\((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) is a filtered probability space, with complete and right continuous filtration.

\(B = (B_t)_{t \geq 0}\) is a \(d\)-dimensional Brownian motion issued from the origin, \(d \geq 1\).

If \(Z\) is a semi-martingale, we denote by \((Z)\) the increasing process of its local martingale part.

If \(Z = Z_0 + M + V\), do not confuse \((Z) = (M)\) with the finite variation part \(V\) of \(Z\).

Exercise 1 (Nature of an integral). Set \(d = 1\). Let us consider the following integral, for \(t \geq 0\),

\[I_t = \int_0^t B_s \, ds. \]

2. Show that \(d(tB_t) = B_t \, dt + t \, dB_t\).

3. Deduce from the preceding question that \(I_t = \int_0^t (t - s) \, dB_s\) for all \(t \geq 0\).

4. Deduce from the preceding question that \(I_t \sim \mathcal{N}(0, \frac{1}{3} t^3)\) for all \(t \geq 0\).

5. For all \(t \geq 0\), \(n \geq 1\), \(0 \leq k \leq n\), let us define \(t_k = \frac{k}{n} t\). Show that

\[\sum_{k=0}^{n-1} B_{t_k} (t_{k+1} - t_k) = \frac{t}{n} \sum_{j=0}^{n-2} (n - j - 1) (B_{t_{j+1}} - B_{t_j}). \]

6. Deduce from the preceding question another proof that \(I_t \sim \mathcal{N}(0, \frac{1}{3} t^3)\) for all \(t \geq 0\).

7. Is the process \((I_t)_{t \geq 0}\) a martingale?

Exercise 2 (Study of a special process). Set \(d = 2\). For all \(t \geq 0\), we write \(B_t = (X_t, Y_t)\) and

\[A_t = \int_0^t X_s dY_s - \int_0^t Y_s dX_s. \]

1. Show that \((A) = \int_0^t (X_s^2 + Y_s^2) \, ds\) and that the process \(A\) is a square integrable martingale.

2. From now on let \(\lambda > 0\). Show that for all \(t \geq 0\),

\[\mathbb{E} e^{\lambda A_t} = \mathbb{E} \cos(\lambda A_t). \]

3. From now on, let \(f : \mathbb{R}_+ \to \mathbb{R}\) be \(\mathcal{C}^2\), and let us define the continuous semi-martingales

\[(Z_t)_{t \geq 0} = \cos(\lambda A_t) \quad \text{and} \quad (W_t)_{t \geq 0} = \left(-\frac{f'(t)}{2} (X_t^2 + Y_t^2) + f(t) \right)_{t \geq 0}. \]

Show that for all \(t \geq 0\),

\[Z_t = 1 - \lambda \int_0^t \sin(\lambda A_s) \, dA_s - \frac{\lambda^2}{2} \int_0^t (X_s^2 + Y_s^2) Z_s \, ds. \]

and

\[W_t = f(0) - \int_0^t f'(s) X_s \, dX_s - \int_0^t f'(s) Y_s \, dY_s - \frac{1}{2} \int_0^t f''(s) (X_s^2 + Y_s^2) ds, \]

and deduce that

\[(Z, W) = 0. \]
4. Show that if \(f \) solves \(f'' = f'^2 - \lambda^2 \) then \(Z e^W \) is a continuous local martingale and

\[
Z_t e^W = e^{f(0)} - \lambda \int_0^t \sin(\lambda A_s) e^W dA_s - \int_0^t f'(s) Z_s e^W X_s dW_s - \int_0^t f'(s) Z_s e^W Y_s dY_s.
\]

5. Let \(r > 0 \). By using \(f(t) = -\log \cosh(\lambda(t-r)) \) deduce from the previous question that

\[
E e^{\lambda A_t} = \frac{1}{\cosh(\lambda r)}.
\]

Exercise 3 (Criterion for a stochastic differential equation). Set \(d = 1 \). Let \(\sigma, b \) be two functions \(\mathbb{R} \to \mathbb{R} \) such that for some finite constant \(C < \infty \) and for all \(x, y \in \mathbb{R} \),

\[
|\sigma(x) - \sigma(y)| \leq C|x - y| \quad \text{and} \quad |b(x) - b(y)| \leq C|x - y|
\]

