Exercise 1 (Nature of an integral). Set $d = 1$. Let us consider the following integral, for $t \geq 0$,

$$I_t = \int_0^t B_s \, ds.$$

2. Show that $d(tB_t) = B_t \, dt + t \, dB_t$;
3. Deduce from the preceding question that $I_t = \int_0^t (t-s) \, dB_s$ for all $t \geq 0$;
4. Deduce from the preceding question that $I_t \sim \mathcal{N}(0, \frac{1}{2} t^2)$ for all $t \geq 0$;
5. For all $t \geq 0$, $n \geq 1$, $0 \leq k \leq n$, let us define $t_k = \frac{k}{n} t$. Show that

$$\sum_{k=0}^{n-1} B_{t_k} (t_{k+1} - t_k) = \frac{t}{n} \sum_{j=0}^{n-2} (n-j-1)(B_{t_{j+1}} - B_{t_j}).$$

6. Deduce from the preceding question another proof that $I_t \sim \mathcal{N}(0, \frac{1}{2} t^2)$ for all $t \geq 0$;
7. Is the process $(I_t)_{t \geq 0}$ a martingale?

Elements of solution for Exercise 1.

1. Since the integrator is of finite variation and the integrand is bounded and measurable (actually continuous), it is a Lebesgue–Stieltjes integral, and in particular an Itô integral with respect to a semi-martingale without martingale part. However it is not a Wiener integral.
2. The Itô formula for $f(x, y) = xy$ and $X_t = (t, B_t)$ gives

$$tB_t = 0 + \int_0^t B_s \, ds + \int_0^t s \, dB_s,$$

3. From the preceding question (actually, it is an integration by parts)

$$\int_0^t B_s \, ds = tB_t - \int_0^t s \, dB_s = \int_0^t (t-s) \, dB_s.$$

4. The integral in the right hand side is a Wiener integral. Thus it is Gaussian with mean zero and variance equal to the squared L^2 norm of the integrand:

$$\mathbb{E} \int_0^t B_s \, ds = 0 \quad \text{and} \quad \mathbb{E} \left(\left(\int_0^t B_s \, ds \right)^2 \right) = \int_0^t (t-s)^2 \, ds = \frac{t^3}{3}.$$

5. With $t_k = \frac{k}{n} t$ for all $0 \leq k \leq n$, we have

$$S_n = \sum_{k=0}^{n-1} B_{t_k} (t_{k+1} - t_k) = \frac{t}{n} \sum_{k=0}^{n-1} B_{t_k} = \frac{t}{n} \sum_{k=0}^{n-1} \sum_{j=0}^{k-1} (B_{t_{j+1}} - B_{t_j}) = \frac{t}{n} \sum_{j=0}^{n-2} (n-j-1)(B_{t_{j+1}} - B_{t_j}).$$
6. Fix $t \geq 0$. Since I_t is a Lebesgue–Stieltjes integral with continuous integrand, we have $\lim_{n \to \infty} S_n = I_t$ almost surely and thus in law. For all n and j, since $B_{t_{j+1}} - B_{t_j}$ are independent and Gaussian, we get that $S_n \sim \mathcal{N}(\mathbb{E}(S_n), \mathbb{E}(S_n^2) - \mathbb{E}(S_n)^2)$. But the convergence in law of Gaussians is equivalent to the convergence of the first two moments. Now it remains to note that we have $\mathbb{E}(S_n) = 0$ and

$$\mathbb{E}(S_n^2) = \frac{t^2}{n^2} \sum_{j=0}^{n-2} (n-j-1)^2 \mathbb{E}((B_{t_{j+1}} - B_{t_j})^2) = \frac{t^3}{n^3} \sum_{j=0}^{n-1} j^2 = \frac{t^3}{n^3} \sum_{j=1}^{n-1} \left(\frac{j}{n} \right)^2 \frac{1}{n} \quad \xrightarrow{\text{as } n \to \infty} \quad \frac{t^3}{3} \int_0^1 x^2 \, dx = \frac{t^3}{3}. $$

