Djalil Chafaï

Université Paris-Dauphine

Adamczak, Bordenave, Caputo, Gozlan, Péché, Wolff, Zitt

High Dimensional Probability VII Cargèse, Corsica May 27, 2014

2 Two kinds of spectra

- 2 Two kinds of spectra
- 3 Quarter circular law and circular law

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 Two kinds of spectra
- 3 Quarter circular law and circular law

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ● ● ● ●

4 Beyond the circular law

Elementary matrix model

Random variable X taking values in $\mathcal{M}_n(\mathbb{C})$

$$\begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nn} \end{pmatrix}$$

- Independent and equally distributed entries X_{ij}
- Behavior of the spectrum of X ?

Algebraic and geometric spectra of $A \in \mathcal{M}_n(\mathbb{C})$

Algebraic spectrum: eigenvalues (complex)

- ▶ roots in \mathbb{C} of characteristic polynomial $P_A(z) := \det(A zI)$
- $A = UTU^*$ and diag $(T) = \lambda_1(A), \ldots, \lambda_n(A)$

$$\blacktriangleright |\lambda_1(\mathbf{A})| \ge \cdots \ge |\lambda_n(\mathbf{A})|$$

Spectral radius: $|\lambda_1(A)|$

Algebraic and geometric spectra of $A \in \mathcal{M}_n(\mathbb{C})$

Algebraic spectrum: eigenvalues (complex)

- ▶ roots in \mathbb{C} of characteristic polynomial $P_A(z) := \det(A zI)$
- $A = UTU^*$ and $diag(T) = \lambda_1(A), \dots, \lambda_n(A)$

$$\blacktriangleright |\lambda_1(A)| \ge \cdots \ge |\lambda_n(A)|$$

Spectral radius: $|\lambda_1(A)|$

Geometric spectrum: singular values (real \ge 0)

▶ half lengths of principal axes of ellipsoid
$$\{Ax : ||x||_2 = 1\}$$

•
$$A = UDV^*$$
 and $D = diag(s_1(A), \ldots, s_n(A))$

►
$$s_1(A) \ge \cdots \ge s_n(A)$$

• Operator norm:
$$s_1(A) = \max_{\|x\|_2=1} \|Ax\|_2$$

$$\triangleright \ s_k(A) = \lambda_k(\sqrt{AA^*})$$

Algebraic and geometric spectra of $\mathsf{A} \in \mathcal{M}_n(\mathbb{C})$

Algebraic spectrum: eigenvalues (complex)

- ▶ roots in \mathbb{C} of characteristic polynomial $P_A(z) := \det(A zI)$
- $A = UTU^*$ and $diag(T) = \lambda_1(A), \ldots, \lambda_n(A)$

$$\blacktriangleright |\lambda_1(A)| \ge \cdots \ge |\lambda_n(A)|$$

Spectral radius: $|\lambda_1(A)|$

Geometric spectrum: singular values (real \ge 0)

▶ half lengths of principal axes of ellipsoid
$$\{Ax : ||x||_2 = 1\}$$

•
$$A = UDV^*$$
 and $D = diag(s_1(A), \ldots, s_n(A))$

►
$$s_1(A) \ge \cdots \ge s_n(A)$$

• Operator norm:
$$s_1(A) = \max_{\|x\|_2=1} \|Ax\|_2$$

$$\blacktriangleright s_k(A) = \lambda_k(\sqrt{AA^*})$$

AA^{*} = A^{*}A (normal matrix) iff $\forall k, s_k(A) = |\lambda_k(A)|$

- Two kinds of spectra

Weyl inequalities and determinental rigidity

• Weyl inequalities: (= if k = n)

$$|\lambda_1(A)\cdots\lambda_k(A)|\leqslant s_1(A)\cdots s_k(A)$$

Two kinds of spectra

Weyl inequalities and determinental rigidity

• Weyl inequalities: (= if
$$k = n$$
)

$$|\lambda_1(A)\cdots\lambda_k(A)|\leqslant s_1(A)\cdots s_k(A)$$

Counting measures:

$$\mu_{A} = \frac{\delta_{\lambda_{1}(A)} + \dots + \delta_{\lambda_{n}(A)}}{n} \quad \text{et} \quad \nu_{A} = \frac{\delta_{s_{1}(A)} + \dots + \delta_{s_{n}(A)}}{n}$$

Weyl inequalities and determinental rigidity

• Weyl inequalities: (= if
$$k = n$$
)

$$|\lambda_1(A)\cdots\lambda_k(A)|\leqslant s_1(A)\cdots s_k(A)$$

Counting measures:

$$\mu_{A} = \frac{\delta_{\lambda_{1}(A)} + \dots + \delta_{\lambda_{n}(A)}}{n} \quad \text{et} \quad \nu_{A} = \frac{\delta_{s_{1}(A)} + \dots + \delta_{s_{n}(A)}}{n}$$

Determinental rigidity:

$$\begin{aligned} |\lambda_1(A)\cdots\lambda_n(A)| &= s_1(A)\cdots s_n(A) &= |\det(A)| \\ \int \log(|\lambda|) \, d\mu_A(\lambda) &= \int \log(s) \, d\mu_{\sqrt{AA^*}}(s) &= \frac{1}{n} \log|\det(A)| \end{aligned}$$

Sensitivity to perturbations

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & \cdots & & \ddots & 1 \\ 0 & \cdots & & & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & \cdots & & \ddots & 1 \\ \varepsilon_n & \cdots & & & 0 \end{pmatrix}$$

Sensitivity to perturbations

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & \cdots & & \ddots & 1 \\ 0 & \cdots & & & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & \cdots & & \ddots & 1 \\ \varepsilon_n & \cdots & & & 0 \end{pmatrix}$$

$$\begin{aligned} AA^* &= \operatorname{diag}(1, \dots, 1, 0) \\ B^n &= 0, \lambda_k(A) = 0 \end{aligned} \qquad BB^* &= \operatorname{diag}(1, \dots, 1, \varepsilon_n) \\ B^n &= \varepsilon_n I_n, \lambda_k(B) = \varepsilon_n^{1/n} e^{i2\pi k/n} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sensitivity to perturbations

