with same law as X . Thus

E f (X )g (X )−E f (X )Eg (X ) = E f (X1)g (Y1)−E f (X0)g (Y0) =
∫ 1

0
∂αE f (Xα)g (Yα)dα.

By approximation and bilinearity, it suffices to consider the case of trigonometric monomials, namely charac-
teristic functions : f (x) = ei〈u,x〉 and g (x) = ei〈v,x〉, u, v ∈Rn . In this case

E f (Xα)g (Yα) = exp
(
−1

2

(
|u|2 +2α〈u, v〉+ |v |2

))
.
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Now it simply remains to note, using ∇ f (x) = iuei〈u,x〉 and ∇g (x) = ivei〈v,x〉, that

∂αE f (Xα)g (Yα) =−〈u, v〉E f (Xα)g (Yα) = E〈∇ f (Xα),∇g (Yα)〉.

Theorem 1.12. Ibragimov, Sudakov, and Tsirelson : concentration via stochastic calculus.

If X ∼ N (0, In) and f : Rn → R with ∥|∇ f |∥∞ ≤ 1 then f (X )−E f (X )
d= BT with B standard real Brownian

motion and T a stopping time such that T ≤ 1. In particular, by the reflection principle,

P( f (X )−E f (X ) ≥ r ) =P(BT ≥ r ) ≤P
(

sup
0≤t≤1

Bt ≥ r
)
=P(|B1| ≥ r ), r ≥ 0.

The affine case f (x) = 〈a, x〉+b, |a| = 1, shows that this bound is in fact optimal.

Proof. Reminds the Skorokhod embedding theorem, may provide T , but how to get T ≤ 1? Let (Ws )s∈[0,1] be a
standard BM on Rn , and let us consider the martingale Ms = E( f (W1) |Fs ), s ∈ [0,1]. Then M0 = E f (X ), while M1

has the law of f (X ). By the Dambis–Dubins–Schwarz theorem, there exists a real BM B such that (B〈M〉s )0≤s≤1
and (Ms −M0)0≤s≤1 have same law, in particular M1 −M0 = f (X )−E f (X ) has the law of BT with T := 〈M〉1.

It remains to show that 〈M〉1 ≤ 1. Let (Ps )s∈[0,1] be the heat semigroup Ps ( f )(x) = E( f (Ws ) |W0 = x). Then, by
the Markov property, we get Ms = E( f (W1) |Ws ) = P1−s ( f )(Ws ). Next, the Itô formula gives

Mt = M0 +
∫ t

0
∇P1−s ( f )(Ws ) ·dWs , hence 〈M〉t =

∫ t

0
|∇P1−s ( f )|2(Ws )ds.

Now ∇P1−s ( f ) = P1−s∇ f , thus |∇P1−s ( f )| ≤ P1−s |∇ f |, hence ∥|∇P1−s ( f )|∥∞ ≤ 1.

2 Talagrand transportation inequality

The Kullback–Leibler divergence or relative entropy on P (E) is defined by

H(ν |µ) :=


∫
f log f dµ ∈ [0,+∞] if ν≪µ, f = dν

dµ

+∞ otherwise
.

Makes sense since u ∈R+ 7→ u log(u) is convex, and since it is strictly convex, we get H(ν |µ) = 0 iff ν=µ.

Lemma 2.1. Legendre duality for H as a convex function of f .

H(ν |µ) = sup
g

eg ∈L1(µ)

(∫
g dν− log

∫
eg dµ

)
and log

∫
eg dµ= sup

ν
H(ν|µ)<∞

(∫
g dν−H(ν |µ)

)

and these suprema are achieved for g = log dν
dµ and dν= eg∫

eg dµ
dµ respectively.

Also known as Donsker–Varadhan (large deviations) or Gibbs (statistical mechanics) variational formula.

2.1 Bobkov–Götze theorem

Let Pp (E) be the set of probability measures µ on the Polish space (E ,d) with finite moment of order p ≥ 1:∫
d(x0, x)p dµ(x) <∞ for some and thus all x0 ∈ E .

