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About non-Hermitian random matrices

LAn elementary model

Elementary matrix model

B Random variable X taking values in M,(C)
X11 -+ Xin
an Xnn
B Independent and equally distributed entries Xj;
B Behavior of the spectrum of X ?
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About non-Hermitian random matrices

LTwo kinds of spectra

Algebraic and geometric spectra of A € M,(C)

B Algebraic spectrum: eigenvalues (complex)
» roots in C of characteristic polynomial P4(z) := det(A — z/)
> A= UTU* and diag(T) = A\1(A), ..., \(A)
> [M(A) = = [a(A)|
» Spectral radius: |A\1(A)
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Algebraic and geometric spectra of A € M,(C)

B Algebraic spectrum: eigenvalues (complex)
» roots in C of characteristic polynomial P4(z) := det(A — z/)
» A= UTU* and diag(T) = M1 (A),. .., A (A)
> [Mi(A)] = = [M(4)]
» Spectral radius: |A1(A)|
B Geometric spectrum: singular values (real > 0)
» half lengths of principal axes of ellipsoid {Ax : ||x||, = 1}
» A =UDV* and D = diag(s1(A),...,sn(A))
> S1(A) = = 5,(A)
» Operator norm: s1(A) = max||,=1 [|Ax|,
| 4 Sk(A) = )\k(\/AA*)
B AA* = A*A (normal matrix) iff Vk, sg(A) = [A(A)]
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About non-Hermitian random matrices

LTwo kinds of spectra

Weyl inequalities and determinental rigidity

B Weyl inequalities: (= if k = n)

[A1(A) - A(A)] < 51(A) -~ - sk(A)
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Weyl inequalities and determinental rigidity

B Weyl inequalities: (= if k = n)
[A1(A) - A(A)] < 51(A) -~ - sk(A)
B Counting measures:

5 I 5 R
A = A1(A) + 0, (4) et uy— s1(4) T + 0s,(A)

n n
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About non-Hermitian random matrices

LTwo kinds of spectra

Weyl inequalities and determinental rigidity

B Weyl inequalities: (= if k = n)
[A1(A) - A(A)] < 51(A) -~ - sk(A)
B Counting measures:

_ @t o Osia) - + I,

t =
HA n et va n

B Determinental rigidity:
[AL(A) -~ An(A)| = s1(A)---sn(A) = | det(A)|

106N dia(¥) = [1og(s) i aze(s) = log| det(a)
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About non-Hermitian random matrices

LTwo kinds of spectra

Sensitivity to perturbations

0 1 0 0 0 1 0 0

0 O 1 0 0 O 1 0
A: B:

0 1 0 1

0 0 €n 0
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About non-Hermitian random matrices

LTwo kinds of spectra

Sensitivity to perturbations

0o 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
A= B —
0 1 0 1
0 0 n 0
AA* :dlag(l,,l70) BB* :djag(]_’...7l75n)
A" = O’)\k(A) =0 B" — 5nln,)\k(B) _ sr];/neiZTrk/n
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About non-Hermitian random matrices

LTwo kinds of spectra

Sensitivity to perturbations

0 1 0 0 0 1 0 0
0 O 1 0 0 0 1 0
A = B =
0 1 0 1
0 0 €n 0
AA* = diag(1,...,1,0) BB* = diag(1,...,1,e,)
A" =0, (A) =0 B" = enlp, Ac(B) = &5/ "™/
va — 51 v — 61
ua = do us  — Uniform(C(0, 1))
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About non-Hermitian random matrices

LTwo kinds of spectra

Random matrix model

B Random variable X taking values in M,(C)
X1 - Xin
Xm -+ Xpn

B Independent and equally distributed entries Xj;

B | Behavior of ux and vx whenn — o ?
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About non-Hermitian random matrices

LQuarter circular law and circular law

Quarter circular law (Universality)

sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

o
os 0 s B os 1 s 2

: 1
Singular values of %X
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About non-Hermitian random matrices

LQuarter circular law and circular law

Circular law (Universality)

Eigenvalues for Gaussian entries Eigenvalues for Bernoull entries

05

05

; 1
Eigenvalues %X
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About non-Hermitian random matrices

