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Few words around the circular law

An elementary model

Elementary matrix model

Random variable X taking values inMn(C)X11 · · · X1n
...

. . .
...

Xn1 · · · Xnn


Independent and equally distributed entries Xij

Behavior of the spectrum of X ?
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Few words around the circular law

Two kinds of spectra

Algebraic and geometric spectra of A ∈Mn(C)

Algebraic spectrum: eigenvalues (complex)

roots in C of characteristic polynomial PA(z) := det(A− zI)
A = UTU∗ and diag(T) = λ1(A), . . . , λn(A)
|λ1(A)| > · · · > |λn(A)|
Spectral radius: |λ1(A)|

Geometric spectrum: singular values (real > 0)

half lengths of principal axes of ellipsoid {Ax : ‖x‖2 = 1}
A = UDV∗ and D = diag(s1(A), . . . , sn(A))
s1(A) > · · · > sn(A)
Operator norm: s1(A) = max‖x‖2=1 ‖Ax‖2
sk(A) = λk(

√
AA∗)

If AA∗ = A∗A (normal matrix) then sk(A) = |λk(A)|
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Few words around the circular law

Two kinds of spectra

Weyl inequalities and determinental rigidity

Weyl inequalities: (= if k = n)

|λ1(A) · · ·λk(A)| 6 s1(A) · · · sk(A)

Counting measures:

µA =
δλ1(A) + · · ·+ δλn(A)

n
et νA =

δs1(A) + · · ·+ δsn(A)

n

Determinental rigidity:

|λ1(A) · · ·λn(A)| = s1(A) · · · sn(A) = |det(A)|∫
log(|λ|)dµA(λ) =

∫
log(s)dµ√AA∗(s) =

1

n
log |det(A)|
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Few words around the circular law

Two kinds of spectra

Sensitivity to perturbations

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

0 · · ·
. . . 1

0 · · · 0


B =



0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

0 · · ·
. . . 1

εn · · · 0



AA∗ = diag(1, . . . ,1,0) BB∗ = diag(1, . . . ,1, εn)

An = 0, λk(A) = 0 Bn = εnIn, λk(B) = ε
1/n
n ei2πk/n{

νA → δ1

µA = δ0

{
νB → δ1

µB → Uniform(C(0,1))
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Few words around the circular law

Two kinds of spectra

Random matrix model

Random variable X taking values inMn(C)X11 · · · X1n
...

. . .
...

Xn1 · · · Xnn


Independent and equally distributed entries Xij

Behavior of µX and νX when n→∞ ?
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Few words around the circular law

Quarter circular law and circular law

Quarter circular law (Universality)

Singular values of 1√
n
X
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Few words around the circular law

Quarter circular law and circular law

Circular law (Universality)

Eigenvalues 1√
n
X
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Few words around the circular law

Quarter circular law and circular law

Theorem (Quarter circular law – Marchenko-Pastur)

If Var(X11) = 1 then

ν 1√
n
X −→n→∞

√
4− x21[0,2]

π
dx

Theorem (Circular law – Girko, Bai, G.-T, Pan-Zou, Tao-Vu)

If Var(X11) = 1 then

µ 1√
n
X −→n→∞

1D(0,1)
π

dxdy
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Quarter circular law and circular law
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Few words around the circular law

Quarter circular law and circular law

Support convergence and edge behavior

If Var(X11) = 1 then quatercircular and circular laws give a.s.

lim
n→∞

s1(
1√
n
X) > 2 and lim

n→∞
|λ1(

1√
n
X)| > 1

Theorem (Support convergence (Bai,Yin,Silverstein,...))

If E(X11) = 0 and E(|X11|4) <∞ then a.s.

lim
n→∞

s1(
1√
n
X) = 2 and lim

n→∞
|λ1(

1√
n
X)| = 1.

Idea: Gelfand spectral radius formula: for any matrix norm ‖·‖,

|λ1(A)| = lim
k→∞

∥∥Ak∥∥1/k

11/ 31
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Few words around the circular law

Quarter circular law and circular law

Why this 1√
n

scaling?

Second moment stabilization:∫
s2 dν 1√

n
X(s) =

1

n

n∑
k=1

1

n
s2
k(X)

=
1

n2
Tr(XX∗)

=
1

n2

n∑
i,j=1

|Xij|2

a.s.−→
n→∞

E(|X11|2)

Law of Large Numbers!
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Few words around the circular law

Quarter circular law and circular law

Proof of the quarter circular law

H Hermitian n× n and ηH := 1
n

∑n
k=1 δλk(H)

Moments method (combinatorics)∫
R
xr dηH(x) =

1

n
Tr(Hr)

Resolvent method (limiting equation)∫
R

1

x− z
dηH(x) =

1

n
Tr
(
(H− zI)−1

)
Enough on R for the quarter circular law (H = AA∗)

Not enough on C for the circular law!
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Few words around the circular law

Quarter circular law and circular law

Tightness for free

From the strong law of large numbers (SLLN):∫
s2 dν 1√

n
X(s) =

1

n2

n∑
k=1

sk(X)2 =
1

n2

n∑
i,j=1

|Xij|2
a.s.−→

n→∞
E(|X11|2).

