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1. INTRODUCTION

''N 1930, Ornstein and one of us' tried to
~ ~ summarize and partially extend the existing
theory of the Brownian motion for simple sys-
tems like the free particle and the harmonic
oscillator. Since that time the theory has been
developed and clarified to a considerable extent,
so that it seems worth while again to try to
summarize the theory. In this we will restrict
ourselves to the case of the Brownian motion of
a system of coupled harmonic oscillators, or in
the electrical analogy to the theory of the thermal
noise in a linear, passive network. It is now
clear that in this case we have to do with the
theory of the so-called Gaussian random process,
and we shall try, therefore, to present the theory
of the Brownian motion against the background
of the general theory of the random process. '
This will also allow us to show the Connection
with some of the mathematical literature on
this subject.

There are two approaches to the theory of the
Gaussian random process. In the first the atten-
tion is focused on the actual random variation
in time of the displacement, or voltage, or
whichever variables of the system one is espe-
cially interested in. One usually4 develops this
variable in a Fourier series in time, of which the
coefficients can vary in a random fashion. A
fundamental notion is the notion of the spectrum
of the random process, and the connection be-
tween the spectrum and the so-called correlation
function is one of the basic theorems. For many
purposes, and especially in the electrical case
when —the "noise" passes through non-linear

' G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36,
823 (1930).We will refer to this paper as I.' Only in the last section, where we shall mention some
unsolved problems, we shall go beyond this restriction.' Recently S. Chandrasekhar has also reviewed several
aspects and applications of the general theory- in Rev.
Mod. Phys. 15, 1 (1943). Although there will be some
overlapping, we hope that'our review will complement the
exposition of Chandrasekhar.

4 It sometimes is convenient to use a development in
other sets of orthogonal functions,

circuit elements (like rectifiers for instance), this
method is the most natural. Recently the method
has been applied systematically to a whole series
of problems by S. O. Rice, ' and we shall call it,
therefore, the method of Rice or the Fourier series

. method, and in. the following we shall give only a
short account of it.

The second method is the method of Fokker
Planck or the digus ion equatio'n method. Macro-.
scopically, for an ensemble of particles or sys-
tems, the variations which occur are like a
diffusion process. The distribution function of
the random variables of the system will, there-
fore, fu1611 a partial diEferential equation of the
diffusion type, and this is the basic equation of
the method. We shall discuss this method in
more detail, mainly because, thanks to a recent
article by Kramers, ' one is now able to derive
the distribution function for any of the random
variables in the Brownian motion of a system of
coupled oscillators. Thus it becomes completely
clear that the two methods give identical results,
and the relation between the two methods can
then perhaps be better appreciated.

2. THE GENERAL RANDOM PROCESS

Roughly speaking, what we mean by a random
process y(t) is a process in which the variable y'

s S. O. Rice, Bell Tel. J. 23, 282 (1944); 25, 46 (1945).
We shall refer to these papers as Rice I and II. One finds
here also references to previous applications of the method.

6 For simple examples see I, and also R. Furth, Ann. d.
Physik 53, 17"I (1917) and Riemann-Weber, 3rd ed. Vol.
II, p. 177. In the mathematical literature the method has
been analyzed by A. Kolmogoroff, Math. Ann. 104, 415
(1931); 108, 149 (1933); and by W. Feller, Math. Ann.
113, 113 (1936);Trans. Am. Math. Soc. 48, 488 (1940).

r H. A. Kramers, Physica 7, 284 (1940).
8 It may be that y is the displacement or velocity of a

particle in Brownian motion or a fluctuating voltage or
current when we have thermal noise. It may also denote
a combination of two or more of such quantities, and we
shall speak then of two-dimensional or more dimensional
random processes. In the following, everything will be
written as if y and t were continuous variables. This is
not necessary; it may happen that either y or t or both
y and t can assume only discrete values. We propose to
let the words continuous and discrete refer only to the
dependent variable y; while the words process and series
refer to continuous and discrete t respectively. The we11-
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does not depend in a completely definite way on
the independent variable t ( = time), as in a causal
process; instead one gets in different observations
different functions y(t), so that only certain
probability distributions are directly observable.
In fact the random process y(t) is completely
described (or defined) by the following set of
probabi/ity distributions:

Wi(y/)dy = probability of finding y in the
range (y, y+dy) at time f.

Ws(ytti, ysf3)dyidys ——joint probability of
finding y in the range (yi, yi+dyi) at time
ft and in the range (ys, ys+dys) at time &3.

W3(yi/i y252 y3/3)dyidysdy3 ——joint proba-
bility of finding a triple of values of y in
the ranges dyi, dys, dys at times t„ ts, t3. (1)

And so on! The set of functions (1) must fulfill

the following obvious conditions:

(a) W =0.
(b) W (ytti; ysfs y t ) is a symmetric

function in the set of variables y~t~, y2$2- -y„t„.
This is clear since S"„is a joint probability.

(c) W3(yiti, ysfg, )

f
dy&+t dy„W„(ytt, y„t„)

since each furiction W„must imply all the
previous S'~ with k&n. The set of functions
(1) form, therefore, a kind of hierarchy; they
describe successively the random process in
more detail. '

known theory of Smoluchowski for the concentration
fluctuations of a colloidal suspension is in our terminology
an example of the analysis of a discrete random series.
.The general random walk problem is an example of the
theory of continuous random series, etc. One finds a
complete account of these examples in the article of
Chandrasekhar.' So far as we know, the first attempt to give a general
theory of a random process is contained in two papers by
L. S. Ornstein and H. -C. Burger, Versl. Kon. Acad. Amst.
27, 1146 (1919);28, 183 (1919).Here the set of distribu-
tions (1) and the property (c) are mentioned. Compare
further A. KolmogoroE, Grlndbegrige der Wahrscheinlich-
keitsrechnung (Berlin, 1933), p. 27; H. Wold, "A study in
the analysis of stationary time series, Diss; Uppsala (1938);
B. Hostinky, Ann. Inst. H. Poincare, 3, 1 (1933); 7, 69
(1937). Th'e authors are aware of the fact that in the
mathematical literature (especially in papers by N.
Wiener, J. L. Doob, and others; cf. for instance Doob,
Ann. Math. 43, 351 (1942), also for further references) the
notion of a random (or stochastic) process has been
defined in a much more refined way. This allows for
instance to determine in certain cases the probability that
the random function y(t) is of bounded variation, or

To determine the functions TV„experimentally,
it is clear that one needs a great number of
records y(t) obtained from a great number of
experiments on "similarly prepared" systems (an
ensemble of observations). To find then, for
instance, Wi(yt), one determines at a definite
time t how often in the different experiments y
occurs in a given interval (y, y+Ay), etc. In most
applications (and especially for the Brownian
motion problems) we can make, however, a
simplification because the processes are stationary
iri time. This means that the underlying "mecha-
nism" which causes the Huctuations does not
change in course of time. A shift of the t-axis
will then not inHuence the functions F, and as
a result the set (1) becomes:

Wi(y)dy=probability of finding y between y
and y+dy.

W2(yiys&)dytdys = joint probability of finding a
pair of values of y in the ranges dy& and dy2,
which are a time interval t apart from each
other (t is therefore=ts —tt).

And so on again. These functions can now be
experimentally determined from one record y(t)
taken over a sufficiently long time. One can then
cut the record in pieces of length T (where 1is
long compared to a11 "periods" occurring in the
process), and one may consider the different
pieces as the different records of an ensemble of
observations. In computing average values one
has in general to distinguish between an ensemble
average and a time average. However, for a
stationary process these two ways of averaging
will always give the same result, and one can,
therefore, use either of them.

3. CLASSIFICATION OF RANDOM PROCESSES

The set of probability distributions (1) leads
immediately to a method of classifying the
random processes.