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & \cdots & & \ddots & 1 \\ 0 & \cdots & & & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \\ 0 & \cdots & & \ddots & 1 \\ \varepsilon_n & \cdots & & & 0 \end{pmatrix}$$

$$\begin{aligned} AA^* &= \operatorname{diag}(1, \dots, 1, 0) & BB^* &= \operatorname{diag}(1, \dots, 1, \varepsilon_n) \\ A^n &= 0, \lambda_k(A) = 0 & B^n &= \varepsilon_n I_n, \lambda_k(B) &= \varepsilon_n^{1/n} e^{i2\pi k/n} \\ \begin{cases} \nu_A &\to \delta_1 \\ \mu_A &= \delta_0 \end{cases} & \begin{cases} \nu_B &\to \delta_1 \\ \mu_B &\to \operatorname{Uniform}(C(0, 1)) \end{cases} \end{aligned}$$

Random matrix model

Random variable X taking values in $\mathcal{M}_n(\mathbb{C})$

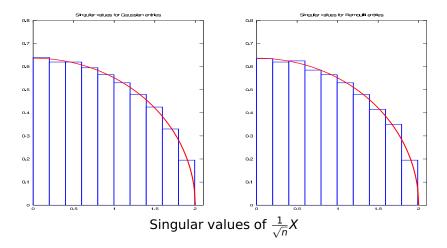
$$\begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nn} \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ● ● ● ●

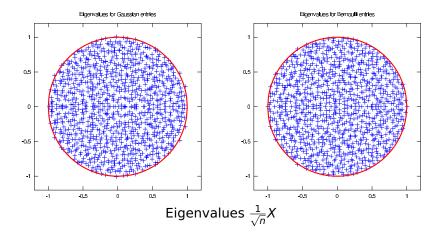
Independent and equally distributed entries X_{ii}

Behavior of μ_X and ν_X when $n \to \infty$?

Quarter circular law (Universality)



Circular law (Universality)



Theorem (Quarter circular law – Marchenko-Pastur)

If $Var(X_{11}) = 1$ then

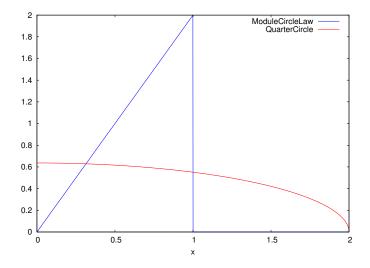
$$\nu_{\frac{1}{\sqrt{n}}x} \xrightarrow[n \to \infty]{} \frac{\sqrt{4 - x^2} \mathbf{1}_{[0,2]}}{\pi} dx$$

Theorem (Circular law – Girko, Bai, G.-T, Pan-Zou, Tao-Vu)

If $Var(X_{11}) = 1$ then

$$\mu_{\frac{1}{\sqrt{n}}X} \xrightarrow[n \to \infty]{} \frac{\mathbf{1}_{D(0,1)}}{\pi} dx dy$$

▲ロト▲母ト▲目ト▲目ト 目 のへの



Support convergence and edge behavior

If $Var(X_{11}) = 1$ then quatercircular and circular laws give a.s.

$$\lim_{n\to\infty} s_1(\frac{1}{\sqrt{n}}X) \geqslant 2 \quad \text{and} \quad \lim_{n\to\infty} |\lambda_1(\frac{1}{\sqrt{n}}X)| \geqslant 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Support convergence and edge behavior

If $Var(X_{11}) = 1$ then quatercircular and circular laws give a.s.

$$\lim_{n \to \infty} s_1(\frac{1}{\sqrt{n}}X) \geqslant 2 \quad \text{and} \quad \lim_{n \to \infty} |\lambda_1(\frac{1}{\sqrt{n}}X)| \geqslant 1$$

Theorem (Support convergence (Bai,Yin,Silverstein,...))

If $\mathbb{E}(X_{11}) = 0$ and $\mathbb{E}(|X_{11}|^4) < \infty$ then a.s.

$$\lim_{n\to\infty}s_1(\frac{1}{\sqrt{n}}X)=2 \quad and \quad \lim_{n\to\infty}|\lambda_1(\frac{1}{\sqrt{n}}X)|=1.$$

Support convergence and edge behavior

If $Var(X_{11}) = 1$ then quatercircular and circular laws give a.s.

$$\lim_{n \to \infty} s_1(\frac{1}{\sqrt{n}}X) \geqslant 2 \quad \text{and} \quad \lim_{n \to \infty} |\lambda_1(\frac{1}{\sqrt{n}}X)| \geqslant 1$$

Theorem (Support convergence (Bai,Yin,Silverstein,...))

If $\mathbb{E}(X_{11}) = 0$ and $\mathbb{E}(|X_{11}|^4) < \infty$ then a.s.

$$\lim_{n\to\infty}s_1(\frac{1}{\sqrt{n}}X)=2 \quad and \quad \lim_{n\to\infty}|\lambda_1(\frac{1}{\sqrt{n}}X)|=1.$$

Idea: Gelfand spectral radius formula: for any matrix norm $\|\cdot\|$,

$$|\lambda_1(\mathbf{A})| = \lim_{k \to \infty} \left\| \mathbf{A}^k \right\|^{1/k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quarter circular law and circular law

Why this $\frac{1}{\sqrt{n}}$ scaling?

Quarter circular law and circular law

Why this
$$\frac{1}{\sqrt{n}}$$
 scaling?

Second moment stabilization:

$$\int s^2 \, d\nu_{\frac{1}{\sqrt{n}}X}(s) = \frac{1}{n} \sum_{k=1}^n \frac{1}{n} s_k^2(X)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Quarter circular law and circular law

Why this
$$\frac{1}{\sqrt{n}}$$
 scaling?