From Weyl’s majorization inequalities:

∫
|λ|2 dµ 1√

n
X(λ) =

1

n2

n∑
k=1

|λk(X)|26 1

n2

n∑
k=1

sk(X)2

a.s.−→
n→∞

E(|X11|2).

Conclusion: a.s. (µ 1√
n
X)n>1 is tight

14/ 31
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Few words around the circular law

Quarter circular law and circular law

Analysis of a Gaussian case (1/3)

Complex Ginibre Ensemble G = (Gij)16i,j6n iid N (0, 1
2 I2)

The matrix G has density on Cn2

π−n
2
e−

∑n
i,j=1 |Gij|2 = π−n

2
e−Tr(GG

∗) = π−n
2
e−

∑n
k=1 sk(G)

2

Change of variable: G = UTU∗ ↔ (U, T = D + N)

Tr(GG∗) = Tr(TT∗) = Tr(DD∗) + Tr(NN∗)

(λ1(G), . . . , λn(G)) has density

ϕn(z1, . . . , zn) =
n!

1!2! · · ·n!πn2 exp

(
−

n∑
k=1

|zk|2
) ∏

16i<j6n

|zi−zj|2.

15/ 31
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Few words around the circular law

Quarter circular law and circular law

Analysis of a Gaussian case (2/3)

γ(z) := e−|z|
2
, H`(z) := 1√

`!
z`,

K(z, z′) :=
n−1∑
`=0

H`(z)H`(z
′)∗

Then the k-points correlation is

ϕ
(k)
n (z1, . . . , zk) =

(n− k)!

n!πk2 γ(z1) · · · γ(zk) det [K(zi, zj)]16i,j6k

The 1-point correlation is the density of E(µG):

ϕ
(1)
n (z) =

1

π
γ(z)

(
1

n

n−1∑
`=0

|H`|2(z)

)
=

e−|z|
2

nπ

n−1∑
`=0

|z|2`

`!
.

Following Mehta, this gives the mean circular law:

lim
n→∞

nϕ
(1)
n (
√
nz) = π−11[0,1](|z|).
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Few words around the circular law

Quarter circular law and circular law

Analysis of a Gaussian case (3/3)

Kostlan’s observation:

(|λ1(G)|, . . . , |λn(G)|) law
= (Z(1), . . . ,Z(n))

where Z1, . . . ,Zn are independent with Z2
k ∼ Gamma(k,1)

Following Rider, this gives

|λ1( 1√
n
G)| a.s.−→

n→∞
1

Moreover if γn := log(n/2π)− 2 log(log(n)) then

√
4nγn

(
|λ1( 1√

n
G)| − 1−

√
γn
4n

)
law−→

n→∞
Gumbel.

(the Gumbel law has cdf x 7→ e−e
−x

on R)
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Few words around the circular law

Quarter circular law and circular law

Large deviations (1/2)

Setting V(z) = |z|2, the density of λ1( 1√
n
G), . . . , λn( 1√

n
G) is

cne
−n

∑n
i=1 V(zi)

∏
i<j

|zi − zj|2

Rewriting in terms of µn := 1
n

∑n
k=1 δzk :

cn exp

−n2

1

n

n∑
k=1

V(zk)− 2

n2

∑
i<j

log |zi − zj|


Approximation as n� 1:

≈ cn exp
(
−n2I(µn)

)
where I is the logarithmic energy with external field:

I(µ) :=

∫
V(z)dµ+

∫∫
log

1

|z − w|
dµ(z)dµ(w).
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Few words around the circular law

Quarter circular law and circular law

Large deviations (2/2)

Hiai-Petz and BenArous-Zeitouni: for every set S

P(µ 1√
n
G ∈ S) ≈ exp

(
−n2 inf

S
I
)
.

inf I = 0 achieved only by circular law C1 (Saff-Totik)

It follows by the first Borel-Cantelli lemma that

µ 1√
n
G −→n→∞

C1.

Note : logarithmic energy = - Voiculescu free entropy
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Few words around the circular law

Quarter circular law and circular law

Proof of the circular law

Logarithmic potential of a probability measure µ on C

Uµ(z) =

∫
C

log
1

|z − λ|
dµ(λ) = −(log |·| ∗ µ)(z)

Fundamental solution of the Laplace equation

∆ log |·| D
′

= 2πδ0

Inversion formula
−∆Uµ

D′
= 2πµ
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Few words around the circular law

Quarter circular law and circular law

Hermitization and Brown spectral measure

Hermitization

−UµA(z) =

∫
C

log |z − λ|dµA(λ)

=
1

n
log |det(A− zI)|

=
1

n
log det

√
(A− zI)(A− zI)∗

=

∫ ∞
0

log(s)dνA−zI(s).