7. Beware that the integrand in $\int_0^t (t-s) \, dB_s$ depends on t. The process $(- \int_0^t s \, dB_s)_{t \geq 0}$ is a martingale, however the process $(\int_0^t t \, dB_s)_{t \geq 0} = (t B_t)_{t \geq 0}$ is not a martingale: for all $0 \leq s \leq t$,

$$\mathbb{E}((t+s) B_{t+s} | \mathcal{F}_t) = (t+s) B_s \neq s B_s. $$

Exercise 2 (Study of a special process). Set $d = 2$. For all $t \geq 0$, write $B_t = (X_t, Y_t)$ and

$$A_t = \int_0^t X_s \, dY_s - \int_0^t Y_s \, dX_s. $$

1. Show that $(A) = \int_0^t (X_s^2 + Y_s^2) \, ds$ and that the process A is a square integrable martingale;

2. From now on let $\lambda > 0$. Show that for all $t \geq 0$,

$$\mathbb{E} e^{\lambda A_t} = \mathbb{E} \cos(\lambda A_t). $$

3. From now on, let $f : \mathbb{R} \to \mathbb{R}$ be \mathcal{C}^2, and let us define the continuous semi-martingales

$$(Z_t)_{t \geq 0} = (\cos(\lambda A_t))_{t \geq 0} \quad \text{and} \quad (W_t)_{t \geq 0} = \left(-\frac{f'(t)}{2} (X_t^2 + Y_t^2) + f(t) \right)_{t \geq 0}. $$

Show that for all $t \geq 0$,

$$Z_t = 1 - \lambda \int_0^t \sin(\lambda A_s) \, dA_s - \frac{\lambda^2}{2} \int_0^t (X_s^2 + Y_s^2) \, Z_s \, ds. $$

and

$$W_t = f(0) - \int_0^t f'(s) X_s \, dY_s - \int_0^t f'(s) Y_s \, dX_s - \frac{1}{2} \int_0^t f''(s) (X_s^2 + Y_s^2) \, ds, $$

and deduce that

$$(Z, W) = 0. $$

4. Show that if f solves $f'' = f' - \lambda^2$ then Ze^{W} is a continuous local martingale and

$$Ze^{W_t} = e^{f(0)} - \lambda \int_0^t \sin(\lambda A_s) e^{W_s} \, dA_s - \int_0^t f'(s) Ze^{W_s} X_s \, dX_s - \int_0^t f'(s) Ze^{W_s} Y_s \, dY_s. $$

5. Let $r > 0$. By using $f(t) = -\log \cosh(\lambda (r-t))$ deduce from the previous question that

$$\mathbb{E} e^{\lambda A_t} = \frac{1}{\cosh(\lambda r)}. $$

Elements of solution for Exercise 2. For all $t \geq 0$, A_t is the algebraic area between planar Brownian motion and its chord, and the process A is the Lévy area. This exercise is a slightly more detailed version of [1, Exercise 5.30 pages 144–145]. Its goal is to compute the characteristic function or Fourier transform of A_t.

2/7
1. Since \(\langle X \rangle_t = \langle Y \rangle_t = t \) and \(\langle X, Y \rangle_t = 0 \), we get

\[
\langle A \rangle_t = \langle A, A \rangle_t = \left(\int_0^t X_s \, dY_s \right)^2 + \left(\frac{1}{2} \int_0^t X_s \, dX_s \right)_t + 2 \int_0^t X_s \, dY_s \int_0^t Y_s \, dX_s,
\]

\[
= \int_0^t X_s^2 \, dX_s + \int_0^t Y_s^2 \, dY_s + \int_0^t X_s Y_s \, d(X, Y) \]

\[
= \int_0^t (X_s^2 + Y_s^2) \, ds.
\]

It follows by the Fubini–Tonelli theorem that

\[
\mathbb{E}(A)_t = \int_0^t \mathbb{E}(X_s^2 + Y_s^2) \, ds = \int_0^t 2 \, ds = t^2 < \infty
\]

and thus, by a famous martingale criterion, the process \(A \) is a square integrable martingale.

Alternatively, since for all \(t \geq 0 \), \(\mathbb{E}(\int_0^t X_s^2 \, dY_s) = \int_0^t \mathbb{E}(X_s^2) \, ds < \infty \) the process \(\int_0^t X_s \, dY_s \) and by symmetry the process \(\int_0^t Y_s \, dX_s \) are both square integrable martingales, and thus the process \(A \) is also a square integrable martingales as being the difference of two square integrable martingales.