Second moment stabilization:

$$\int s^2 \, d\nu_{\frac{1}{\sqrt{n}}X}(s) = \frac{1}{n} \sum_{k=1}^n \frac{1}{n} s_k^2(X)$$
$$= \frac{1}{n^2} \operatorname{Tr}(XX^*)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Why this
$$\frac{1}{\sqrt{n}}$$
 scaling?

Second moment stabilization:

$$\int s^2 d\nu_{\frac{1}{\sqrt{n}}X}(s) = \frac{1}{n} \sum_{k=1}^n \frac{1}{n} s_k^2(X)$$
$$= \frac{1}{n^2} \operatorname{Tr}(XX^*)$$
$$= \frac{1}{n^2} \sum_{i,j=1}^n |X_{ij}|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Why this
$$\frac{1}{\sqrt{n}}$$
 scaling?

Second moment stabilization:

$$\int s^2 d\nu_{\frac{1}{\sqrt{n}}X}(s) = \frac{1}{n} \sum_{k=1}^n \frac{1}{n} s_k^2(X)$$
$$= \frac{1}{n^2} \operatorname{Tr}(XX^*)$$
$$= \frac{1}{n^2} \sum_{i,j=1}^n |X_{ij}|^2$$
$$\stackrel{\text{a.s.}}{\xrightarrow{n \to \infty}} \mathbb{E}(|X_{11}|^2)$$

Law of Large Numbers!

13/32

Proof of the quarter circular law

H Hermitian $n \times n$ and $\eta_H := \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k(H)}$

Proof of the quarter circular law

H Hermitian $n \times n$ and $\eta_H := \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k(H)}$

Moments method (combinatorics)

$$\int_{\mathbb{R}} x^r \, d\eta_H(x) = \frac{1}{n} \mathrm{Tr}(H^r)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof of the quarter circular law

H Hermitian $n \times n$ and $\eta_H := \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k(H)}$

Moments method (combinatorics)

$$\int_{\mathbb{R}} x^r \, d\eta_{\mathcal{H}}(x) = \frac{1}{n} \mathrm{Tr}(\mathcal{H}^r)$$

Resolvent method (limiting equation)

$$\int_{\mathbb{R}} \frac{1}{x-z} \, d\eta_{H}(x) = \frac{1}{n} \operatorname{Tr} \left((H-zI)^{-1} \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof of the quarter circular law

H Hermitian $n \times n$ and $\eta_H := \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k(H)}$

Moments method (combinatorics)

$$\int_{\mathbb{R}} x^r \, d\eta_{\mathcal{H}}(x) = \frac{1}{n} \mathrm{Tr}(\mathcal{H}^r)$$

Resolvent method (limiting equation)

$$\int_{\mathbb{R}} \frac{1}{x-z} \, d\eta_H(x) = \frac{1}{n} \operatorname{Tr}((H-zI)^{-1})$$

Enough on $\mathbb R$ for the quarter circular law ($H = AA^*$)

Proof of the quarter circular law

H Hermitian $n \times n$ and $\eta_H := \frac{1}{n} \sum_{k=1}^n \delta_{\lambda_k(H)}$

Moments method (combinatorics)

$$\int_{\mathbb{R}} x^r \, d\eta_{\mathcal{H}}(x) = \frac{1}{n} \mathrm{Tr}(\mathcal{H}^r)$$

Resolvent method (limiting equation)

$$\int_{\mathbb{R}} \frac{1}{x-z} \, d\eta_H(x) = \frac{1}{n} \operatorname{Tr}((H-zI)^{-1})$$

Enough on \mathbb{R} for the quarter circular law ($H = AA^*$)

Not enough on \mathbb{C} for the circular law!

Tightness for free

From the strong law of large numbers (SLLN):

$$\int s^2 d\nu_{\frac{1}{\sqrt{n}}X}(s) = \frac{1}{n^2} \sum_{k=1}^n s_k(X)^2 = \frac{1}{n^2} \sum_{i,j=1}^n |X_{ij}|^2 \xrightarrow[n \to \infty]{a.s.} \mathbb{E}(|X_{11}|^2).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tightness for free

From the strong law of large numbers (SLLN):

$$\int s^2 d\nu_{\frac{1}{\sqrt{n}}X}(s) = \frac{1}{n^2} \sum_{k=1}^n s_k(X)^2 = \frac{1}{n^2} \sum_{i,j=1}^n |X_{ij}|^2 \xrightarrow[n \to \infty]{a.s.} \mathbb{E}(|X_{11}|^2).$$

From Weyl's majorization inequalities:

$$\frac{1}{n^2} \sum_{k=1}^n |\lambda_k(X)|^2 \leq \frac{1}{n^2} \sum_{k=1}^n s_k(X)^2$$

Tightness for free

From the strong law of large numbers (SLLN):

$$\int s^2 d\nu_{\frac{1}{\sqrt{n}}X}(s) = \frac{1}{n^2} \sum_{k=1}^n s_k(X)^2 = \frac{1}{n^2} \sum_{i,j=1}^n |X_{ij}|^2 \xrightarrow[n \to \infty]{a.s.} \mathbb{E}(|X_{11}|^2).$$

From Weyl's majorization inequalities:

$$\int |\lambda|^2 d\mu_{\frac{1}{\sqrt{n}}X}(\lambda) = \frac{1}{n^2} \sum_{k=1}^n |\lambda_k(X)|^2 \leq \frac{1}{n^2} \sum_{k=1}^n s_k(X)^2 \xrightarrow[n \to \infty]{a.s.} \mathbb{E}(|X_{11}|^2).$$

Conclusion: a.s. $(\mu_{\frac{1}{\sqrt{n}}X})_{n \geqslant 1}$ is tight

Analysis of a Gaussian case (1/3)