The Wasserstein or Monge–Kantorovich or coupling or transportation cost distance on Pp (E) is1

Wp (ν,µ) :=
(

inf
π∈Π(µ,ν)

Ï
E×E

d(x, y)pπ(dx,dy)
)1/p =

(
inf

(X ,Y )
X∼µ,Y ∼ν

E(d(X ,Y )p )
)1/p

, µ,ν ∈Pp (E),

1It can be shown that Wp is indeed a distance on Pp (E), and that Wp (µn ,µ) → 0 iff µn → µ narrowly and in the sense of moments up to
order p. Studied by Leonid Vitalyevich Kantorovich (1912 – 1986), Nobel prize in Economics 1975, remarkable for a Soviet mathematician,
but also Cédric Villani (1973 – ), Fields medalist, as a relaxation of the optimal transport problem of Gaspard Monge (1746 – 1818). Major
contributions by Yann Brenier (1957 – ), Luis Caffarelli (1948 – ), Alessio Figalli (1984 – ).
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whereΠ(µ,ν) is the set of probability measures on E ×E with marginals µ and ν. It is convex and contains µ⊗ν.
The following lemma makes use of the Polish assumption.

Lemma 2.2. Kantorovich–Rubinstein duality.

W1(ν,µ) = sup
∥ f ∥Lip≤1

(∫
f dν−

∫
f dµ

)
where ∥ f ∥Lip := sup

x ̸=y

| f (x)− f (y)|
d(x, y)

.

Theorem 2.3. Bobkov–Götze: Talagrand transportation inequality for W1.

For all µ ∈P1(E) and constant c > 0, the following properties are equivalent:

(i) Sub-Gaussian bound on Laplace transform of Lipschitz functions:

log
∫

eθ f dµ≤ θ2 c

4
∥ f ∥2

Lip +θ
∫

f dµ for all θ ∈R and f : E →R Lipschitz

(ii) Talagrand transportation inequality T1 : W1(ν,µ) ≤√
cH(ν |µ) for all ν ∈P1(E)

• Works for N (0, In) with c = 2 thanks to the Sudakov–Tsirelson–Borell theorem

• Gozlan–Léonard extension to arbitrary tails: logL f −µ f
∥ f ∥Lip

≤α⇔α∗(W1) ≤ H, for any convex α with α(0) = 0.

Same proof! Covers Weibull-type exp(−t p ) and Bernstein-type exp(−min(t 2/σ2, t )) tails.

Proof. Let us prove that (i)⇒(ii). We can assume in (i) that θ > 0 by replacing f by − f , and assume additionally
that

∫
f dµ= 0 and ∥ f ∥Lip = 1 by translation and dilation. Now (i) rewrites for such a function f : E →R as∫

eg dµ≤ 1 where g := θ f −θ2 c
4 .

The variational formula for the relative entropy gives, for all ν ∈P1(E) and this g ,∫ (
θ f −θ2 c

4

)
dν=

∫
g dν≤ H(ν |µ).

We can still recover (i) by taking dν∝ eg dµ which gives
(∫

eg dµ
)

log
∫

eg dµ≤ 0 since u logu ≤ 0 implies u ≤ 1.
Now, since

∫
f dµ= 0, the previous property involving H rewrites as∫

f dν−
∫

f dµ=
∫

f dν≤ c

4
θ+ 1

θ
H(ν |µ).

By taking the infimum over θ > 0 we get ∫
f dν−

∫
f dµ≤√

cH(ν |µ).

Taking sup f gives (ii) by Kantorovich–Rubinstein duality. Finally, the arguments are reversible.

Remark 2.4. Total variation as a singular case.

If d is the atomic distance d(x, y) = 1x ̸=y , then E(d(X ,Y )) = E(1X ̸=Y ) =P(X ̸= Y ), ∥ f ∥Lip = osc( f ), and the
Kantorovich–Rubinstein duality expresses that W1 is then the total variation distance:

W1(µ,ν) = inf
(X ,Y )

X∼µ,Y ∼ν
P(X ̸= Y ) = sup

∥ f ∥∞≤ 1
2

∫
f d(µ−ν).

In this case, in the Bobkov–Götze equivalence, (i) is Hoeffding while (ii) is Pinsker.

2.2 Infimum convolution and quadratic cost

We set BL(E) := { f : E →R : ∥ f ∥∞ <∞,∥ f ∥Lip <∞}.
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Lemma 2.5. Kantorovich and infimum convolution.