2. For all \(\lambda \in \mathbb{R}, t \geq 0 \), \(\mathbb{E}(e^{\lambda A_t}) = \mathbb{E}(\cos(\lambda A_t)) + i \mathbb{E}(\sin(\lambda A_t)) \). Since \(\langle X, Y \rangle \equiv \langle X, Y \rangle \), we get, for all \(t \geq 0 \),

\[
-A_t = \int_0^t Y_s \, dX_s - \int_0^t X_s \, dY_s = \int_0^t X_s \, dY_s - \int_0^t Y_s \, dX_s = A_t,
\]

and thus the characteristic function or Fourier transform of \(A_t \) is real.

3. The canonical decompositions are given by the Itô formula. Namely, for \(Z \),

\[
Z_t = 1 - \lambda \int_0^t \sin(\lambda A_s) \, dA_s - \frac{\lambda^2}{2} \int_0^t \cos(\lambda A_s) \, d(A)_s
\]

\[
= 1 - \lambda \int_0^t \sin(\lambda A_s) \, dA_s - \frac{\lambda^2}{2} \int_0^t (X_s^2 + Y_s^2) \, Z_s \, ds.
\]

Similarly, for \(W \), by the Itô formula for the function \(g(x, y, t) = -\frac{E(\theta)}{2}(x^2 + y^2) + f(t) \) and the vector of semi-martingale \(S_t = (X_t, Y_t, t) \) with martingale part \((X_t, Y_t) \),

\[
W_t = g(0, 0, 0) + \int_0^t \frac{\partial}{\partial x} g(S_s) \, dX_s + \int_0^t \frac{\partial}{\partial y} g(S_s) \, dY_s + \int_0^t \frac{\partial}{\partial t} g(S_s) \, ds + \frac{1}{2} \int_0^t \left(\frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial y^2} g \right) (S_s) \, ds
\]

\[
= f(0) - \int_0^t f'(s) X_s \, dX_s - \int_0^t f'(s) Y_s \, dY_s + \int_0^t \left(-\frac{f''(s)}{2} (X_s^2 + Y_s^2) + f'(s) \right) \, ds - \int_0^t f'(s) \, ds
\]

\[
= f(0) - \int_0^t f'(s) X_s \, dX_s - \int_0^t f'(s) Y_s \, dY_s - \frac{1}{2} \int_0^t f''(s) (X_s^2 + Y_s^2) \, ds.
\]

The computation of \(\langle Z, W \rangle \) involves only the local martingale parts, namely

\[
\langle Z, W \rangle_t = \lambda \left(\int_0^t \sin(\lambda A_s) \, dA_s, \int_0^t f'(s) X_s \, dX_s + \int_0^t f'(s) Y_s \, dY_s \right)_t
\]

\[
= \lambda \left(\int_0^t f'(s) \sin(\lambda A_s) X_s \, d(A, X)_s + \lambda \int_0^t f'(s) \sin(\lambda A_s) Y_s \, d(A, Y)_s.\right)
\]

Now since \(\langle A, X \rangle_t = -\int_0^t Y_s \, ds \) and \(\langle A, Y \rangle_t = \int_0^t X_s \, ds \), we get

\[
\langle Z, W \rangle_t = \lambda \left(\int_0^t f'(s)(-X_s Y_s + X_s Y_s) \sin(\lambda A_s) \, ds \right) = 0.
\]

4. The Itô formula gives (we benefit from the fact that \(\langle Z, W \rangle = 0 \) from the previous question)

\[
Z_t e^{W_t} = e^{f(0)} + \int_0^t e^{W_s} \, dZ_s + \int_0^t Z_s e^{W_s} \, dW_s + \frac{1}{2} \int_0^t Z_s e^{W_s} \, d\langle W \rangle_s.
\]
By collecting the finite variation parts from dZ and dW from a previous question we get

$$-rac{\lambda^2}{2} \int_0^t (X_s^2 + Y_s^2) Z_s e^{W_s} \, ds - \frac{1}{2} \int_0^t f''(s)(X_s^2 + Y_s^2) Z_s e^{W_s} \, ds + \frac{1}{2} \int_0^t Z_s e^{W_s} d(W)_s.$$

Now from a previous question

$$\langle W \rangle_t = \left(\int_0^t f'(s) X_s \, dX_s + \int_0^t f'(s) Y_s \, dY_s \right)_t = \int_0^t f''(s)(X_s^2 + Y_s^2) \, ds.$$

It follows that the finite variation part of Ze^W vanishes when $f'' = f'^2 - \lambda^2$.