Complex Ginibre Ensemble $G = (G_{ij})_{1 \le i,j \le n}$ iid $\mathcal{N}(0, \frac{1}{2}I_2)$

Complex Ginibre Ensemble G = (G_{ij})_{1≤i,j≤n} iid N(0, ½I₂)
 The matrix G has density on C^{n²}

$$\pi^{-n^2} \mathbf{e}^{-\sum_{i,j=1}^n |G_{ij}|^2} = \pi^{-n^2} \mathbf{e}^{-\mathrm{Tr}(GG^*)} = \pi^{-n^2} \mathbf{e}^{-\sum_{k=1}^n s_k(G)^2}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Complex Ginibre Ensemble G = (G_{ij})_{1≤i,j≤n} iid N(0, ½I₂)
 The matrix G has density on C^{n²}

$$\pi^{-n^2} \mathbf{e}^{-\sum_{i,j=1}^n |G_{ij}|^2} = \pi^{-n^2} \mathbf{e}^{-\operatorname{Tr}(GG^*)} = \pi^{-n^2} \mathbf{e}^{-\sum_{k=1}^n s_k(G)^2}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Change of variable: $G = UTU^* \leftrightarrow (U, T = D + N)$

Complex Ginibre Ensemble G = (G_{ij})_{1≤i,j≤n} iid N(0, ½I₂)
 The matrix G has density on C^{n²}

$$\pi^{-n^2} \mathbf{e}^{-\sum_{i,j=1}^n |G_{ij}|^2} = \pi^{-n^2} \mathbf{e}^{-\operatorname{Tr}(GG^*)} = \pi^{-n^2} \mathbf{e}^{-\sum_{k=1}^n s_k(G)^2}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

■ Change of variable:
$$G = UTU^* \leftrightarrow (U, T = D + N)$$

■ $Tr(GG^*) = Tr(TT^*) = Tr(DD^*) + Tr(NN^*)$

Complex Ginibre Ensemble G = (G_{ij})_{1≤i,j≤n} iid N(0, ½I₂)
 The matrix G has density on C^{n²}

$$\pi^{-n^2} e^{-\sum_{i,j=1}^n |G_{ij}|^2} = \pi^{-n^2} e^{-\operatorname{Tr}(GG^*)} = \pi^{-n^2} e^{-\sum_{k=1}^n s_k(G)^2}$$

Change of variable:
$$G = UTU^* \leftrightarrow (U, T = D + N)$$

Tr(GG^*) = Tr(TT^*) = Tr(DD^*) + Tr(NN^*)
($\lambda_1(G), \dots, \lambda_n(G)$) has density

$$\varphi_n(z_1,\ldots,z_n) = c_n \exp\left(-\sum_{k=1}^n |z_k|^2\right) \prod_{1 \leqslant i < j \leqslant n} |z_i - z_j|^2.$$

The 1-point correlation is the density of $\mathbb{E}\mu_G$:

$$\varphi_n^{(1)}(z) = \frac{e^{-|z|^2}}{n\pi} \sum_{\ell=0}^{n-1} \frac{|z|^{2\ell}}{\ell!}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The 1-point correlation is the density of $\mathbb{E}\mu_{G}$:

$$\varphi_n^{(1)}(z) = \frac{e^{-|z|^2}}{n\pi} \sum_{\ell=0}^{n-1} \frac{|z|^{2\ell}}{\ell!}$$

Following Mehta, this gives the mean circular law:

$$\lim_{n\to\infty}n\varphi_n^{(1)}(\sqrt{n}z)=\frac{1}{\pi}\mathbf{1}_{[0,1]}(|z|).$$

Kostlan's observation:

$$(|\lambda_1(G)|,\ldots,|\lambda_n(G)|) \stackrel{\mathsf{law}}{=} (Z_{(1)},\ldots,Z_{(n)})$$

where Z_1, \ldots, Z_n are independent with $Z_k^2 \sim \text{Gamma}(k, 1)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kostlan's observation:

$$(|\lambda_1(G)|,\ldots,|\lambda_n(G)|) \stackrel{\mathsf{law}}{=} (Z_{(1)},\ldots,Z_{(n)})$$

where Z_1, \ldots, Z_n are independent with $Z_k^2 \sim \text{Gamma}(k, 1)$ Following Rider, this gives

$$|\lambda_1(\frac{1}{\sqrt{n}}G)| \xrightarrow[n \to \infty]{a.s.} 1$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Kostlan's observation:

$$(|\lambda_1(G)|,\ldots,|\lambda_n(G)|) \stackrel{\mathsf{law}}{=} (Z_{(1)},\ldots,Z_{(n)})$$

where Z_1, \ldots, Z_n are independent with $Z_k^2 \sim \text{Gamma}(k, 1)$ Following Rider, this gives

$$|\lambda_1(\frac{1}{\sqrt{n}}G)| \xrightarrow[n \to \infty]{a.s.} 1$$

• Moreover if $\gamma_n := \log(n/2\pi) - 2\log(\log(n))$ then

$$\sqrt{4n\gamma_n}\left(|\lambda_1(\frac{1}{\sqrt{n}}G)|-1-\sqrt{\frac{\gamma_n}{4n}}
ight)\stackrel{\text{law}}{\underset{n\to\infty}{\longrightarrow}} \text{Gumbel}.$$

Kostlan's observation:

$$(|\lambda_1(G)|,\ldots,|\lambda_n(G)|) \stackrel{\mathsf{law}}{=} (Z_{(1)},\ldots,Z_{(n)})$$

where Z_1, \ldots, Z_n are independent with $Z_k^2 \sim \text{Gamma}(k, 1)$ Following Rider, this gives

$$|\lambda_1(\frac{1}{\sqrt{n}}G)| \xrightarrow[n \to \infty]{a.s.} 1$$

• Moreover if $\gamma_n := \log(n/2\pi) - 2\log(\log(n))$ then

$$\sqrt{4n\gamma_n} \bigg(|\lambda_1(\frac{1}{\sqrt{n}}G)| - 1 - \sqrt{\frac{\gamma_n}{4n}} \bigg) \stackrel{\text{law}}{\underset{n \to \infty}{\longrightarrow}} \text{Gumbel}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Universality: C.-Péché (2014)