The goal of this exercise is to prove pathwise uniqueness for the stochastic differential equation

\[
dX_t = \sigma(X_t) dB_t + b(X_t) dt. \tag{SDE}
\]

A solution \(X \) is a continuous semi-martingale with canonical decomposition \(X = X_0 + M + V \) with \(X_0 \in L^2 \), local martingale part \(M = \int_0^t \sigma(X_s) dW_s \), and finite variation part \(V = \int_0^t b(X_s) ds \). Note that the continuity of \(\sigma, X, b \) gives that almost surely, for all \(t \geq 0, s - \sigma(X_s) + b(X_s) \) is locally bounded.

1. Let \(Z \) be a continuous semi-martingale such that \(\langle Z \rangle = \int_0^t \varphi dW_s \) for a progressive process \(\varphi \) such that \(0 \leq \varphi \leq C|Z| \) for some constant \(C < \infty \). Prove that for all \(t \geq 0 \) and all \(a > 0 \),

\[
E \int_0^t 1_{0 < \langle Z \rangle < a} \, d\langle Z \rangle_s \leq C t.
\]

2. Deduce from the preceding question that for all \(t \geq 0 \),

\[
\lim_{n \to \infty} n E \int_0^t 1_{0 < \langle Z \rangle < \frac{1}{n}} \, d\langle Z \rangle_s = 0.
\]

3. For all \(n \geq 1, x \in \mathbb{R} \), let us define \(g_n(x) = 2n(1 + nx)1_{x \in [-\frac{1}{n}, 0]} + 2n1_{x=0} + 2n(1 - nx)1_{x \in (0, \frac{1}{n})} \).

Let \(f_n : \mathbb{R} \to \mathbb{R} \) be the twice differentiable function such that \(f_n'' = g_n \) and \(f_n(0) = f_n'(0) = 0 \).

Show that for all \(x \in \mathbb{R} \), the following properties hold true:

(a) \(f_n''(x) \in [-1, 1] \) and \(\lim_{n \to \infty} f_n'(x) = \text{sign}(x) = 1_{x > 0} - 1_{x < 0} \)

(b) \(|f_n(x)| \leq |x| \) and \(\lim_{n \to \infty} f_n(x) = |x| \).

4. By using Itô formula, prove that for all continuous semi-martingale \(Z = (Z_t)_{t \geq 0} \), all \(t \geq 0 \),

\[
\int_0^t 1_{Z_s = 0} \, d\langle Z \rangle_s = 0.
\]

5. From now on, let \(X \) and \(X' \) be two solutions of \(\text{(SDE)} \) on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}) \) and with respect to the Brownian motion \(B \). Show that for all \(t \geq 0 \),

\[
\langle X - X' \rangle_t = \int_0^t (\sigma(X_s) - \sigma(X'_s))^2 ds.
\]

6. By using the assumption on \(\sigma \), deduce from the preceding questions that for all \(t \geq 0 \),

\[
\lim_{n \to \infty} E \int_0^t g_n(X_s - X'_s) d\langle X - X' \rangle_s = 0.
\]
7. Set $Z = X - X'$. From now on, let T be a stopping time such that the semi-martingale $(Z_{t∧T})_{t≥0}$ is bounded. By using notably the assumption on $σ$, prove that for all $t ≥ 0$, $n ≥ 1$,

$$E(f_n(Z_{t∧T})) = E(f_n(Z_0)) + \int_0^{t∧T} f''_n(Z_s)(b(X_s) - b(X'_s))ds + \frac{1}{2} \int_0^{t∧T} f''''_n(Z_s)d\langle Z \rangle_s.$$

8. Deduce from the preceding questions and the assumption on b that for all $t ≥ 0$,

$$E(|X_{t∧T} - X'_{t∧T}|) = E(|X_0 - X'_0|) + \int_0^{t∧T} (b(X_s) - b(X'_s))\text{sign}(X_s - X'_s)ds.$$

9. By using the Grönwall lemma, deduce that if $X_0 = X'_0$ then $X_t = X'_t$ for all $t ≥ 0$.