µA =
1

2π
∆

∫ ∞
0

log(s)dνA−zI(s)

µA ⇐ (νA−zI)z∈C
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Few words around the circular law

Quarter circular law and circular law

Hermitization and Brown spectral measure

If limn→∞ νAn−zI = νz weakly then do we have

lim
n→∞

µAn = lim
n→∞

1

2π
∆

∫ ∞
0

log(s)dνAn−zI(s)

?
=

1

2π
∆

∫ ∞
0

log(s)dνz(s)

Problem: singularity of the logarithm near 0 and∞
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Few words around the circular law

Quarter circular law and circular law

Lemma (Hermitization (Girko))

If An is a random variable onMn(C) and if for all z ∈ C
νAn−zI −→n→∞

νz (deterministic)

log is uniformly integrable for νAn−zI

Then

µAn −→n→∞

1

2π
∆

∫ ∞
0

log(s)dνz(s).

Allows to prove the circular law (take An = 1√
n
X)

lim
n→∞

∫
s−p dνAn−zI(s) <∞ and lim

n→∞

∫
sp dνAn−zI(s) <∞

sn−k( 1√
n
X − zI) and s1( 1√

n
X − zI)
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Few words around the circular law

Quarter circular law and circular law

Large singular values (easy!)

For any 0 < p 6 2 and any z ∈ C we have

lim
n→∞

∫
sp dν 1√

n
X−zI(s) <∞.

This follows from the strong law of large numbers:∫
s2 dν 1√

n
X−zI(s) =

1

n

n∑
k=1

sk(
1√
n
X − zI)2

=
1

n

n∑
i,j=1

| 1√
n
Xij − zIij|2

a.s.
= O(1).
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Few words around the circular law

Quarter circular law and circular law

Small singular values (difficult)

We need to show that for some p > 0,

lim
n→∞

∫
s−p dν 1√

n
X−zI(s) <∞.

a.s. sn( 1√
n
X + M) > n−b (Tao-Vu)

a.s. for n1−γ 6 i 6 n− 1, sn−i(
1√
n
X + M) > c i

n (Tao-Vu)

Putting all together: if si = si(
1√
n
X − zI) then

1

n

n∑
i=1

s−pi 6 c−p
1

n

n∑
i=1

(n
i

)p
+ 2n−γnbp.

The Riemann sum for
∫ 1

0 s
−p ds converges if 0 < p < 1

This leads to take 0 < p < min(γ/b,1).
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Few words around the circular law

Quarter circular law and circular law

Other occurrences of the circular law (1/2)

?-algebra A with involution ∗ and tracial state τ

Example: A =Mn(C), ·∗ = ·̄>, τ = 1
nTr

?-law of a ∈ A = mixed moments in a and a∗:

τ(aε1 · · · aεm), ε1, . . . , εm ∈ {1, ∗}, m > 1

If a1, a2, . . . are free elements of A with same ?-law

with τ(a) = 0 and cov(1
2(a + a∗), 1

2i(a− a∗)) = I2

Then: (Free Central Limit Theorem, Voiculescu 1990)

a1 + · · ·+ an√
n

?−→
n→∞

c

where c := w1 + iw2 with w1,w2 free semicircle elements.

Boltzmann and Shlyakhtenko, Brown and Śniady
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Few words around the circular law

Quarter circular law and circular law

Other occurrences of the circular law (2/2)

Markov polytope (Bordenave-Caputo-C. 2010)
√
nD−1X where Dii = Xi1 + · · ·+ Xin

Matrices with iid log-concave rows (Adamzack 2011)

Matrices with given row sum (Tao, Nguyen-Vu 2012)

Birkhoff polytope (Nguyen 2012)

Matrices with log-concave uncond. law (Adam.-C. 2013)

Weyl random polynomials (Kabluchko-Zaporozhets 2012)

Pn(z) =
n∑

k=0

ξk√
k!
zk
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Few words around the circular law

Beyond the circular law

Beyond the circular law: infinite variance (1/3)

P(|X11| > t) ∼ t−α, 0 < α < 2

Theorem (Bordenave-Caputo-C. 2011)

If P(|X11| > t) ∼ t−α then µ 1
nα X
→ µα.
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Few words around the circular law

Beyond the circular law

Beyond the circular law: random generators (2/3)

1√
n

(X − D) with Dii = X11 + · · ·+ Xnn

Theorem (Bordenave-Caputo-C. 2012)

If K = Cov(X11) then µ 1√
n
(X−D) → µc�gK .
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Few words around the circular law

Beyond the circular law

Beyond the circular law: random graphs (3/3)

Uniform law on {n vertices oriented d-regular graphs}

Random adjacency matrix X with {0,1} entries

Oriented Kesten-McKay conjecture:

µX −→
n→∞

d2(d− 1)

π(d2 − |z|2)2
1{|z|<

√
d}dxdy

Brown measure of U1 � · · ·� Ud (Haagerup-Larsen)

We recover the circular law when d→∞
Progresses (2012): Rudelson-Vershynin, Basak-Dembo
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Few words around the circular law

Beyond the circular law

Thank you!
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