5. With $f(t) = -\log \cosh(\lambda(r - t))$, we have

$$f'(t) = \lambda \frac{\sinh(\lambda(r - t))}{\cosh(\lambda(r - t))} = \lambda \tanh(\lambda(r - t))$$

and

$$f''(t) = -\frac{\lambda^2}{\cosh^2(\lambda(r - t))} = -\lambda^2(1 - \tanh^2(\lambda(r - t))) = -\lambda^2 + f'^2(t).$$

It follows from the previous question that Ze^W is a continuous local martingale. Note that $f(r) = f'(r) = 0$ and $W_r = 0$, and by using previous questions,

$$Ee^{\lambda A_r} = E\cos(\lambda A_r) = EZe = E(Z_r e^{W_r}).$$

On the other hand, since $f(0) = -\log \cosh(\lambda r)$, $Z_0 = 1$, $W_0 = f(0)$, we get

$$E(Z_0 e^{W_0}) = e^{f(0)} = \frac{1}{\cosh(\lambda r)}.$$

It remains to show that the local martingale Ze^W is a martingale on the time interval $[0, r]$. From the previous question, since f, \cos, and \sin are bounded, it suffices to show that

$$E \int_0^t e^{2W_s} d\langle A \rangle_s < \infty \quad \text{and} \quad E \int_0^t e^{2W_s} (X_s^2 + Y_s^2) \, ds < \infty.$$

But the first condition follows from the second thanks to the formula for $\langle A \rangle$ provided by a previous question. On the other hand, if $t \in [0, r]$ then $f'(t) \geq 0$ and thus $W_s \leq f(t)$ for all $s \in [0, t]$, which implies that the second condition is satisfied by using $E(X_s^2 + Y_s^2) = 2s$.

Exercise 3 (Criterion for a stochastic differential equation). Set $d = 1$. Let σ, b be two functions $\mathbb{R} \to \mathbb{R}$ such that for some finite constant $C < \infty$ and for all $x, y \in \mathbb{R}$,

$$|\sigma(x) - \sigma(y)| \leq C|x - y| \quad \text{and} \quad |b(x) - b(y)| \leq C|x - y|$$

The goal of this exercise is to prove pathwise uniqueness for the stochastic differential equation

$$dX_t = \sigma(X_t) dB_t + b(X_t) \, dt.$$

A solution X is a continuous semi-martingale with canonical decomposition $X = X_0 + M + V$ with $X_0 \in L^2$, local martingale part $M = \int_0^t \sigma(X_s) dB_s$, and finite variation part $V = \int_0^t b(X_s) \, ds$. Note that the continuity of σ, X, b gives that almost surely, for all $t \geq 0, s \mapsto \sigma(X_s) + b(X_s)$ is locally bounded.

1. Let Z be a continuous semi-martingale such that $\langle Z \rangle = \int_0^t \varphi \, ds$ for a progressive process φ such that $0 \leq \varphi \leq C|Z|$ for some constant $C < \infty$. Prove that for all $t \geq 0$ and all $a > 0$,

$$E \int_0^t \mathbf{1}_{0 < |Z_s| \leq a} \frac{dZ_s}{|Z_s|} \leq Ct.$$
2. Deduce from the preceding question that for all \(t \geq 0 \),
\[
\lim_{n \to \infty} nE \int_0^t 1_{|Z_s| \leq \frac{1}{n}} d\langle Z \rangle_s = 0.
\]

3. For all \(n \geq 1, x \in \mathbb{R} \), let us define \(g_n(x) = 2n(1+nx)1_{x \in [-\frac{1}{n},0]} + 2n1_{x=0} + 2n(1-nx)1_{x \in (0,\frac{1}{n})} \).

Let \(f_n : \mathbb{R} \to \mathbb{R} \) be the twice differentiable function such that \(f_n'' = g_n \) and \(f_n(0) = f_n'(0) = 0 \).