Large deviations (1/2)

Setting $V(z) = |z|^2$, the density of $\lambda_1(\frac{1}{\sqrt{n}}G), \dots, \lambda_n(\frac{1}{\sqrt{n}}G)$ is $c_n e^{-n \sum_{i=1}^n V(z_i)} \prod_{i < j} |z_i - z_j|^2$

Large deviations (1/2)

Setting $V(z) = |z|^2$, the density of $\lambda_1(\frac{1}{\sqrt{n}}G), \dots, \lambda_n(\frac{1}{\sqrt{n}}G)$ is $c_n e^{-n \sum_{i=1}^n V(z_i)} \prod_{i < j} |z_i - z_j|^2$

Rewriting in terms of $\mu_n := \frac{1}{n} \sum_{k=1}^n \delta_{z_k}$:

$$c_n \exp\left(-n^2\left(\frac{1}{n}\sum_{k=1}^n V(z_k) - \frac{2}{n^2}\sum_{i< j}\log|z_i - z_j|\right)\right)$$

Large deviations (1/2)

Setting $V(z) = |z|^2$, the density of $\lambda_1(\frac{1}{\sqrt{n}}G), \dots, \lambda_n(\frac{1}{\sqrt{n}}G)$ is $c_n e^{-n \sum_{i=1}^n V(z_i)} \prod_{i < j} |z_i - z_j|^2$

Rewriting in terms of $\mu_n := \frac{1}{n} \sum_{k=1}^n \delta_{z_k}$:

$$c_n \exp\left(-n^2\left(rac{1}{n}\sum_{k=1}^n V(z_k) - rac{2}{n^2}\sum_{i< j}\log|z_i - z_j|
ight)
ight)$$

Approximation as $n \gg 1$:

$$\approx c_n \exp\left(-n^2 \mathcal{I}(\mu_n)\right)$$

where \mathcal{I} is the logarithmic energy with external field:

$$\mathcal{I}(\mu) := \int V(z) \, d\mu + \iint \log rac{1}{|z-w|} \, d\mu(z) d\mu(w).$$

19/32

Large deviations (2/2)

Hiai-Petz and BenArous-Zeitouni: for every $S \subset \mathcal{M}_1(\mathbb{C})$

$$\mathbb{P}(\mu_{\frac{1}{\sqrt{n}}G} \in S) \approx \exp\left(-n^2 \inf_{S} \mathcal{I}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Large deviations (2/2)

Hiai-Petz and BenArous-Zeitouni: for every $S \subset \mathcal{M}_1(\mathbb{C})$

$$\mathbb{P}(\mu_{\frac{1}{\sqrt{n}}G} \in S) \approx \exp\left(-n^2 \inf_{S} \mathcal{I}\right)$$

Inf $_{\mathcal{M}_1(\mathbb{C})} \mathcal{I} = 0$ achieved only by circular law \mathcal{C}_1 (Saff-Totik)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Large deviations (2/2)

Hiai-Petz and BenArous-Zeitouni: for every $S \subset \mathcal{M}_1(\mathbb{C})$

$$\mathbb{P}(\mu_{\frac{1}{\sqrt{n}}G} \in S) \approx \exp\left(-n^2 \inf_{S} \mathcal{I}\right)$$

Inf_{M1(ℂ)} I = 0 achieved only by circular law C₁ (Saff-Totik)
 It follows by the first Borel-Cantelli lemma that

$$\mu_{\frac{1}{\sqrt{n}}G} \xrightarrow[n \to \infty]{} \mathcal{C}_1.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Large deviations (2/2)

Hiai-Petz and BenArous-Zeitouni: for every $S \subset \mathcal{M}_1(\mathbb{C})$

$$\mathbb{P}(\mu_{\frac{1}{\sqrt{n}}G} \in S) \approx \exp\left(-n^2 \inf_{S} \mathcal{I}\right)$$

Inf_{M1(ℂ)} I = 0 achieved only by circular law C₁ (Saff-Totik)
 It follows by the first Borel-Cantelli lemma that

$$\mu_{\frac{1}{\sqrt{n}}G} \xrightarrow[n \to \infty]{} \mathcal{C}_1.$$

Logarithmic energy = - Voiculescu free entropy

Large deviations (2/2)

Hiai-Petz and BenArous-Zeitouni: for every $S \subset \mathcal{M}_1(\mathbb{C})$

$$\mathbb{P}(\mu_{\frac{1}{\sqrt{n}}G} \in S) \approx \exp\left(-n^2 \inf_{S} \mathcal{I}\right)$$

Inf_{M1(C)} I = 0 achieved only by circular law C₁ (Saff-Totik)
 It follows by the first Borel-Cantelli lemma that

$$\mu_{\frac{1}{\sqrt{n}}G} \xrightarrow[n \to \infty]{} \mathcal{C}_1.$$

- Logarithmic energy = Voiculescu free entropy
- Interacting particles in dim > 2: Gozlan-C.-Zitt (2014)

Proof of circular law (1/4) – Logarithmic potential

Element Logarithmic potential of a probability measure μ on $\mathbb C$

$$U_\mu(z) = \int_\mathbb{C} \log rac{1}{|z-\lambda|} \, d\mu(\lambda) = -(\log |\cdot|*\mu)(z)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Proof of circular law (1/4) – Logarithmic potential

Logarithmic potential of a probability measure μ on \mathbb{C}

$$U_{\mu}(z) = \int_{\mathbb{C}} \log rac{1}{|z-\lambda|} \, d\mu(\lambda) = -(\log |\cdot| * \mu)(z)$$