Quarter circular law and circular law

Theorem (Quarter circular law — Marchenko-Pastur)
vaal"(X]_]_) =1 then

\/4—X21[0 2]
v, — 20 gy
v/n” n—oo T

Theorem (Circular law — Girko, Bai, G.-T, Pan-Zou, Tao-Vu)

IfVar(Xll) =1 then

1p(0,1)
oo v

dxdy

5
b

n” n
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About non-Hermitian random matrices

LQuarter circular law and circular law

ModuleCircleLaw ——
QuarterCircle

0.8 - ]

0.6 4

0.4 - 1

02 r ]
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About non-Hermitian random matrices

LQuarter circular law and circular law

Support convergence and edge behavior
If Var(X11) = 1 then quatercircular and circular laws give a.s.

1
lim 51( X)>2 and lim [Ai(—=X)| >

n—so0 f n—soo f
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Quarter circular law and circular law

Support convergence and edge behavior
If Var(X11) = 1 then quatercircular and circular laws give a.s.

1 1
lim s;(—=X) >2 and lim [\ (—=X)| >

oo /N 07 nooo AN

Theorem (Support convergence (Bai,Yin,Silverstein,...))

IfE(X11) = 0 and E(|X11|*) < oo then a.s.

1 1
lim sl(TX) =2 and nILm |A1(%X)| =1.
oo

n—oo
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Quarter circular law and circular law

Support convergence and edge behavior
If Var(X11) = 1 then quatercircular and circular laws give a.s.

1 1
lim s;(—=X) >2 and lim [\ (—=X)| >

oo /N 07 nooo AN

Theorem (Support convergence (Bai,Yin,Silverstein,...))

IfE(X11) = 0 and E(|X11|*) < oo then a.s.

1 . 1
nll_)rgosl(TX) =2 and nI|_>rro10|>\1(%X)| =L

Idea: Gelfand spectral radius formula: for any matrix norm
1/k

— k
M(A)] = lim []A%]
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About non-Hermitian random matrices

LQuarter circular law and circular law

Why this \% scaling?
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Second moment stabilization:

n

[Favse) =3 25k

k=1
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Second moment stabilization:

n

1 1
/52 dVﬁX(s) = > Es,f(X)
k=1
1 *
= STr(xX")
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About non-Hermitian random matrices

LQuarter circular law and circular law

Why this f scaling?

Second moment stabilization:
11
2 _ 4 12
/S dva x(s) = Zl —s(X)
=—Tr XX*
STr(Xx")

= n2 Z |XU‘2

ij=1
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About non-Hermitian random matrices

LQuarter circular law and circular law

Why this \% scaling?

Second moment stabilization:

1 -1
/52 dVﬁX(s) = n;nsi(x)

1 *
= S Tr(Xx")

1 n
2
=3 > X
ij=1
2% EB(|X11]?)
n—oo

Law of Large Numbers!
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About non-Hermitian random matrices

LQuarter circular law and circular law

Proof of the quarter circular law

B H Hermitian n x nand ny := £ >0 _1 6y, m)
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About non-Hermitian random matrices

LQuarter circular law and circular law

Proof of the quarter circular law

B H Hermitiann x nand ny := £ 301 65, (w)
B Moments method (combinatorics)

r _ 1 r
/RX dnr(x) = ETT(H )

B Resolvent method (limiting equation)

/ L () = %Tr((H —z) )
R

X—Z

B Enough on R for the quarter circular law (H = AA*)

B | Not enough on C for the circular law! ‘
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About non-Hermitian random matrices

LQuarter circular law and circular law

Tightness for free

From the strong law of large numbers (SLLN):

/S dv X(S 2 Z Z |XI] 2 n:S E ’XII‘ )

ij=1
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About non-Hermitian random matrices

LQuarter circular law and circular law

Tightness for free

From the strong law of large numbers (SLLN):

/S dv X(S 2 Z Z |XI] 2 nis E ’XII‘ )

ij=1

From Weyl’'s majorization inequalities:

1 < 1 <
2 Z |/\k(X)‘2<rTz ZSK(X)2
k=1 k=1
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About non-Hermitian random matrices

LQuarter circular law and circular law

Tightness for free

From the strong law of large numbers (SLLN):

/S dv X(S 2 Z Z |XI] 2 nis E ’XII‘ )

ij=1

From Weyl’'s majorization inequalities:
1 1 o
a.s.
/ AP s x(3) = 5 DI 5 Dose(X)? 25 E(Xal).
k=1 k=1

Conclusion: a.s. (¢ 1 y)n>1 is tight
vn
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About non-Hermitian random matrices

LQuarter circular law and circular law

Analysis of a Gaussian case (1/3)

B Complex Ginibre Ensemble G = (Gj)1<j<n iid (0, 3/2)
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About non-Hermitian random matrices

LQuarter circular law and circular law

Analysis of a Gaussian case (1/3)

B Complex Ginibre Ensemble G = (Gj)1<j<n iid (0, 3/2)
B The matrix G has density on cr

7'('7”26_ >l IGy1? _ ﬂ_fnzefTr(GG*) _ anzef > h_; sk(G)?

B Change of variable: G = UTU* <+ (U, T =D + N)
B Tr(GG*) = Tr(TT*) = Tr(DD*) + Tr(NN*)
B (\1(G),...,\n(G)) has density

n
on(Z1, ... ,2n) = Chexp (— > |zk|2> II lz-z*
k=1

1<i<j<n
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About non-Hermitian random matrices

LQuarter circular law and circular law

Analysis of a Gaussian case (2/3)

B The 1-point correlation is the density of Eug:

PN il Zl 2|2
0
—0
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About non-Hermitian random matrices

LQuarter circular law and circular law

Analysis of a Gaussian case (2/3)

B The 1-point correlation is the density of Eug:

e—lz? Nt |z|2e

NN
on ' (2) = e %K!

B Following Mehta, this gives the mean circular law:

Ilm ngon (fz) 011(\2\)
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About non-Hermitian random matrices

LQuarter circular law and circular law

Analysis of a Gaussian case (3/3)

B Kostlan’'s observation:

(MG, An(G))) 2 (Zay, - - Z(m)

where Z1,...,Z, are independent with ZZ ~ Gamma(k, 1)
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LQuarter circular law and circular law

Analysis of a Gaussian case (3/3)

B Kostlan’'s observation:

(MG, An(G))) 2 (Zay, - - Z(m)

where Z1,...,Z, are independent with ZZ ~ Gamma(k, 1)
B Following Rider, this gives

1 a.s.
M(Z6)| 251

B Moreover if v, := log(n/27) — 2 log(log(n)) then

V 4”’Yn<!)\1(\}ﬁG)| -1 Z;;) 2% Gumbel.

n—oo
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About non-Hermitian random matrices

LQuarter circular law and circular law

Analysis of a Gaussian case (3/3)

B Kostlan’s observation:

(MG, An(G))) 2 (Zay, - - Z(m)

where Z1,...,Z, are independent with ZZ ~ Gamma(k, 1)
B Following Rider, this gives

1 a.s.
M(6)] 251
B Moreover if v, := log(n/27) — 2 log(log(n)) then

V 4”’Yn<!)\1(\}ﬁG)| -1 %> 2% Gumbel.

4n ) n—oo

B Universality: C.-Péché (2014)
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About non-Hermitian random matrices

LQuarter circular law and circular law

Large deviations (1/2)

B Setting V(z) = |z

2, the density of Al(%G), oo An(XG)is
cre "X VO Tz - g

i<j
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LQuarter circular law and circular law

Large deviations (1/2)

B Setting V(z) = |z

2, the density of Al(%G), oo An(XG)is
cre "X VO Tz - g

i<j

B Rewriting in terms of p, := 2 370, 0y,

1 2
Cn eXp —n E a V(Zk) - niz - |Og |Z,‘ - Zj|
= i<j
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About non-Hermitian random matrices

LQuarter circular law and circular law

Large deviations (1/2)