(a) We shall call a random process a purely
random process when the successive values of y
are not correlated at all. This means that:

W2(ylf1, y2$2) = Wl(ylf1) ' Wl(y2$2)

continuous or diR'erentiable, etc. However, it seems to us
that these investigations have not helped in the solution
of problems of direct physical interest, and we will,
therefore, not try to give an account of them.
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and analogously for the higher W„. All the
information about the process is then completely
contained in the first distribution function Wi.
When t is discrete, it is easy to give examples,
but for continuous t, the purely random process
can only be considered as a lund of limiting case;
in any actual example, the y& and y2 will surely
be correlated when the time interval t2 —t~ is
small enough.

(b) In the next more complicated case, all the
information about the process will be contained
in W2. Such processes are called Markog proc-
esses. For the more precise definition it is useful
first to introduce the notion of condhtiona/ proba
b2l2ties. We will write P2(yi I y2, t)dy2 for the prob-
ability that given y& one finds y in the range
(y2, y2+dy2) a time t later. Of course, one finds
P2 from W2 according to"

W2(yly2~) Wl(yi)P2(ylly2) ~)8 (2)

P2 must further fulfill the obvious relations
(which also follow from the properties (a), (b),
(c), of Section 2):

&2(yil y2 ~) =o

dy2&2(yily2, &) = ~, (3b)

Wi(yp) = Wi(yi)&2(yilyp, &)dyi (3c)

Analogously one can introduce higher order con-
ditional probabilities, and we will use an analo-
gous notation; a bar will always separate the
variables which are given from those for which
the probability has to be found. All this holds,
of course, still for any stationary random process.
A Markoff process can now be defined more
precisely by stating that for such a process the
conditional probability that y lies in the interval
(y, y +dy ) at time t, given that y is equal to

' From now on we shall restrict ourselves to stationary
processes.

"This property excludes, for instance, the existence of
"hidden periodicities. " In the theory of noise it excludes
the presence of "signals. "

while in the Brownian motion problems one also
always has

lim P2(yi I y2, t) = Wi(yp).

yi, y2 y„ 1 at the times ti, t2 t„ 1 (where
t„)t„ 1 )t2) ti) depends besides on y„t„only
on the value of y at the previous time t„ I. Or
in a formula, a Markoff process is defined by the
equation:

&n(ylti y2&2' ' ' yn —1&n,—1 I yn&tL)

=F2(y„ it -il y t ) (5)

This makes it clear that all the W for n & 2 can
be found, when only W& is known. One derives
for instance easily from (5) that:

W2(ylti, y2$2) W2(y232, y3/8)
W3(yl~l y2~2 y8~8)

Wi(y2t2)

and so on. It is clear, therefore, that W~ or P2
completely describes the process. However, one
cannot take P2 as an arbitrary function of its
variables. Besides the general relations (3) and
(4), it must fulfill:

&2(yil y„ t) = dyI'2(yi
I y, tp)P2(y I y2, t —fp), (6)

for all values of tp between zero and t. This
follows immediately from the definition of a
Markoff process and is called the Smoluchomski

eglation. It is the basic equation for the theory.
(c) In this way one can go on. The next class

of processes will be completely described by
giving S'3. However, in the physical applications
there are very few examples studied of such
higher order processes. Very often, when a
process is not a Markoff process one can still
consider it as a kind of "projection" of a more
complicated MarkoK process. Besides-y, one then
considers another dependent variable s (which
may be, for instance, dy/dt or it may be a
coordinate of another system), and it may be
that for the two variables y, s combined, the
process is then a Markoff process, so that:

&2(yisil yps2, ~)

dy«P2(y»1
I y&, &p)&2(y& I y2&2 ~ —~p)

The W2(yiypt) which one obtains by integrating
W2(yisiy2spt) over si and s2 will then in general
not be a Markoff process, and one can say that
this is due to the fact that orie has not given a
complete enough description of the process.
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Whether it is always possible to find the appro-
priate variables z~, z2 (there may be more than
one) so as to complete the given process to a
Markoff process will, of course, depend on the
physical "causes" of the Huctuation phenomena
in question. As we shall see, for the theory of the
Brownian motion, such a completion will ale'ays
be possible, so that in some sense we will always
have to do with Markoff processes.

4. THE RELATION BETWEEN THE SPECTRUM
AND THE CORRELATION FUNCTION"

easily:
fi QO

(y(t)y(t+r))A„—— dfG(f) cos 2+fr, (11a)J,
from which follows by inversion:

p 00

G(f) =4~ dr(y(t)y(t+r))A, cos 2m f7.. (11b)

This is the relation referred to in the title of this
section. One can express it by saying that the
correlotion function

Suppose that one considers for a very long
time T a stationary random process y(t) whose
average value is zero. Taking y(t) =0 outside the
time interval T', one can develop the resulting
function in a Fourier integral:

s(f) = G(f)

( (t) (~+ )) ~

p(r) =
6')A

and the normalized spectrum:

(12a)

~(&) =
J

dfA(f)s"'" (7)

where A(f) =A*( f), s—ince y(t) is real. It is
well known (Parzeval theorem) that:

y2(~)di= (A(f) ~'df.

Using the fact that ~A(f) ~' is an even function
of f and going to the limit T~~, one can write
this equation in the form:

is the spectrol density.
Consider next the average value:

1 t'+"
(y(t)y(1+7))A, = Lim — X(~)y(~+..)di. (10)

T~oo T —QO

By introducing the Fourier expansion (7) and
using the Fourier integral theorem, one shows

P+QQ F00

(y')A ——Lim — y'(t)dt= ' dfG(f), (8)
T~00 ~ —00 aJ p

where
2

G(f) =Lcm —~A(f)
~

2

1MOO.

dfG(f)
Jp

are each other's Fourier cosine transform, so that
they are uniquely related to each other. For an
almost pure random process, p(r) is a function,
which starting from unity drops very rapidly to
zero, and as a result S(f) =constant except for
very high frequencies. We call this a +hite
spectrum; of course, the case that S(f) =constant
for all f, which corresponds to a pure random
process, is a limiting case, which will never occur
in practice. When S(f) has a sharp maximum
around fo, then p(r) will look like a damped
oscillation with roughly the frequency fo.

5. SOME REMARKS ON THE THEORY OF
DISCRETE RANDOM SERIES"

We will restrict ourselves to Markoff processes.
The problem will then always be to determine
P(n~m, sr) when one knows P(n~m, r) Here P.
is the analogue of the P(y~ ~ y2, t); y&, y2 can only
have discrete values n, m and also the time t can
only have discrete values s7. with s = 1, 2, 3,
From now on we will drop the r and write also
Q(N, m) for P(n

~
m, r) in order to emphasize that

"This relation is contained in the paper of N. Wiener,
Acta Math. 55, 117 (1930) on generalized harmonic
analysis. It was rediscovered by Khintchine, Math. Ann.
109, 604 (1934). See also the dissertation of H. Wold for
further references and for the formulation in the discrete
case. In 1938, G. I. Taylor (Proc. Roy. Soc. 164, 476
(1938))gave a beautiful application of the theorem to the
theory of turbulence. Cf. also Rice I, p. 310.

"The purpose of this section is only to present some of
the ideas which are of importance for the understanding of
the Fokker-Planck method. For a complete discussion
compare Hostinky, see reference 9 and also M. Frechet,
Traite dN, Calcu' des I'robabilites (1938), Vol. I, Part II,
Section 3. For the discussion of the important application
to the theory of the concentration fluctuations, see Chan-
drasekhar, reference 3.
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it is the basic probability which must be given
from the "mechanism" or the "physical cause"
of the random process. To find then P(n ~m, s)
one can try to make successive use of the
Smoluchowski equation:

P(n~m, s) =g&P(n~k, s —1)Q(k, i'). (13)

However, for large values of s this is usually not
practicable, and one has to look for other
methods.