Fundamental solution of the Laplace equation

$$\Delta \log |\cdot| \stackrel{\mathcal{D}'}{=} 2\pi \delta_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof of circular law (1/4) – Logarithmic potential

Logarithmic potential of a probability measure μ on \mathbb{C}

$$U_{\mu}(z) = \int_{\mathbb{C}} \log rac{1}{|z-\lambda|} \, d\mu(\lambda) = -(\log |\cdot| * \mu)(z)$$

Fundamental solution of the Laplace equation

$$\Delta \log |\cdot| \stackrel{\mathcal{D}'}{=} 2\pi \delta_0$$

Inversion formula

$$-\Delta U_{\mu} \stackrel{\mathcal{D}'}{=} 2\pi\mu$$

・ロト・日本・日本・日本・日本・

Proof of circular law (2/4) – Hermitization

Hermitization and Brown spectral measure

$$egin{aligned} U_{\mu_A}(z) &= \int_{\mathbb{C}} \log |z-\lambda| \, d\mu_A(\lambda) \ &= rac{1}{n} \log |\det(A-zl)| \ &= rac{1}{n} \log \det \sqrt{(A-zl)(A-zl)^*} \ &= \int_0^\infty \log(s) \, d
u_{A-zl}(s). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of circular law (2/4) – Hermitization

Hermitization and Brown spectral measure

$$egin{aligned} -U_{\mu_{\mathcal{A}}}(z) &= \int_{\mathbb{C}} \log |z-\lambda| \, d\mu_{\mathcal{A}}(\lambda) \ &= rac{1}{n} \log |\det(\mathcal{A}-z\mathcal{I})| \ &= rac{1}{n} \log \det \sqrt{(\mathcal{A}-z\mathcal{I})(\mathcal{A}-z\mathcal{I})^*} \ &= \int_0^\infty \log(s) \, d
u_{\mathcal{A}-z\mathcal{I}}(s). \end{aligned}$$

$$\mu_{A} = \frac{1}{2\pi} \Delta \int_{0}^{\infty} \log(s) \, d\nu_{A-zl}(s)$$

Proof of circular law (2/4) – Hermitization

Hermitization and Brown spectral measure

$$\begin{split} -U_{\mu_A}(z) &= \int_{\mathbb{C}} \log |z - \lambda| \, d\mu_A(\lambda) \\ &= \frac{1}{n} \log |\det(A - zI)| \\ &= \frac{1}{n} \log \det \sqrt{(A - zI)(A - zI)^*} \\ &= \int_0^\infty \log(s) \, d\nu_{A - zI}(s). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mu_{A} = \frac{1}{2\pi} \Delta \int_{0}^{\infty} \log(s) \, d\nu_{A-zl}(s)$$
$$\mu_{A} \leftarrow (\nu_{A-zl})_{z \in \mathbb{C}}$$

22/32

Proof of circular law (3/4) – Hermitization

If $\lim_{n\to\infty} \nu_{A_n-zl} = \nu_z$ weakly then do we have

$$\lim_{n \to \infty} \mu_{A_n} = \lim_{n \to \infty} \frac{1}{2\pi} \Delta \int_0^\infty \log(s) \, d\nu_{A_n - zl}(s)$$
$$\stackrel{?}{=} \frac{1}{2\pi} \Delta \int_0^\infty \log(s) \, d\nu_z(s)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem: singularity of the logarithm near 0 and ∞

Proof of circular law (4/4) – Hermitization

Lemma (Hermitization (Girko, Tao-Vu, Bordenave-C.))

If A_n is a random variable on $\mathcal{M}_n(\mathbb{C})$ and if for all $z\in\mathbb{C}$

$$\nu_{A_n-zI} \xrightarrow[n \to \infty]{} \nu_z \text{ (deterministic)}$$

log is uniformly integrable for ν_{A_n-zl}

Then

$$\mu_{A_n} \xrightarrow[n \to \infty]{} \frac{1}{2\pi} \Delta \int_0^\infty \log(s) \, d\nu_z(s).$$

Allows to prove the circular law (take $A_n = \frac{1}{\sqrt{n}}X$)

Proof of circular law (4/4) – Hermitization

Lemma (Hermitization (Girko, Tao-Vu, Bordenave-C.))

If A_n is a random variable on $\mathcal{M}_n(\mathbb{C})$ and if for all $z\in\mathbb{C}$

 $\square \nu_{A_n-zI} \xrightarrow[n \to \infty]{} \nu_z \text{ (deterministic)}$

log is uniformly integrable for ν_{A_n-zl}

Then

$$\mu_{A_n} \xrightarrow[n \to \infty]{} \frac{1}{2\pi} \Delta \int_0^\infty \log(s) \, d\nu_z(s).$$

Allows to prove the circular law (take A_n = 1/\sqrt{n} X)
 Im show \$\int_{n \rightarrow \infty} f(s) < \infty\$ and \$\overline{\lim}_{n \rightarrow \infty} f(s) < \infty\$ and \$\overline{\lim}_{n \rightarrow \infty} f(s) < \infty\$

Proof of circular law (4/4) – Hermitization

Lemma (Hermitization (Girko, Tao-Vu, Bordenave-C.))