Show that for all \(x \in \mathbb{R} \), the following properties hold true:

(a) \(f_n'(x) \in [-1,1] \) and \(\lim_{n \to \infty} f_n'(x) = \text{sign}(x) = 1_{x>0} - 1_{x<0} \);
(b) \(|f_n(x)| \leq |x| \) and \(\lim_{n \to \infty} f_n(x) = |x| \).

4. By using Itô formula, prove that for all continuous semi-martingale \(Z = (Z_t)_{t \geq 0} \), all \(t \geq 0 \),
\[
\int_0^t 1_{Z_s = 0} d\langle Z \rangle_s = 0.
\]

5. From now on, let \(X \) and \(X' \) be two solutions of (SDE) on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) and with respect to the Brownian motion \(B \). Show that for all \(t \geq 0 \),
\[
\langle X - X' \rangle_t = \int_0^t (\sigma(X_s) - \sigma(X'_s))^2 ds.
\]

6. By using the assumption on \(\sigma \), deduce from the preceding questions that for all \(t \geq 0 \),
\[
\lim_{n \to \infty} E \int_0^t g_n(X_s - X'_s) d\langle X - X' \rangle_s = 0.
\]

7. Set \(Z = X - X' \). From now on, let \(T \) be a stopping time such that the semi-martingale \((Z_{t \wedge T})_{t \geq 0}\) is bounded. By using notably the assumption on \(\sigma \), prove that for all \(t \geq 0, n \geq 1 \),
\[
E(f_n(Z_{t \wedge T})) = E(f_n(Z_0)) + E \int_0^{t \wedge T} f_n'(Z_s)(b(X_s) - b(X'_s)) ds + \frac{1}{2} E \int_0^{t \wedge T} f_n''(Z_s) d\langle Z \rangle_s.
\]

8. Deduce from the preceding questions and the assumption on \(b \) that for all \(t \geq 0 \),
\[
E(|X_{t \wedge T} - X'_{t \wedge T}|) = E(|X_0 - X'_0|) + E \int_0^{t \wedge T} |b(X_s) - b(X'_s)| \text{sign}(X_s - X'_s) ds.
\]

9. By using the Grönwall lemma, deduce that if \(X_0 = X'_0 \) then \(X_t = X'_t \) for all \(t \geq 0 \).

Elements of solution for Exercise 3. The result is known as the Yamada–Watanabe criterion. This is a slightly more detailed version of [1, Exercise 8.14 pages 231–232].

1. We have, using the properties of \(Z \) and \(\varphi \),
\[
\int_0^t 1_{|Z_s| \leq a} d\langle Z \rangle_s = \int_0^t 1_{|Z_s| \leq a} \varphi_s ds \leq \int_0^t Cds = Ct.
\]

2. For all \(n \geq 1 \), we have \(n1_{|Z_s| \leq \frac{1}{n}} = 1_{|Z_s| \leq \frac{1}{n}} \leq 1_{|Z_s| \leq 1} \), which is integrable on \([0, t]\) by the preceding question used with \(a = 1 \), and thus the desired result follows then by dominated convergence.

3. The function \(g_n \) is \(0 \) on \((-\infty, -\frac{1}{n}] \), then increases from \(0 \) to \(2 \) on \([-\frac{1}{n}, 0]\), then decreases from \(2 \) to \(0 \) on \([0, \frac{1}{n}]\), then stays at \(0 \) on \([\frac{1}{n}, +\infty)\). Since \(\int_{-\infty}^0 g_n(y) dy = 1 \), we have, for all \(x \in \mathbb{R} \),
\[
f_n'(x) = \int_0^x g_n(u) du,
\]
in such a way that \(f_n'(0) = 0 \) and \(f_n'' = g_n \).
The function \(f_n \) is \(-1\) on \((-\infty, -\frac{1}{n}]\), \(0\) at \(0\), and \(1\) on \([\frac{1}{n}, +\infty)\). Also for all \(x \in \mathbb{R}\),
\[
\lim_{n \to \infty} f_n'(x) = 1_{x>0} - 1_{x<0} =: \text{sign}(x).
\]

Next, for all \(x \in \mathbb{R}\), we have
\[
f_n(x) = \int_0^x f_n'(u) du \quad \text{in such a way that} \quad f_n(0) = 0 \quad \text{and} \quad f_n'' = g_n.
\]

Since \(g_n \geq 0\), we have that \(f_n'\) is non-decreasing, and thus \(f_n'\) takes actually its values in \([-1,1]\), and is in particular bounded. It follows by dominated convergence that for all \(x \in \mathbb{R}\),
\[
\lim_{n \to \infty} f_n(x) = \int_0^x \lim_{n \to \infty} f_n'(u) du = \int_0^x \text{sign}(u) du = |x|.
\]

Finally, for all \(x \in \mathbb{R}\), \(|f_n(x)| \leq f_0^2(x) \, du = |x|\).