It is instructive to write (13) in a diferent
way by remembering that:

that the point makes a step 6 to the right or to
the left. If at s =0 the point is at the position nA,
what is the probability P(n

~
m, s) that at time s

the point is at the positions mh. It is clear that
the basic transition probability Q(k, m) is given
by:

Introducing this in (13) and dropping again the
initial state n, one obtains the difference equa-
tion:

P(m, s) =-',P(rN+1, s —1)+-',P(m —1, s —1), (15)

ol
Q(k, m) =1,

Q(k, k)+Q.' Q(k, m) =1,

which has to be solved with the initial condition
(14). The solution is very easy to obtain; with
i = ~e —m

~

one gets:
I

where the prime means that the value m =k must
be omitted. Using this and dropping in (13) the
initial value n one can write Eq. (13) in the form:

P(m, s) —P(m, s —1)
= —P(m, s —1)gi,' Q(m, k)

+Pi,' P(k, s —1)Q(k, m). (13a)

One can interpret this by saying that the rate of
change of P(m, s) with the time (=s) is owing
to the "gains" of E because of transitions from
k to m minus the "losses" of I' because of the
transitions from m to all possible k. It is clear,
therefore, that (13a) is completely analogous to
the well known Boltzmann equation in the
kinetic theory of gases. '4 One must solve such
an equation for a given "initial" distribution; in
our case this is the way the variable n comes in
since:

(14)

where 6(n, m) denotes the Kronecker symbol.
In many cases the process has the property

that the dependent variable k can change in one
step at most by &1.This means that Q(k, m) =0
except when m=k, k&1, and Eq. (13) or (13a)
becomes then a rather simple difference equation.
To illustrate this we will consider two examples.

(a) Discrete random walk problem in one
dimension. This is the simplest possible case; a
point can move on a straight line in steps 6; at
each time moment s there is an equal chance

s

P(n(m, s) =
(i +s) (i —s) (2J

The first probability distribution W&(n) should
of course become independent of n, and will

therefore be not strictly normalizable except
when one limits the number of positions. This
is also in accord with the general relation (3c).
One sees easily that in this case P(n~m, s),
besides fulfilling the general Eq. (3b), fulfills in
addition the special relation:

P„P(e
~
m, s) = 1,

and as a result the equation (analogous to (3c)):

W(m) =Q„W(n)P(n~m, s)

has the solution W(n) =constant.
(b) An example of Ehrenfest" —Suppose now

that the fundamental transition probability
Q(k, m) has the form:

R+k R —k
Q(k, m) = h(m, k —1)+ 8(m, k+1),

2R 2R

where R is a given integer. In the language of
the random walk problem of the previous ex-
ample, this means that there is an attractive
center; the probabilities for making a step 6 to
the right or left are not more equal but ~ (1—k/R)
and -,'(1+kjR) so that the point will have the

'4 For the case that the molecules of the gas can only "For the description of the probability problem and for
collide against fixed centers or against other molecules a more complete analysis see E. Schrodinger and F.
which have a givee velocity distribution. Kohlrausch, Physik. Zeits. 2'F, 306 (1926).
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tendency to go to the position 0 =0. The diEer-
ence equation now becomes:

A+m+1
P(m, s) = P(m+1, s —1)

2R

R —m+1
P(m —1, s —1), (17)

2R

is more natural to start (following Rice) with
the Fourier development of the Gaussian random
function y(t).

Consider again the stationary random function
y(t) over a long time T, and suppose that y(t) is
repeated periodically with the period T. One
can then develop y(t) in a Fourier series:

Since for s=0, (m)A„——n, one finds:

( 1&'
(m(s))A„——nl 1 ——l, (18a)

which shows how the average position of the
point goes to zero. In the same way one gets:

which has again to be solved with the initial
condition (14).We did not succeed in finding the
solution; it is possible, however, to calculate
average values. For instance it is easy to show
from (17):

( 1$
(m(s))A = Q mP(m, s) =

I
1

1 (m(s —1))A„.
E.

y(t) = Q (ai, cos 2~fat+bi, sin 2vrfi, t), (19)
k=1

where f~ k/T. —T—here is no constant term, since
we will assume that the average value of y is zero.
The coefficients aI, and bg are random variables,
and we will asslme, that they are all independent
of each other and Gaussianly distributed with
average values zero, so that one has for the
probability that the aI, and b& are in certain

. ranges dai„db~ the expression:

W(aia2 bib2 )

1=II exp L
—(a '+b ')/2o' ), (20)

(m'(s))A, ——n'l 1 ——
I

where ai,' ——(ai,2)A, ——(b ')iA, G(f——~)/T G(f) is ag. ain
the spectral density (cf. Eqs. (8) and (9)), since:

1 ( 2)'+&1—l1—l .
2

(m )A„will therefore go to 8/2 for s—+ Oo . This is
in accord with the first probability distribution
(which is also the stationary distribution, see
Eq. (4)) for which one finds easily:

(21)

With these assumptions one is now able to
derive all possible distribution functions for the
Gaussian random function y(t). As a preparation
one needs:

(2R)! (11 '"
W, (n) =

(R+n)!(R—n)! E2)

(18b) (y'(t))„„=Qs ((ag')A, cos' 27rfgt

+(bi, ')A~ sin' 27rf~t)

p
CO

=—Z~ G(f~)—= dfG(f)T Jp

One can verify that Wi(n) fulfills the equation:

Wi(n) =pi, Wi(k)Q(k, n)

which is a special case of Eq. (3c).

6. THE GAUSSIAN RANDOM PROCESS)
METHOD OF RICE

(a) Assumptions

The Gaussian random process is characterized
by the fact that all the basic distribution func-
tions (1) are Gaussian distributions, and one
could take this fact as the defining property of
the process. However, since as we shall see, the
spectrum essentially determines everything, it

1
W(xi. . x„)=g exp

;=i o;(2m) &

x'2

20' '

Let yiy2 y, (s~&n) be s linear combinations of
the x;:

ye =Z ai'xi,
i=1

0=1, 2 s

where the a~; 'are constants. One can prove
easily' that the yI, will be distributed according

"See Note I of the appendix.

(b) A Theorem about Gaussian Distributions

Suppose the variables xix2 x„are distributed
according to:
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to the g-dimensional Gaussian distribution:

1
~kQ sy i ~ (22)

28', ) i

Here B~~ is the cofactor of the element b~, ~ in the
matrix bl, ~, where:

since y and j' at a given t are not correlated.
One gets namely:

(y(t)t'»(t))A„——Ps 2w fi, sin 2g fst

Xcos 27rftt(( —u„')A„+(bs')A, ) =0. (26)

3. The joint distribution of y(t&) and y(ts).
This will again be a two-dimensional Gaussian
distribution. One gets:

bkl Q rtsirtlirii =(ykyl)Avi

Lj

(23)
(y(tr)y(ts))A. =—Z. ~(f.) cos 2~fk(», —t,)T

and 8 is the determinant of the matrix bI, ~. As a
special case take, for instance, s=2. One then
gets the two-dimensional Gaussian distribution,
which according to (22) can be written in the
form:

1
&(ytys) =

2m «(1—p') '

)(exp
1 py g2 2p+, yrys (24)

2(1—p') o' r' or

(c) Distribution Functions for y(&)

Using the general theorem mentioned above
one can now derive from (19) any kind of distri-
bution function referring to y(t). The method is
best explained by considering a few examples.

1. The distribution of y at fixed t. According
to (19) y is for a given t a linear function of the
basic variables ai„bi. We know, therefore, that
the probability distribution for y will be Gaussian
with a mean square value given by (21). The
time t has disappeared, and this is as it should
be since W&(y) must be independent of t, because
the process is stationary. In the same way one
can compute the distribution of the velocity 1»(t).
This is also a linear function of the af„b~, so the
distribution will again be Gaussian with the
mean square value:

(i(t)') =4 ' f'G(f)df
6 p

2. The distribution of y and t» at a fixed t.
This will now be a two-dimensional Gaussian
distribution, which is, however, especially simple

where ~'=(yi')A„r'=(ys')A, and (yrys)A. =«p; p is
the correlation coefficient.