If A_n is a random variable on $\mathcal{M}_n(\mathbb{C})$ and if for all $z\in\mathbb{C}$

 $\nu_{A_n-zI} \xrightarrow[n \to \infty]{} \nu_z \text{ (deterministic)}$

log is uniformly integrable for ν_{A_n-zl}

Then

$$\mu_{A_n} \xrightarrow[n \to \infty]{} rac{1}{2\pi} \Delta \int_0^\infty \log(s) \, d\nu_z(s).$$

Allows to prove the circular law (take $A_n = \frac{1}{\sqrt{n}}X$) $\lim_{n \to \infty} \int s^{-p} d\nu_{A_n - zl}(s) < \infty \text{ and } \lim_{n \to \infty} \int s^p d\nu_{A_n - zl}(s) < \infty$ $s_{n-k}(\frac{1}{\sqrt{n}}X - zl) \text{ and } s_1(\frac{1}{\sqrt{n}}X - zl)$

Other occurrences of the circular law (1/2)

*-algebra \mathcal{A} with involution * and tracial state τ

Other occurrences of the circular law (1/2)

- *-algebra $\mathcal A$ with involution * and tracial state τ
- **Example:** $\mathcal{A} = \mathcal{M}_n(\mathbb{C}), \, \cdot^* = \overline{\cdot}^\top, \, \tau = \frac{1}{n} \mathrm{Tr}$

Other occurrences of the circular law (1/2)

■ *-algebra \mathcal{A} with involution * and tracial state τ ■ Example: $\mathcal{A} = \mathcal{M}_n(\mathbb{C})$, $\cdot^* = \overline{\cdot}^\top$, $\tau = \frac{1}{n}$ Tr ■ *-law of $a \in \mathcal{A}$ = mixed moments in a and a^* :

$$\tau(a^{\varepsilon_1}\cdots a^{\varepsilon_m}), \quad \varepsilon_1,\ldots,\varepsilon_m\in\{1,*\}, \quad m\geqslant 1$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Other occurrences of the circular law (1/2)

★-algebra A with involution * and tracial state τ
 Example: A = M_n(ℂ), ·* = ^{-⊤}, τ = ¹/_nTr
 ★-law of a ∈ A = mixed moments in a and a*:

$$au(a^{\varepsilon_1}\cdots a^{\varepsilon_m}), \quad \varepsilon_1,\ldots,\varepsilon_m\in\{1,*\}, \quad m\geqslant 1$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If a_1, a_2, \ldots are free elements of \mathcal{A} with same \star -law

Other occurrences of the circular law (1/2)

★-algebra A with involution * and tracial state τ
Example: A = M_n(C), ·* = ⁻, τ = ¹/_nTr
★-law of a ∈ A = mixed moments in a and a*: τ(a^{ε₁}...a^{ε_m}), ε₁,...,ε_m ∈ {1,*}, m ≥ 1

If a_1, a_2, \ldots are free elements of \mathcal{A} with same \star -law with $\tau(a) = 0$ and $\operatorname{cov}(\frac{1}{2}(a + a^*), \frac{1}{2i}(a - a^*)) = I_2$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Other occurrences of the circular law (1/2)

- *-algebra A with involution * and tracial state τ
 Example: A = M_n(C), ·* = ⁻, τ = ¹/_nTr
 -law of a ∈ A = mixed moments in a and a: τ(a^{ε₁}...a^{ε_m}), ε₁,...,ε_m ∈ {1,*}, m ≥ 1
- If $a_1, a_2, ...$ are free elements of \mathcal{A} with same \star -law with $\tau(a) = 0$ and $\operatorname{cov}(\frac{1}{2}(a + a^*), \frac{1}{2i}(a - a^*)) = I_2$ Then: (Free Central Limit Theorem, Voiculescu 1990)

$$\frac{a_1 + \dots + a_n}{\sqrt{n}} \xrightarrow[n \to \infty]{\star} c$$

where $c := w_1 + iw_2$ with w_1, w_2 free semicircle elements.

Other occurrences of the circular law (1/2)

■ *-algebra \mathcal{A} with involution * and tracial state τ ■ Example: $\mathcal{A} = \mathcal{M}_n(\mathbb{C}), \cdot^* = \overline{\cdot}^\top, \tau = \frac{1}{n} \operatorname{Tr}$ ■ *-law of $a \in \mathcal{A}$ = mixed moments in a and a^* :

$$au(a^{\varepsilon_1}\cdots a^{\varepsilon_m}), \quad \varepsilon_1,\ldots,\varepsilon_m\in\{1,*\}, \quad m\geqslant 1$$

If a_1, a_2, \ldots are free elements of \mathcal{A} with same \star -law with $\tau(a) = 0$ and $\operatorname{cov}(\frac{1}{2}(a + a^*), \frac{1}{2i}(a - a^*)) = I_2$

Then: (Free Central Limit Theorem, Voiculescu 1990)

$$\frac{a_1 + \dots + a_n}{\sqrt{n}} \xrightarrow[n \to \infty]{\star} c$$

where $c := w_1 + iw_2$ with w_1, w_2 free semicircle elements.

Boltzmann and Shlyakhtenko, Brown and Śniady

Markov polytope (Bordenave-Caputo-C. 2010)

$$\sqrt{n}D^{-1}X$$
 where $D_{ii} = X_{i1} + \cdots + X_{in}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Markov polytope (Bordenave-Caputo-C. 2010)

$$\sqrt{n}D^{-1}X$$
 where $D_{ii}=X_{i1}+\cdots+X_{in}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Matrices with iid log-concave rows (Adamczak 2011)

Markov polytope (Bordenave-Caputo-C. 2010)

$$\sqrt{n}D^{-1}X$$
 where $D_{ii} = X_{i1} + \cdots + X_{in}$

Matrices with iid log-concave rows (Adamczak 2011)Matrices with given row sum (Tao, Nguyen-Vu 2012)

Markov polytope (Bordenave-Caputo-C. 2010)

$$\sqrt{n} D^{-1} X$$
 where $D_{ii} = X_{i1} + \cdots + X_{in}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Matrices with iid log-concave rows (Adamczak 2011)
 Matrices with given row sum (Tao, Nguyen-Vu 2012)

Birkhoff polytope (Nguyen 2012)

Markov polytope (Bordenave-Caputo-C. 2010)

$$\sqrt{n}D^{-1}X$$
 where $D_{ii}=X_{i1}+\cdots+X_{in}$

Matrices with iid log-concave rows (Adamczak 2011)