4. The Itô formula for function \(f_n\) of question 3 and semi-martingale \(Z\) gives, for all \(t \geq 0\),
\[
f_n(Z) = f_n(Z_0) + \int_0^t f_n'(Z_s) dZ_s + \frac{1}{2} \int_0^t f_n''(Z_s) d\langle Z \rangle_s.
\]

Since \(\frac{f_n''(x)}{2n} \leq 1\) and \(\lim_{n \to \infty} \frac{f_n'(x)}{2n} = 1_{x=0}\) for all \(x \in \mathbb{R}\), by dominated convergence,
\[
\lim_{n \to \infty} \frac{1}{2n} \int_0^t f_n''(Z_s) d\langle Z \rangle_s = \int_0^t 1_{Z_s=0} d\langle Z \rangle_s \quad \text{a.s.}
\]

On the other hand, since by question 3, \(\lim_{n \to \infty} \frac{f_n(x)}{2n} = 0\) for all \(x \in \mathbb{R}\), it follows that a.s.
\[
\lim_{n \to \infty} \frac{f_n(Z_t)}{2n} = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{f_n(Z_0)}{2n} = 0.
\]

Finally since by question 3, \(\frac{1}{2n} |f_n(0)| \leq \frac{1}{2n} \leq 1\) and \(\lim_{n \to \infty} \frac{1}{2n} |f_n'(x)| = 0\) for all \(x \in \mathbb{R}\), dominated convergence for stochastic integrals gives
\[
\frac{1}{2n} \int_0^t f_n'(Z_s) dZ_s \xrightarrow[n \to \infty]{} 0.
\]

5. Since \(X\) and \(X'\) are both solutions on the same space and for the same Brownian motion, we have, for all \(X_0\) and \(X'_0\) and for all \(t \geq 0\),
\[
X_t - X'_t = X_0 - X'_0 + \int_0^t (\sigma(X_s) - \sigma(X'_s)) dB_s + \int_0^t (b(X_s) - b(X'_s)) ds.
\]

The right hand side gives the canonical decomposition of the semi-martingale \(X - X'\). In this decomposition, the first integral is the local martingale part, and
\[
\langle X - X' \rangle = \int_0^t (\sigma(X_s) - \sigma(X'_s))^2 ds.
\]

6. By assumption on \(\sigma\), the process \(\varphi = (\sigma(X) - \sigma(X'))^2\) satisfies \(0 \leq \varphi \leq C |X - X'|\). We can then use question 5 and question 2 with \(Z = X - X'\) to get, for all \(t \geq 0\),
\[
\lim_{n \to \infty} n \mathbb{E} \int_0^t 1_{0 < |Z_s| \leq \frac{1}{n}} d\langle Z \rangle_s = 0.
\]

If \(g_n\) is as in question 3, then for all \(x \in \mathbb{R}\), \(0 \leq g_n(x) \leq 2n 1_{0 < |x| \leq \frac{1}{n}} + 2n 1_{x=0}\). Thus, for all \(x \geq 0\),
\[
0 \leq \mathbb{E} \int_0^t g_n(Z_s) d\langle Z \rangle_s \leq 2n \mathbb{E} \int_0^t 1_{0 < |Z_s| \leq \frac{1}{n}} d\langle Z \rangle_s + 2n \mathbb{E} \int_0^t 1_{Z_s=0} d\langle Z \rangle_s \xrightarrow[n \to \infty]{} 0,
\]