G(f) cos 27rfrdf (27.)00,

The correlation depends therefore only on
v =$2 —t~, as it should be since the process is
stationary.

4. In this way one can go on. One can consider
for instance the third distribution function
g, (y&t&, y&ts, ysts), which will be a three-dimen-
sional Gaussian distribution depending only on
t~ —t~ and t3 —t2. One can find the four-dimen-
sional Gaussian distribution W(yrt»r, yst'»s, r) One.
can bring in the acceleration t'»(t) and its distri-
bution functions, and so on.

'7. FURTHER REMARKS ON THE METHOD OF RICE

1. We have seen that for a Gaussian random
process all the distribution functions can be
determined when one only knows the spectrum
or the correlation function. In the actual prob-.
lems of the Brownian motion this spectrum can
be found from the so-called Iangevin equations
or in the electrical analogy from the circuit
equations with thermal noise sources. For examples
see Sections 9 and 10. It should be emphasized,
however, that for many applications it is an
advantage that one can leave open the question
of the actual shape of the spectrum.

2. A disadvantage of not knowing the spec-
trum is that it does not allow a classification of
the Gaussian processes, so that one does not
know which distribution function describes the
process completely. T'he diA'erent type of proc-
esses correspond to different type of spectra.
For instance one can show'" that a one-dimen-
sional Gaussian process will be Markoffian only
when the correlation function p(t) =exp (—Pt) so

'~ This was first pointed out by J. L. Doob, Ann. Math.
43, 351 (2942).
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From the stationarity of the process, follows:

R(r) = R(—r), (30)

where R denotes the transposed matrix, Follow-
ing the same reasoning as for the one-dimensional
process one can show" that the n-dimensional
Gaussian process is MarkofFian only when R(r)
fulfills the matrix functional equation:

R(&g —tt) = R(4—&t) R(&3—4), (31)

where we have still assumed that R(0) =I, the
unit matrix. "The only non-singular solution is

that according to (11) the spectrum must be
1/(P'+co'). To prove this one determines with

the method of Rice the distribution functions
IW3(yty2y8) and W2(yty2). One, therefore, knows
also the conditional probability Pa(y&y2lya). For
a MarkoG process this must be identical with
P2(y2~ya) and one finds that this can only be the
case when the correlation function p(r) fulfills
the functional equation:

p(t~ —tt) =p(t2 —tt) p(t~ —t2). (28)

The only non-singular solution of this equation is

p(r) =exp ( Pr)—

3. This theorem can be generalized to n-
dimensional Gaussian processes. The dependent
variable y now denotes an n-dimensional vector
with components xt, xm, ~ ~ x„. Instead of a
correlation function one gets a correlation matrix:

'(xt(t)xt(t+r))e ~ (xt(t)x„($+r))A„'

R(T) = . (29)

, (x„(t)x,(t+r))A, (x.(t)x.(t+r)),„,

a greater variety of possible spectra, corre-
sponding to the different forms Q may have.

4. One should point out, that sometimes the
distribution functions which one derives with
Rice's method will have no meaning since some
of the integrals over the spectrum are divergent.
For instance when G(f) 1/(n'+f), the distri-
bution functions in which the velocity j(t) appear
have no meaning since (see Eq. (25)) (tP)A, will
not'exist. In this case one may call the process
non, dQ"e-rentisble Th.e degree of differentiability
will be characteristic for the process and will
depend again on the spectrum.

8. THE GAUSSIAN RANDOM PROCESS;
METHOD OF, FOKKER-PLANCK

(a) Basic Ideas

It is best to start with the discrete random series
(cf. Section 5). Suppose that the basic transition
probability P(n~m, r) or Q(n, m) has the prop-
erty that in the time r I can only change by zero
or by ~1. This was, for instance, the case in
the examples (a) and (b) discussed in Section 5.
Consider now for this case the limit in which u
and the time s7 become continuous. The Smolu-
chowski equation will then become a partial
differential equation of the first order in the time
coordinate and of the second order in the space
coordinate. For instance, in example (u), the
Smoluchowski equation becomes Eq. (15) which
may be written:

P(m, s) —P(m, s —1) =-', LP(m+1, s —1)
—2P(m, s —1)+P(m —1, s —1)].

In the limit that sr=I and mh=x become con-
tinuous variables, this clearly goes over into:

R(r) =e~', (32) (r)P/r)t) =D(r)'P/r)x'), (33)

for r)0, Q is a constant matrix, which is in
general not symmetric, ' so that its eigen-
values may be complex. There is now of course

' This result seems to be contained in a recent paper by
J. L. Doob, Ann. Am. Stat. 15, 229 (1944). See also Note
II of the appendix, where we give some details of a more
direct proof which we owe to Dr. M. Kac.

"This is no loss in generality, since it can always be
achieved by using the proper linear combinations of the
components of the e-dimensional vector y. In the physical
language this means that we have used such coordinates
that the energy is a sum of squares.

"For r (0 R(r) =exp (—Qr) in accordance with (30).

when D= Lim A'/2r. One gets, therefore, the
well-known heat conduction or diffusion equa-
tion. In the same way one shows that in example
(b) one gets from (17) in the limit the equation:

BP 8 O'P
=P (xP)+D-

PI Bx Bx2
(34)

where P = Lim 6/rR
In this limit the problem of finding the prob-

ability distribution P(xo~x, t) becomes then the
problem of finding the fundamental solution of
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the partial differential equation of the diA'usion

(or parabolic) type into which the Smoluchowski
equation has degenerated. We mean by this the
solution which for t =0 becomes ' the Dirac
singular function 5(x—xs). This corresponds to
the condition (14) in the discrete case and
expresses again the fact that for 1=0 one is
certain that x=xs. For (33) this solution is
given by:

1
P(xpI x, t) = exp I

—(x xs)'/—4Dt t. (35)
(4~Dt)»

It is easy to show that this is the limit into
which the solution (16) of the discrete case goes
over. For Eq. (34) the fundamental solution is
given by 2'

1
P(xsIx, I) = exp [—(x —x)'/2a'), (36)

(2s o') i

where (x)A, ——xs exp ( Pt) a—nd a'= ((x—x)')A„

=(D/P)L1 —exp ('—2Pt) j. It is clear that these
average values follow also in the limit from (18a)
and (18b).

One should point out that one gets in the
limit a diffusion equation only when'P(n

I
m, r) is

such that in the time ~ n can only change by zero
or ~1, or, less precisely, when in small times the
space coordinate can only change with small
amounts. In the general case, the Smoluchowski
equation will become in the limit an integro-
differential equation which is of the same type
as the Boltzmann equation in the kinetic theory
of gases.

(b) Assumptions

In the continuous case we will start from the
Smoluchowski equation in the form:"

P(xly I+~~) = dzP(xlz ~)P(zly ~I) (37)

This assumes, therefore, that the process is a
Markoff process. The moments of the change in
the space coordinate in a small time Dt are

"See, for instance, I, Section II. Equation (36) is also
a special case of the solution derived in Note IV of the
appendix.

"For simplicity we consider the process to be one
dimensional, since the generalization to the n-dimensional
case is obvious. We follow the notation and the exposition
of Kolmogoro8, Math. Ann. 104, 415 (1931).

given by:

c (z, At) = dy(y z)—"P(z
I y, z&),

and we shall assume that for At —+0, only the
first and second moments. become proportional
to ht. so that the limits

1.
A(z) =Lim —'at(z, Dt),

At

1
B(z) =Lim —as(», ht),

(38)

exist. This assumption expresses the fact that
for these processes in small times the space
coordinate can only change with small amounts.
In the actual problems of the Brownian motion
this assumption can be proved and the average
values A(z) and B(z) can be calculated from the
Langevin equations or in the electrical analogy
from the circuit equations with thermal noise
sources. " Just as in the method of Rice, these
equations are,

'
therefore, the real basis for the

theory of the Brownian motion.