- Matrices with given row sum (Tao, Nguyen-Vu 2012)
- Birkhoff polytope (Nguyen 2012)
- Matrices with log-concave uncond. law (Adam.-C. 2013)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Markov polytope (Bordenave-Caputo-C. 2010)

$$\sqrt{n}D^{-1}X$$
 where $D_{ii}=X_{i1}+\cdots+X_{in}$

Matrices with iid log-concave rows (Adamczak 2011)

- Matrices with given row sum (Tao, Nguyen-Vu 2012)
- Birkhoff polytope (Nguyen 2012)
- Matrices with log-concave uncond. law (Adam.-C. 2013)
- Matrices with exchangeable entries (Adam.-C.-Wolff 2014)

Markov polytope (Bordenave-Caputo-C. 2010)

$$\sqrt{n} D^{-1} X$$
 where $D_{ii} = X_{i1} + \cdots + X_{in}$

Matrices with iid log-concave rows (Adamczak 2011)

- Matrices with given row sum (Tao, Nguyen-Vu 2012)
- Birkhoff polytope (Nguyen 2012)
- Matrices with log-concave uncond. law (Adam.-C. 2013)
- Matrices with exchangeable entries (Adam.-C.-Wolff 2014)
- Weyl random polynomials (Kabluchko-Zaporozhets 2012)

$$P_n(z) = \sum_{k=0}^n \frac{\xi_k}{\sqrt{k!}} z^k$$

Beyond the circular law: infinite variance (1/2)

 $\mathbb{P}(|X_{11}| > t) \sim t^{-lpha}, \quad \mathbf{0} < lpha < \mathbf{2}$

Beyond the circular law: infinite variance (1/2)

$$\mathbb{P}(|X_{11}| > t) \sim t^{-lpha}, \quad \mathbf{0} < lpha < \mathbf{2}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Theorem (Bordenave-Caputo-C. 2011)

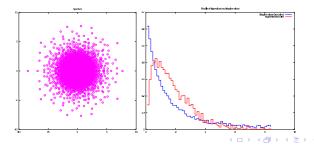
If $\mathbb{P}(|X_{11}| > t) \sim t^{-lpha}$ then $\mu_{rac{1}{n^{lpha}}X} o \mu_{lpha}.$

Beyond the circular law: infinite variance (1/2)

$$\mathbb{P}(|X_{11}| > t) \sim t^{-lpha}, \quad \mathbf{0} < lpha < \mathbf{2}$$

Theorem (Bordenave-Caputo-C. 2011)

If $\mathbb{P}(|X_{11}| > t) \sim t^{-lpha}$ then $\mu_{rac{1}{n^{lpha}}X} o \mu_{lpha}.$



Beyond the circular law: random generators (2/2)

$$\frac{1}{\sqrt{n}}(X-D)$$
 with $D_{ii}=X_{11}+\cdots+X_{nn}$

Beyond the circular law: random generators (2/2)

$$\frac{1}{\sqrt{n}}(X-D) \quad \text{with} \quad D_{ii} = X_{11} + \dots + X_{nn}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Theorem (Bordenave-Caputo-C. 2012)

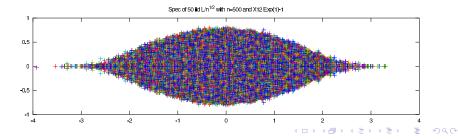
If $K = \operatorname{Cov}(X_{11})$ then $\mu_{\frac{1}{\sqrt{n}}(X-D)} \to \mu_{c \boxplus g_{\kappa}}$.

Beyond the circular law: random generators (2/2)

$$\frac{1}{\sqrt{n}}(X-D) \quad \text{with} \quad D_{ii} = X_{11} + \dots + X_{nn}$$

Theorem (Bordenave-Caputo-C. 2012)

If
$$K = \operatorname{Cov}(X_{11})$$
 then $\mu_{\frac{1}{\sqrt{n}}(X-D)} \to \mu_{c \boxplus g_K}$.



Beyond the circular law: two conjectures (1/2)

Conjecture (Bernoulli invertibility conjecture)

If $(A_{ij})_{1 \leq i,j \leq n}$ are i.i.d. Bernoulli ± 1 then

$$\mathbb{P}(s_n(A)=0)=\mathbb{P}(\det(A)=0)=\left(rac{1}{2}+o_{n
ightarrow\infty}(1)
ight)^n.$$

・ロト・日本・日本・日本・日本・日本

Progresses: $1/\sqrt{2}$ (Bourgain-Vu-Wood 2010)

Beyond the circular law: two conjectures (2/2)

Conjecture (Kesten–McKay oriented *d*-regular graphs)

If P_1, \ldots, P_d are i.i.d. $n \times n$ Haar permutation matrices then

$$\mu_{P_1+\dots+P_d} \xrightarrow[n \to \infty]{} \frac{d^2(d-1)}{\pi (d^2 - |z|^2)^2} \mathbf{1}_{\{|z| < \sqrt{d}\}} dx dy$$

Brown measure of $U_1 \boxplus \cdots \boxplus U_d$ (Haagerup-Larsen)

Progresses: Rudelson-Vershynin (2012), Basak-Dembo (2012), Ben Arous & Dang (2014) Beyond the circular law

Thank you!

Beyond the circular law

Lemma (Rows and operator norm of the inverse (RV))

Let $A \in \mathcal{M}_n(\mathbb{C})$ with rows R_1, \ldots, R_n then

 $n^{-1/2} \min_{1 \leq i \leq n} \operatorname{dist}(R_i, R_{-i}) \leq s_n(A) \leq \min_{1 \leq i \leq n} \operatorname{dist}(R_i, R_{-i}).$

Lemma (Rows and trace norm of the inverse (TV))

Let $1 \leqslant m \leqslant n$. If $A \in \mathcal{M}_{m,n}(\mathbb{C})$ has full rank then

$$\sum_{i=1}^{m} s_i(A)^{-2} = \sum_{i=1}^{m} \operatorname{dist}(R_i, R_{-i})^{-2}.$$