B Setting V(2) = |z
cre "X VO Tz - g

i<j

2, the density of Al(%G), - /\n(%G) is

B Rewriting in terms of pip := 2 37, 0y,

1o 2
2
cnexp | —n°| — Z V(zg) — = Z log |z; — zj]
k=1 i<j
B Approximationasn > 1:
~ cpexp (—n*Z(pn))

where 7 is the logarithmic energy with external field:

1(0) = [V@)du+ [[ 109 du@)du(w)

|z —w|
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About non-Hermitian random matrices

LQuarter circular law and circular law

Large deviations (2/2)

B Hiai-Petz and BenArous-Zeitouni: for every S ¢ M;(C)

P ~ —n%infZ ).
(M%GGS) exp( nin )
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B Hiai-Petz and BenArous-Zeitouni: for every S ¢ M;(C)

P ~ —n%infZ ).
(M%GGS) exp( nin )

B infprq,(c)Z = 0 achieved only by circular law C1 (Saff-Totik)
B It follows by the first Borel-Cantelli lemma that
Hi-~— Cy.

1
ﬁG n—oo

B Logarithmic energy = - Voiculescu free entropy
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About non-Hermitian random matrices

LQuarter circular law and circular law

Large deviations (2/2)

B Hiai-Petz and BenArous-Zeitouni: for every S ¢ M;(C)

P ~ —n?infZ ).
(M%GGS) exp( nin )

B infprq,(c)Z = 0 achieved only by circular law C1 (Saff-Totik)
B It follows by the first Borel-Cantelli lemma that

1 — C1.
M%Gn%oo 1

B Logarithmic energy = - Voiculescu free entropy
B Interacting particles in dim > 2: Gozlan-C.-Zitt (2014)
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About non-Hermitian random matrices

LQuarter circular law and circular law

Proof of circular law (1/4) — Logarithmic potential

B Logarithmic potential of a probability measure pon C

Uu(2) = /C 09 17— 41() = ~(log ||+ 1)(2
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About non-Hermitian random matrices

LQuarter circular law and circular law

Proof of circular law (1/4) — Logarithmic potential

B Logarithmic potential of a probability measure pon C

1
Uu@) = [ 109 - du(x) = ~(log || * 1)(2
c |lz—A|
B Fundamental solution of the Laplace equation

Alog || Z 274,
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About non-Hermitian random matrices

LQuarter circular law and circular law

Proof of circular law (1/4) — Logarithmic potential

B Logarithmic potential of a probability measure pon C
1
Uu(2) = [ log = du(A) = ~(log-| « 1) 2)
c |lz—A|
B Fundamental solution of the Laplace equation

Alog || Z 274,

B Inversion formula
Dl
AU, = 27
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About non-Hermitian random matrices

Proof of circular law (2/4) — Hermitization

B Hermitization and Brown spectral measure

~Ua(2) = [ Ioglz = Al da()

1
= log |[det(A — zI)|

1
= Elogdet\/ —zl)(A — zI)*

= /Ooolog(s) dva—z(s).
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B Hermitization and Brown spectral measure

~Ua(2) = [ Ioglz = Al da()

1
= log |[det(A — zI)|

1
= Elogdet\/ —zl)(A — zI)*

= /Ooolog(s) dva—z(s).
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About non-Hermitian random matrices

Proof of circular law (2/4) — Hermitization

B Hermitization and Brown spectral measure

~Ua(2) = [ Ioglz = Al da()

1
= log |[det(A — zI)|

1
= Elogdet\/ —zl)(A — zI)*

= /Ooolog(s) dva—z(s).

1 o
= oA / log(s) dva_(s)
™ 0

B <= (Va—z)zec
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About non-Hermitian random matrices

LQuarter circular law and circular law

Proof of circular law (3/4) — Hermitization

If limp—oo Va,—z1 = vz Weakly then do we have
I|m pa, = I|m A/ log(s) dva,—z(S)

A/ log(s) du,(s)

Problem: singularity of the logarithm near 0 and o
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About non-Hermitian random matrices

Quarter circular law and circular law

Proof of circular law (4/4) — Hermitization

Lemma (Hermitization (Girko, Tao-Vu, Bordenave-C.))