I
dyR(y) =Lim — dyR(y)

Bt ht J

X I
P (x I y, &+At) —P (x I y, t)]

=Lim — dyR(y) dzP(x
I
z, t)P(zI y, g~)

—
~

dzR(z)P(xIz, ~) .

In the double integral, interchange the order of
integration and develop R(y) in a Taylor series

"For examples see Sections 9 and 10.

(c) Derivation of the Fokker-Planck Equation

Consider the integral

BP(xIy, t)
dyR(y)

Bt

where R(y) is an arbitrary function, which goes
to zero for y—&~ ~ sufficiently fast. Replacing
the differential quotient by the limit of the
difference quotient and using the Smoluchowski
equation in the form (37) one can write:
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in (s—y). Because of (38) one can stop at the
term with (s—y)2 and one gets:

BP
dyR(y) = dhP(x

i
s, t)

at J

&& [R'(s)A (s) +-,'R"(s)B(s)j.
Integrating partially and writing y for s one
obtains:

B 1B'
~' dyR(y) +—(AP) —— (BP) =0.

Bt By 2 By2

Since this must hold for any function R(y), the
expression in the square brackets must be zero,
which gives the general Fokker-Planck equation:

BI B 1 B
— -= ——L~b')P)+- [B(y)P3 (39)

By 2 By~

of which, of course, (33) and (34) are special
cases. For an n-dimensional process one gets
analogously:

BP B
[~'(y)Pj

Bt By;

electrical problem is of course the (I., R) circuit,
and the circuit equation is:

l.(di/dt) +Ri =Z(t), (40b)

where E(t) is a purely random fluctuating e.m. f.
(the thermal noise source), which has a spectral
density 4RkT. We will combine these cases by
writing (40a) and (40b) in the form':

(dy/dt) +Py = F(t) (40c)

(F(t))A. =0,

(F(tg) F(t2))A„——2Db(t, —
&,).

(41a)

(41b)

This is, however, not enough; besides being
purely random, we must assume that F(t) is
Gaussian. This can be expressed in different ways.
Either one can postulate the Gaussian distribu-
tion of the Fourier coefficients (see Eq. (20)
where now oq' = const. =4D/T) or one can assume
the two properties:"

and by taking 4D as the spectral density of the
purely random F(t). This means that we ttssuvte9~

2 (F(&1)F(4) ' ' ' F(t2n+1))Av —0&+- 2 [B~t(y)P1 (3»)
2 I, I, By@By) (F(t&)F(t&) ' F(t2 ))A

(42a)

where again the A; and the BI„.~ are the first and
second moments defined analogously as (38).

I

9. THE BROWNIAN MOTION OF A FREE PARTICLE'4

(a) Assumptions; The Langevin Equation

For a free particle (mass m, velocity v) the
equation of motion will be:

(F(t') F(t t))" (F(t~)F(«))" (42b)
all pairs

where the sum has to be taken over all the
different ways in which one can divide the 2n
time points t& t2„ into n pairs. It is easy to
show the equivalence of these two definitions
(see Note III of the appendix).

vt(dv/dt) +fv =X(t), (40a) (b) The Spectrum of y(t)

where f is the friction coe%cient, and X(t) is the
Huctuating force, of which the average value is
zero and which has a very sharp correlation
function and therefore, a practically white spec-
trum. The spectral density of E(t) is 4fkT where
k is the Boltzmann constant and T the tempera-
ture of the surrounding medium. The analogous

'4 Compare I, Sections II and III. The first complete
derivation of the distribution functions obtained in Sections
9 and 10 was given by L. S. Ornstein and W. R. van Wyk,
Physica 1, 235 (1934). The derivation from the Fokker-
Planck or Kramers equation was found independently by
Ming Chen Wang, Dissertation, Ann Arbor (1942) and
by Chandrasekhar, reference 3.

Since F(t) is Gaussian it is clear that y(t) will

also be a Gaussian random process with a
spectrum:

4D
(43)

"The second equation follows from (11b) since:

Gz(f) =4D =2J dr cos 2vrfr(F(t)F(t+7))A, .
"This is the starting point of some of the work of

N. Wiener on the theory of the Brownian motion. The
physical justification of the assumptions (41) and (42)
comes from the Maxwell-Boltzmann distribution law,
which in the theory of the Brownian motion is always
postlloted and not derived. Compare also I.
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This corresponds to a correlation function p(t)
=exp ( Pt—) and the second probability distribu-
tion is, therefore, the two-dimensional Gaussian
distribution:

Fokker-Planck equation becomes:

P B 82E
=P (y—I')+D

Bt By By
(42)

+"s(yiyst) = (,),
This is identical with (34), so that the funda-
mental solution P(ys~y, t) is given by (36) (for
the proof, cf. Note IV). For t~ ~ one gets:

)&exp

since:

iyr'+ys' —2pytysI (44)
2D(1 —p') ( P &'* ( Py'&

~t(y)=Lcm &(ysly t)=l-
E27rD j q 2D)

(y')A. = G.(f)df =DIP
6 p

I

According to the theorem of Doob y(t) will be a
Markoff process, so that Ws(yiyst) gives the
complete description of the process.

~s(yiyst) = ~i(yt)&(yi I ys, t)

one gets again Eq. (44). That y(t) is a Markoff
process has now, of' course, been assumed from
the beginning. "(c) The Fokker-Planck Equation

(45) in accordance with (45). For the second proba-
bility distribution:

A(y) = Py, —&(y) =2D. (46)

The proof is simple; integrating (40c) over a
short time At one gets:

The average values A(y) and B(y) can now
be computed by means of (41) and one finds:

10. THE BROWNIAN MOTION OF A SIMPLE
HARMONIC OSCILLATOR

(a) The Langevin Equation

Suppose now that instead of (40c) we have the
second-order differential equation:

Therefore:

Ay = Pyht+-
Jt

dV'(5). dy dy

dt' dt
+P +«'y = F(t)— (48)

«y) ~

A(y) =Lim = —Py,
at~o At

since (F)A, ——0. Further:

This describes clearly the Brownian motion of a
simple harmonic osci11ator or the thermal noise
in a (R, 1., C) circuit. For the F(t) we assume
again the basic properties (41) and (42).

(dLy')Ay P'y'5t'+ ——I ~dydee/(F($) F(r)))A„,

and from (41b) one shows easily that the double
integral is 2DAt, so that:

(1) The Spectrum and the Correlation Matrix

Since F(t) is Gaussian, it is clear that y(t) will
also be a Gaussian random process with a
spectrum:

B(y) =Lim =2D.
«y') ~

~t~o

4D
Gs(f) =

~

—(27rf)'+2miPf+ois'
~

' (49)

In the same way it follows from (42) that all the
higher moments of Ay go to zero in the limit
Dt—+0, so that all the assumptions of )8, fA are
fulfilled. " With the values given by (46) the

"It should be emphasized perhaps again that from the
physical point of view these assumptions (and, therefore,
also (41) and (42)) are necessarily only approximations.
The basic equation is always Boltzmann's integral equa-

tion. Only when in each collision the velocity of the
particle can change very little, then the Boltzmann equa-
tion can be approximated by the diffusion Eq. (47). It is
very instructive to compare the derivation above with the
derivation of (47) in the well-known Rayleigh model
(Scientific Papers Vol. 3, p. 473) for the Brownian motion
of a heavy particle.

"We shall not discuss the distribution function for the
displacement of the particle, since it follows from the
velocity distribution (see, for instance, Doob, reference. 17)
and since it is also a special case of the distribution func-
tions derived in Section 10.
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from which follows according to (11a)

&y(t)y(t+ r))"
2D I'" cos ~r

dc'
Gap

—QJ CO

D ( P
e t't') cosoit + sin

plop ( 2tei )
where tet'=res' —(p'/4); the formula will always
be written for the underdamped case; for the
aperiodic case let tei—+0 and for the overdamped
case put coj =ior'.