where we have used question 2 and question 4.
7. The Itô formula for the \(\mathcal{C}^2 \) function \(f_n \) and the continuous semi-martingale \(Z^T \) gives
\[
f_n(Z^T_t) = f_n(Z^0_0) + \int_0^{t \wedge T} f'_n(Z_s)dB_s + \frac{1}{2} \int_0^{t \wedge T} f''_n(Z_s)d\langle B \rangle_s,
\]
and since \(dB_s = (\sigma(X_s) - \sigma(X'_s))dB_s + (b(X_s) - b(X'_s))ds \), we get
\[
\int_0^{t \wedge T} f'_n(Z_s)dZ_s = \int_0^t f'_n(Z_s)(\sigma(X_s) - \sigma(X'_s))1_{s \leq T}dB_s + \int_0^{t \wedge T} f'_n(Z_s)(b(X_s) - b(X'_s))ds.
\]
Now, by the assumptions on \(\sigma \) and \(T \), we get
\[
|\sigma(X_s) - \sigma(X'_s)|1_{s \leq T} \leq C|Z^T_s| \leq C'.
\]
This boundedness, together with the one of \(f''_n \), imply that the first integral in the right hand side above (the \(dB_s \) one) is a martingale. Since this martingale is issued from the origin, its expectation vanishes for all times. On the other hand, since \(f_n \) is continuous and \(Z^T \) is bounded, the random variables \(f_n(Z^T_t) \) and \(f_n(Z^0_0) \) are integrable. All in all, we obtain
\[
E(f_n(Z^T_t)) = E(f_n(Z^0_0)) + E \int_0^{t \wedge T} f'_n(Z_s)(b(X_s) - b(X'_s))ds + \frac{1}{2} E \int_0^{t \wedge T} f''_n(Z_s)d\langle B \rangle_s.
\]

8. Since \(f''_n = g_n \geq 0 \), we get, by using question 6, that
\[
0 \leq E \int_0^{t \wedge T} f''_n(Z_s)d\langle B \rangle_s \leq E \int_0^t g_n(Z_s)d\langle B \rangle_s \xrightarrow{n \to \infty} 0.
\]
On the other hand, by the assumption on \(b \) and the boundedness of \(Z^T \), we have, on \([s \leq T] \),
\[
|b(X_s) - b(X'_s)|^2 \leq C^2|X_s - X'_s|^2 = C^2|Z^T_s| \leq C'.
\]
But since \(f'_n \) is bounded (takes its values in \([-1, 1]\)), we get, by dominated convergence
\[
\lim_{n \to \infty} \int_0^{t \wedge T} f'_n(Z_s)(b(X_s) - b(X'_s))ds = \int_0^{t \wedge T} \text{sign}(Z_s)(b(X_s) - b(X'_s))ds.
\]
Finally, since \(Z^T_t \) is bounded, and since from question 3, for all \(x \in \mathbb{R}, |f_n(x)| \leq |x| \) and \(\lim_{n \to \infty} f_n(x) = |x| \), we get, by dominated convergence, \(\lim_{n \to \infty} E(f_n(Z^T_t)) = E(|Z^T_t|) \). Finally
\[
E(|X_{t \wedge T} - X'_{t \wedge T}|) = E(|X_0 - X'_0|) + E \int_0^{t \wedge T} (b(X_s) - b(X'_s))\text{sign}(X_s - X'_s)ds.
\]

9. From the preceding question, we get, by using the assumption on \(b \),
\[
\alpha(t) = E(|X_{t \wedge T} - X'_{t \wedge T}|) \leq E(|X_0 - X'_0|) + CE \int_0^t |X_{s \wedge T} - X'_{s \wedge T}|ds = \alpha(0) + C \int_0^t \alpha(s)ds.
\]
By the Grönwall lemma, we obtain \(\alpha(t) \leq \alpha(0)e^{Ct} \) for all \(t \geq 0 \). It follows that if \(\alpha(0) = 0 \) then \(\alpha(t) = 0 \) for all \(t \geq 0 \). This means that if \(X_0 = X'_0 \) then \(X_{t \wedge T} = X'_{t \wedge T} \) for all \(t \geq 0 \). By writing this for \(t \in Q_+ \), and by taking \(T = T_m \) such that \(\lim_{m \to \infty} T_m = +\infty \) almost surely, we get that \(X_t = X'_t \) for all \(t \in Q_+ \), and thus for all \(t \geq 0 \) since \(X \) and \(X' \) are continuous.

References