If An is @a random variable on M,(C) and if for all z € C

B vy, — v, (deterministic)

n—oo

B log is uniformly integrable for va,_z

Then
1 o0
Ua, — —A/ log(s) du,(s).
0

n—oo 27

B Allows to prove the circular law (take A, = ﬁX)
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About non-Hermitian random matrices

Quarter circular law and circular law

Proof of circular law (4/4) — Hermitization

Lemma (Hermitization (Girko, Tao-Vu, Bordenave-C.))

If An is @a random variable on M,(C) and if for all z € C
B vy, — v, (deterministic)
n—oo
B log is uniformly integrable for va,_z
Then

(e.o]

1
pa, —> 5—A [ log(s)duy(s).

n—oo 27 0
B Allows to prove the circular law (take A, = ﬁX)

| n@ sPdva,—z(s) < oo and n@ /s” dva,—z(s) < o

n sn,k(%X — zl) and 51(\%X — 2l
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About non-Hermitian random matrices

LQuarter circular law and circular law

Other occurrences of the circular law (1/2)

B x-algebra A with involution * and tracial state
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About non-Hermitian random matrices

LQuarter circular law and circular law

Other occurrences of the circular law (1/2)

B x-algebra A with involution x and tracial state 7
B Example: A = M,(C), -* ,T=1iTr
B x-law of a € A = mixed moments in a and a*:

T(ael‘_.aé‘m)’ 51,...,€m€{15*}7 m>1

B If a1, a,,... are free elements of A with same x-law
B with 7(a) = 0 and cov(3(a + a*), 3(a — a*)) = I
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where ¢ := wj + iw, with wy, w> free semicircle elements.
B Boltzmann and Shlyakhtenko, Brown and Sniady
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B Markov polytope (Bordenave-Caputo-C. 2010)
VnD71X where Dj=Xj+---+ X,

Matrices with iid log-concave rows (Adamczak 2011)
Matrices with given row sum (Tao, Nguyen-Vu 2012)

Birkhoff polytope (Nguyen 2012)
Matrices with log-concave uncond. law (Adam.-C. 2013)
Matrices with exchangeable entries (Adam.-C.-Wolff 2014)

Weyl random polynomials (Kabluchko-Zaporozhets 2012)
s
k Kk
Pn(z) = z
n(2) k;, N
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Beyond the circular law: random generators (2/2)

1 .
7(X— D) with D,',' =X11+ -+ Xnn

Jn

Theorem (Bordenave-Caputo-C. 2012)

Spec of 50 fid Lin'"2 with n=500 and X12 Exp(1)-1
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About non-Hermitian random matrices

Beyond the circular law

Beyond the circular law: two conjectures (1/2)

Conjecture (Bernoulli invertibility conjecture)

If (Aij)1<ij<n are i.i.d. Bernoulli £1 then

P(sn(A) = 0) = P(det(A) = 0) = (% + o,,%o(1))n.

Progresses: l/ﬁ (Bourgain-Vu-Wood 2010)

29/ 32



About non-Hermitian random matrices

Beyond the circular law

Beyond the circular law: two conjectures (2/2)

Conjecture (Kesten-McKay oriented d-regular graphs)

IfP1,...,Pqyarei.i.d. n x n Haar permutation matrices then

d?(d—-1)
HPyt-+Py m1{|z|<\/g}dXdy

Brown measure of Uy BB - - - B Uy (Haagerup-Larsen)

Progresses: Rudelson-Vershynin (2012), Basak-Dembo (2012),
Ben Arous & Dang (2014)
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Thank you!

31/ 32



About non-Hermitian random matrices

Bonus for curiosity!

Lemma (Rows and operator norm of the inverse (RV))

Let A € My(C) with rows Ry, ...,R, then

n~Y2 min dist(R;,R_;) < sn(A) < min dist(R;,R_;).

1<i<n 1<isn

Lemma (Rows and trace norm of the inverse (TV))
Let1 <m < n. IfA e Mpn(C) has full rank then

m m
D si(A)72 = dist(Ri,R_;) .
i=1 i=1
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