Of course, y(t) is not more a Marko8 process.
However, from the physical situation and also
from the general theorem of Doob one must
expect that y(t) is the "projection" of the two-
dimensional Gaussian Markoff process Ly(t), p(t) $
where p(t) =dy/dt. The correlation function (50a)
must be extended to the correlation matrix:

(&y(t)y(t+ r) )A, &y(t)p(t+ r) )„„l~
E&p(t)y(t+r))A &P(t)p(t+r))A. ) '

and one finds easily that:

r
&p(t)y(t+r))A, ——2s. dfG„(f)f sin 2rrfr,

V p

2D f v sin cur
dc@,

J p (&s)
2 ie 2) 2+p 2&2

(c) The Fokker-Planck Equation

Replacing the Langevin Eq. (48) by the
simultaneous equations:

dy/dt =p and dp/dt+ (pp+tdssy) = F(t), (48a)

one 6nds easily for the average values occurring
in the two-dimensional Fokker-Planck equation
(cf. Eq. (39a)):

&~y)"
Ai ——Lim =p;

At

. &~p)"
A s ——Lim = —(pp+oip'y);

Dt

Bx1——Lim =0;
6t

&~y~p)"
812——L1m

. &»')"
822= Lim =2D,

At

so that one gets 2'

BE BP B B'EP+ —L(PP+~s—'y)I'3+D (51)
Bt By Bp Bp

which has to be solved with the initial condition:

&(yp, 0) = B(y y,) B(p p,—). —

For the solution it is simpler to work with the
independent variables:

and:

&P(t)P(t+ r))A.

=+ s—t"t' sin eeir,
GOg

(50b)

where:
si=p+Gy; st= p+5y,

a= sp+itei and b= sp —ia&i.

(52)

=4s' dfG„(f)f cos 2rrfr,

2D p" or cos co7.

(~ 2 ~2) 2+p2~2

p=—e ~"
~

cos oiir sin ce&r —~.
p 4 2tet )

The complete description of the process will now
be given by S'&(yip&, ysp2, t), which is a four-
dimensional Gaussian distribution. We will not
write it, down since for the discussion it is
easier to consider the conditional probability
Ps(yipi

~
ysps, t). Consider first, however,

Equation (51) is then transformed into the more
symmetrical form:

BP B B= b (siP)+a (st)
Bt Bsi B82 ('B B)s

(51a)

and this is a special case of the equation solved
in Note IV of the appendix. One finds that the

~'This is a special case of the eglation of framers,
Physica 7, 284 (1940). Kramers takes a general force X(y)
instead of the harmonic force. —cop' y. His derivation is
essentially the same as the one given above. One should
emphasize perhaps, that with a general force X(y) the
process Ly(t), P(t)g is still Markot6an, but it is not more
Gaussian, since the basic Langevin equation is then not
linear anymore.
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fundamental solution of (51a) is a two-dimen-
sional Gaussian distribution in sl and s2 with
the average values:

(sl)A s10e (s2&A s20e

and the variances:
D

((»—el)')A =—(1—e "')

(53)

D
((»—&2)'&A. =—(1—e "')

6
2D

((81 81)(82 82) )Av
— (1—e '+'l ')

a+&

(54)

where z~p, z2p are the initial values of z~, z2

corresponding to y0 and p0.

COp

ype 'I" sin co~t,
(0]

(y)A, ———e- &' sin 011t
GO]

yo, ( p.+—e &~'~ col cos 001~+—sin 0llt ~,
Ny 2

D 1
((p —11)')"=—1—

P (01

X (001 +2P Sill 0113

—p001 sin 01lt cos 011$),

D
( o'(y-V)'&"= —1-

p

X(001'+-,'p' sin' alt

+P011 sill (dlt cos 001/)

Do) p

(a)0(p —p) (y —y))A„= e—e' sin' cult.
GDy

(d) Discussion

Since sl and s2 are connected with p and y
by the linear relations (52) it is clear that
I (P0y0

~ Py, t) will also be a two-dimensional
Gaussian distribution in p and y. One obtains
from (53) and (54) for the average values and
the variances the expressions:

Po, ( P
(p)A, =—e &~'~ 011 cos 0llt ——sin 0llt

~

011 2 )

One has, of course,

dg Gg

d/2 d$
+P—+0)0'g =0.

The center of the Gaussian distribution moves,
therefore, like the harmonic oscillator starting
from the initial values p0, y0. In the (p, y) plane
one gets (in the periodic case) for the orbit the
well known spirals. For small t:

((p —u) ')"—=2D&,

((y —
W) '&"=2»',

((P —
S )(y —

V))A =&&'

One sees, therefore, that the initial two-dimen-
sional 8 function 8(P —P0)b(y —y0) will become
6rst a narrow ellipse elongated in the p direction.
The distribution ellipse will then turn and
broaden out till at the time t = 2r/001 it has become
again a circle. This process will repeat on a
larger and larger scale with the period 2r/001 (see
Fig. 1). The center of the distribution will
come nearer and nearer to the origin and finally
of course the I'(p0y0

~ py, t) will become the
Maxwell-Boltzmann distribution.

ll. THE BROWNIAN MOTION OF A SYSTEM OF
COUPLED HARMONIC OSCILLATORS

The generalization to more complicated sys-
tems does not involve anything new, so that we
will only give an outline of the main results. We
will use for a change the electrical language and
we will consider, therefore, an arbitrary linear
network of n meshes. The circuit equations are
then 0

0

+K, +~;;I';
(
=Q &;, ;

d&' dt )
i =1, 2 22. (56)

The E;; is the fluctuating thermal e.m.f. in that
part of the resistance of the ith mesh which is

3' For the precise definition of the matrices L;;, R;;, G;;
see, for instance, E. A. Guillemin, Commlnication ¹t-
morks, Vol. I, Chap. IV. All these matrices are symmetrical.
Note, however, that R;; (iWj) does not need to be positive.
It is negative, when in the resistance common to the ith
and jth mesh the positive directions chosen for the currents
are opposite to each other. The y; are the mesh-charges.
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not in common with any other meshes. The
E;; (i') is the fluctuating thermal e.m. f. in the
resistance R;, ; E;;=X;; if in R;; the positive
directions chosen for the currents are in the
same direction; if they are opposite to each other
then E;;=—Z;,. The E;; are again supposed to
be Gaussian random processes with a constant
spectrum. We assume especially:

process. From the physical situation one must
expect in addition that the 2n variables
Lyi(t) y„(t), dyi/dt .dy„/dt7 will form a 2N

dimensional Markoff process, governed by the
Fokker-Planck equation:

(8,,) „=0;
(E,;(t,)8,;(t2))„„=2R,,k Tb(t2 —ti);
(8;;(ti)Z,;(t2))av = 2

I R'i I
&Tti(t2 t,);-

(&;;K«)A =0. A, =Pi, a;i,xp, (59)

where x& . x2„denote the variables y&
- y„,

(5p) dyi/dt. dy„/dt. From (56) and (57) one finds
further that:

In addition one needs, of course, assumptions
analogous to (42).

Since the Eqs. (56) are linear it is clear that
each of the y, (t) will be a Gaussian random

where the 2n by 2n matrix a is of the form:

i( o r
(—L-'6 —L-'R& .

(60)
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Finally one gets for the 2n by 2n matrix D the values the matrix equation:
constant matrix:

x=e"xp. (69)
(0 0

~g0 2kTL—'RL—'y
(61) This follows from (67) which can be written as

e, =Pjc,jxj (62)

where the matrix G is the matrix which diagonal-
uzes a, so that:

To find the fundamental solution of (58), it is
best to make first a linear transformation of the
x, (analogous to (52) in eb10):

x=c-'z =c—'e~'z
p
=g —c-'A."zp.

n~0 + ~

(70)

Equation (63) can be written in the matrix form:

~A tZ 0)

where the diagonal matrix A,;=X&0'j Now z= Gx

so that x=G 'z and:

2j &vaja jt = ~i&~t (63) GaG
—'= A. , (71)

Det(a;; Xb;j) =—0. (64)

One can easily show that this equation is
identical with

The eigenvalues ); are of course the 2n roots of
the equation:

from which follows that A,"= Ga" G '. Substituting
th'is in (70) one obtains (69).