Wp (ν,µ)p = sup
f ∈BL(E)

(∫
Q( f )dν−

∫
f dµ

)
wherea Q( f )(x) := inf

y∈E

(
f (y)+d(x, y)p)

.

aIn other words Wp (ν,µ)p = sup{
∫

g dν−∫
f dµ : f , g ∈ BL(E), g (x)− f (y) ≤ d(x, y)p , x, y ∈ E }.

Theorem 2.6. Bobkov–Götze: Talagrand transportation inequality for Wp .

For all p ≥ 1, µ ∈Pp (E), and c > 0, the following statements are equivalent:

(i) Talagrand transportation inequality T ′
p : Wp (ν,µ)p ≤ cH(ν |µ) for all ν ∈Pp (E)

(ii) Exponential integrability for infimum convolution: for all f ∈ BL(E),

log
∫

exp
(1

c

(
Q( f )−

∫
f dµ

))
dµ≤ 0.

• (i) Tp ≡ T ′
p iff p = 2, T2 implies T1 since W1(µ,ν)2 ≤ W2(µ,ν)2 by Jensen inequality.

• (ii) for p = 2 implies sub-Gaussian concentration for Lipschitz functions log
∫

eθ f dµ≤ c
4θ

2∥ f ∥2
Lip+θ

∫
f dµ.

Indeed, after reduction to
∫

f dµ= 0, θ = 1, and f bounded, this follows from (ii) together with

1

c
Q(c f )(x) ≥ f (x)+ inf

y∈E

(
−∥ f ∥Lipd(x, y)+ d(x, y)2

c

)
≥ f (x)− c

4
∥ f ∥2

Lip.

Proof. (ii)⇒(i). For any f ∈ BL(E) the property (ii) gives∫
exp

(
1

c

(
Q( f )−

∫
f dµ

))
dµ≤ 1.

It follows then by the variational formula for H with an arbitrary ν ∈Pp (E) and g := 1
c

(
Q( f )−∫

f dµ
)
,∫

1

c

(
Q( f )−

∫
f dµ

)
dν=

∫
g dν≤ H(ν |µ).

Taking the supremum over f gives (i) by the Kantorovich duality.
(i)⇒(ii). From the Kantorovich duality and then (i), for all f ∈ BL(E) and ν ∈Pp (E),∫ (

Q( f )−
∫

f dµ

)
dν=

∫
Q( f )dν−

∫
f dµ= Wp (ν,µ)p ≤ cH(ν |µ).

Since f and Q( f ) are bounded, we can take
dν

dµ
∝ exp

(
1

c

(
Q( f )−

∫
f dµ

))
to get (ii).

Theorem 2.7. Talagrand W2 inequality for Gaussian measures.

If (E ,d) = (Rn , |·|2), n ≥ 1, then W2(ν,N (0, In)) ≤√
2H(ν |N (0, In)) for all ν ∈P2(Rn).

• Still works for 1 ≤ p < 2 but fails for p > 2.

• Brenier theorem: W2(µ,ν)2 = E(|Tµ→ν(X )−X |2), X ∼µ.

About the proof. Thanks to the additivity of | · |22, the functional inequality W2(·,µ) ≤ √
cH(· |µ) tensorizes. The

first proof of the theorem, due to Michel Talagrand, is by tensorization, the case n = 1 being obtained by mono-
tone rearrangement T := F−1

ν ◦ Fµ. There is an alternative proof by Sergey Bobkov, Ivan Gentil, and Michel
Ledoux, a follow-up of the works of Felix Otto and Cédric Villani, based on the logarithmic Sobolev inequality
and a Hamilton–Jacobi equation, which can be seen as the analogue of the heat equation for infimum convolu-
tions. This requires to control the gradient of Q( f ). This can be done using the fact that for all f ∈ BL(Rn), the
infimum-convolution u(t , x) = Qt ( f )(x) := t−1Q(t f )(x), solves the Hamilton–Jacobi equation (nonlinear PDE)
∂t u + 1

4 |∇x u|22 = 0 on (0,∞)×Rn , and u(0, ·) = f . This is known as the Hopf–Lax solution.

Furthermore, it was proved by Nathaël Gozlan and Michel Ledoux that the Talagrand W2 inequality is actually
equivalent to a dimension-free sub-Gaussian concentration inequality for Lipschitz functions.
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