For the matrix of the variances:

b;j= ((x;—x;) (x;—xj))A„,

one obtains from (68):
Det(L;,A +R;,4+G;;) =0, (64a) b = c—'pc-'.

and it is well known that for a linear passive
network the roots of this equation must have a
negative real part, and the same must hold
therefore for the X;.The Fokker-Planck equation
now becomes:

Since the real parts of the X; are negative it is
clear that for t~~ all the average values x; go
to zero. The distribution function P(x;p~x;, t)
must become in the limit t—+~ the Maxwell-
Boltzmann distribution law, which means that:

where:
o =GDC. (66)

8 1
(eE)+ Z;, , (6-5)

Bz& 2 z j Qz&()zj
Limb '=
taboo

G
kT

0

0

1
L

kT

(73)

Ap+ pA. = —e.

The fundamental solution of (65) is derived in To show this from (72), one starts from Eq. (68)
Note IV of the appendix. One gets a 2n-dimen- which in the limit )~~ can be written'''in the
sional Gaussian distribution with the average
values:

(s,)A s'p exp (X,t)

and the variances:

j '~=((&' —e')(s~—ej))A.

Li —exp (X,+lij)t], (68)
X;+Xj

where z;0 are the initial values of the z;. Trans-
forming back to the original variables x; one
gets of course again a 2N-dimensional Gaussian
distribution. Combining the variables x; in a
column matrix x, one can write for the average

Substituting p= cbc and using (66) and (71) one
finds that b has to fulfill (always in the limit
t~~) the equation:

ab+ba = —D. (74)

This determines, of course, the matrix b uniquely.
From (72) follows also that b is symmetric so
that we can put:

b —
I X& Xp)

where Xi and Xp are symmetric I by m matrices.
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From (74) follows then:

Xp ——0, LXp ——GXi, RXiG+ GXiR =2kTR.

By inspection one sees that these equations are
ful611ed by:

Xi ——kTG ' Xs——kTL ' Xj=0 (75)

and since the solution of (74) is unique this
must also be the only solution. Equation (75) is,
of course, equivalent with (73).

The same distribution function follows, of
course, from the method of Rice. One has to
start then from the correlation matrix, for which
one finds from the circuit Eqs. (56):

where Z(p) is the matrix:

Z(p) =Lp'+Rp+G.

In order to see how in the method of Rice the
Maxwell-Boltzmann distribution is reached, it is
suflicient to prove the theorem of the equi-
partition of energy:

(77)

where U is the potential energy

U=-', Q G, ,y„y,.
t', S

From (76) one obtains:

where one has to take the principal value of the
integral. Since the determinant of Z(iai) has no
zeros in the lower half of the complex ~-plane,
it can be easily seen that the integral in (79) is
—pri times the residue of the integrand at p& =0;
Since Z '(0) =G ' it is clear that the residue is
unity, so that one obtains the equipartition
theorem (77).

12. SOME UNSOLVED PROBLEMS

Since we may have created the false impression
that with the- derivation of the fundamental
probability distribution all problems in the
theory of the Brownian motion have been solved,
it may be useful to list a number of unsolved or
partially solved problems.

(a) The Approach to the Barometric Distribution

It should be emphasized that only for harmonic
forces one gets the simple theory of the Gaussian
random process. For a constant force the problem
becomes already much more complicated. For
instance for a gravitational field (directed to-
wards the negative x axis) the Kramers equation
becomes:

BP BP 8 BPp+g +——Pp&+D (8o)
Bx Bp Bp Bp

The trouble is now, that one needs a re/ecting
boundary, say at x=0 in order to prevent the
particles from disappearing towards x= —pp . We
feel sure that this means the condition:

&(0, p, t) =&(0 p t) —(81)

(
BU =Z. ~-(y.y.)A

~Jr Av

kT I'+"
dpiLGZ '(ip))RZ '( —i(p)]„.

To caIculate the integral, "observe that:

We have been unable to find the solution of (80)
(for x)0, —~ &p &+ ~) which fulfills the
condition (81) and which for t =0 becomes
8(x—xp)B(p —pp). One can show" that for the

(78) stationary case the Kramers equation and the
boundary condition (81) determines uniquely the
barometric distribution:

Z(imp) —Z( —ip)) = 2ipiR.

Eliminating R in the integral (78) one finds:

( t3, gP 'I
P(x, p, ~)=Cexp

~

— p' ——x (.
2D D j

(b) First Passage Time Problems

( One may ask for the probability that the

By, A, 7ri ~ „pp ""'
random variable y starting from the value y=y,

I For this proof we are indebted to Dr. J. Schwinger. "A proof was communicated to us by Mr, M. Dresden.
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reaches the value y=yi for' the first time in a
time between t and f+dt. In the usual theory of
the Brownian motion (which is based on the
ordinary diffusion Eq. (33))" such first passage
time problems have been considered and solved
by Smoluchowski and others. '4 The method of
Smoluchowski can also be used for a one-
dimensional Gaussian Markoff process y(f). One
can show, for instance, that the probability
distribution W(ys, t)dt of the first passage times
to reach y =0 starting from yo is given by:

distribution of the time intervals between suc-
cessive a-values of the random function y(t). A
formal solution of this problem has been given
by Rice (II, Section 3.4, Eq. (11), p. 64). How-
ever, even for the simple case of the harmonic
oscillator the actual discussion of the solution
has not been achieved.

(d) The Distribution of the Average Value

One may ask for the probability distributions
of the random variable:

(2)3'l 1 ( Pyo'
~(3s f)«=yol i «p I

— s' Ids, (»)«Dl & 2D &

where
s(t) = K(s t)y(s)—ds, (84)

s —p P t(1— e—2Pt) —1

However, the generalization to processes y(t)
which are "projections" of Markoff processes
seems quite complicated to us. For instance, we
have not succeeded in finding, even for a free
particle, the distribution of the one-sided first
passage times if the damping is small, so that
one has to use the exact Kramers equation. To
extend the method of Smoluchowski it is neces-
sary to introduce the idea of an absorbing
boundary say at x=0. We feel sure that this
means the condition:

P(0, P, t) =0 for all P)0 (83)

when the particle has started from xo) 0. How-
ever, to find solutions of the Kramers equation
with the boundary condition (83) seems even
more difhcult than to find solutions with the
boundary condition (81).

"Kramers, reference 29, has shown that one obtains
this equation (or the corresponding one if there is an
outside force X(y)) from the Kramers Eq. (51) (with—&ussy replaced by It(y)) in the limit of strong damping.

"Cf. for instance, R. Furth, reference 6, and for the
corresponding problems for random series M. Kac, Ann.
Math. Stat. 16, 62 (1945).

"For the definition of the mean recurrence time and
the mean persistence time see the basic paper of Smolu-
chowski, Wien. Sitz. Ber. 124, 339 (1915).Smoluchowski
restricts himself mainly to discrete random series. Already
in this case the question of the distribution of the recur-

(c) The Recurrence Time Problem

One may ask for the probability that the
random variable y starting from y =a returns to
the value y= a for the first time in a time betw'een

f and t+dt. ss Or in other words, what is the

where K(x) is a given function. A special case of
(84) is the average of the random process y(t)
over a time interval of length T. Of course,
when y(f) is a Gaussian random process then
also s(t) will be Gaussian, and the problem is
trivial. But for other types of processes y(t) the
problem is quite difficult. Rice (II, Section 3.9)
has discussed some of the average values of s(t).
Recently M. Kac and A. Siegert have succeeded
in finding the complete solution for the case that
y(t) is the sum of the squares of two independent
Gaussian processes, which have the same prob-
ability distributions.

(e) The Distribution of the Absolute Maximum
of a Random Function y(f) in a Given

Time Interval T

For MarkoR' processes one can show that this
problem is equivalent with the first passage time
problem, so that it is of the same degree of
difhculty.

APPENDIX

Note L Proof of Eq. (22)

One uses the integral representation of the
Dirac 8 function:

~+00

o(x x') =— dt e—xp I it(x —x') j,
2%

rence times seems to be quite dificult. For the simple
discrete random walk problem (example (u) of Section 5)
the first passage time and the recurrence time problem
can be solved exactly. But already for example (5) of
Section 5 we have failed to find the solution.
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which allows one to write:

P(ri X.) =
(2~) "I +'g, g3' ' '0„

Note that M is symmetric because of (30).
Analogously one has for the second probability
distribution

2n

W3(y(t~), y(t3)) = C3 exp ( ——,
' P P;3z;z3),

XJ dxx dx„exp [—-', p (x,'/a )7

dt's dt, g exp [it3(y3 —Q a3,x;)].
A:=1 1

Interchanging the integrations over the x; with
those over the t& one can easily carry out the
integrations over the x; and one gets

1
P(yg y ) = — ' dt, dt

(23r)' J

8 S

Xexp [i g y3ta —
3 g b3~t34j, (8&)

1 k, l=l

where the b&& are given by (23). One sees,
therefore, that exp (—3+b3~tItt~) is the character-
istic function of the probability distribution
P(y& y,). It is a standard result" that from
(85) follows that P is an s-dimensional Gaussian
distribution whose matrix is the inverse of the
matrix b&&, and this is just what is expressed by
Eq. (22).

For a Markoff process P(y(t&)y(t3)! y(t3)) = W3/W3
should be independent of y(t~). .This leads to
the conditions:

~;p= 0, when j= 1, 2 n and
k = 2n+ 1, ~ "3n, (87)

n;I;=P;t;, when j=1, 2 n and
k=1, 2 2n. (88)

In order to calculate the inverse of M we
resort to the following formal trick. We treat M
not as a numerical matrix but as a matrix whose
elements are matrices. The rules of multiplication
are the same but in taking inverses one must be
careful because of possible non-commutativity.
We want then a 3 by 3 matrix X, whose elements
are n by n matrices such that:

Xll Xl2 Xl3 I 0
M X X2l X22 X23 —— 0 I

,Xal X32 X33, ,0 0

0
0
I

where the 2n by 2n matrix P;3 is the inverse of

!
( R(0) R(t3 —t3) &

iR(t3 —t3) R(0) )

Using (86) this leads for instance to the three
Note H. Proof of the. General Theorem of Doob matrix equations:

Denote the 3n components of the vectors
y(t&), y(t3), y(t3) by z&z3 . z3„. According to the
general theorem (22) one then can write the
third probability distribution in the form:

W3(y(t&), y(t3), y(t, )) = C3 exp (——', p n,7.z;z&),

where the matrix e,~ is the inverse of the 3n by
3n matrix:

R(0) R(t, —t,) R(t, —t,)
'

M = R(t, —t,) R(0) R(t, —t,) . (86)

,R(t, —t,) R(t, —t,) R(0)

36 Comp. for instance H. Crammer, Random Variables
and Probability Distributions (Cambridge Tracts No. 36,
1937), p. 110.

R(0)X&3+R (t3 —t&)X33+R(t 3
—t))X33—0,

R(t& —t3)X&3+R(0)X33+R(t3—t3)X33 0,
R(t3 —t3)X/3+ R(t, —4)X3,+R(0)X33——I.

R(t3 —tg) X33+R(4—tg) X33——0, (89a)

X33+R(t3—t3)X33——0, (89b)

R(t3 —t3)X33+X33 I. (89c)

R is a non-singular matrix. One can eliminate X23
from the last two equations and one gets:

!R ' (t3 t3) —R(t3 —t3) I X33 R (t2 t3) .

Condition (87) says that X»——0; assuming
further that R(0)=I, which as mentioned in
footnote 19 is no loss in generality, these equations
become:
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The matrix in the curly brackets cannot be
singular since DetR '(t2 —t3) QO, and therefore:

f

X33 I R (t2 t3) —R(ta —t2) I R (t2 tg) )

and:

X23= —R(t3- t2) I R '(t2-t3)
—R(ts —tp) I-'R-'(t2- t3).

Substituting in (89a) one gets as the condition
on R:

for the Gaussian distribution. One can show'7
that still more explicitly by calculating the
characteristic function of the distribution func-
tion W(aI, ), which is given by:

ao
(gp) m

(exp ('ka~))A =2, (a~")A.=0 m!

1 (2D)t" t' 2D$'&=E (—1)"—,I I
8'"=exp I—

=0 ~l(T) E. T )
using (91) and (92). Therefore:

(90)R(t3 —ti) = R(t2 —ti) R(t3 —t2),
p+00

W(ai, ) =— dP exp ( i&ad, )
2~& .

( 2D$') ( T l ' t' ay'Tl
exp) — )I=I ) expI—

The same distribution one finds for:

which is Eq. (31). One must calculate also the
other elements of X and in the same way the
matrix PI, ~ in order to show that the condition
(88) is now automatically satisfied so that (90)
is also the only condition to be imposed on the
correlation matrix R.

Note III. Proof that the Properties (42) Imply
that F(t) is a Gaussian Process

From (42a) follows immediately that the
average values of all the odd powers of the
Fourier coefficient:

fI T

ai, =— dt cos 2m fitF(t)
T Jp

are zero. One gets further:

T

4
(ai')A„——— dtidt2 cos 2m fktiT'

0

Xcos 2m fit 2(F(ti) F(t2))Alt

T

8D
dtidtg cos 2&fpti

T
0

Xcos 27rfgtg5(ti —t2)

Note IV. The Fundamental Solution of
Equation (65)

The problem is to find the solution of:
O'P8= —Z, l, (y;&)+l Z,;, (93)Byi,; By,By~

which for t=0 becomes:

&= ~(yi —y») ~(y2 —y») ~(y- —y-o) (94)

Introduce instead of P its Fourier transform:

f(ki 8-, t)

p T

bq d——t s—in 27rfqtF(t),
T Jp

and it is also easy to show that the different a&

and b~ are independent of each other, so that
the complete distribution function W(aia2
bib2 ) will be given by (20) with 0I,' 4D/T. ——

T & 0

8D 4D
dti cos 2m'fjgti =

T
(91) dyi dy„P(yi y„, t)

(ai'")A =1 3 5 (2~ —1)(aa')A" ("-2)

From (42b) follows then that the average values
of the even powers of aA, are given by:

Xexp [—' P' ~;y'] (9&)

From (93) follows that f has to fulfill the linear,
first-order partial differential equation:

since the number of ways in which we can divide
the 2n time points tj, t2 . t2„ into n pairs is
1 3 5 (2n —1). Equation (92) is cha.racteristic

Bf Bf
Bt 8(;

&ij i j.

3'f This was pointed out to us by Dr. A. Siegert.

(96)
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The subsidiary equations are: Therefore the arbitrary function f must be:

dt dpi

1

diam

k4
k(k . 5., o) =exp ——Z ~', —~ 2; te o,2,, X,+X;

d
and one obtains for f:

These can easily be integrated; one finds that
the general solution of (96) is given by:

f($ 5-, t)

lP((1 exp P it), $2 exp (X2t) g„exp P,„t))

Xexp +—Q o,;, (97)2,; X,+X;

Hi+—Q o,, I1—exp L+(X;+X;)t$} . (98)2;; X+X;
This is the Fourier transform of an n-dimensional
Gaussian distribution with the average values

(7;)A„——7;o exP (X;t),

where f is an arbitrary function. Now for t=0 and the variances:
one sees from (94) and (95) that:

f(k &- o)=exp L
—&Z keto1


