17. ON THE THEORY OF CONTINUOUS RANDOM PROCESSES *

Let & be a physical system with n degrees of freedom; this means that the
admissible states £ of & form a Riemannian manifold R of dimension n. The
process of variation of G is said to be stochastically determined if under an
arbitrary choice of z, the region € (in fR) and times ¢’ and t"’ (¢’ < t”), the
probability P(t',z,t”, €) that the system in state z at time ¢ will be in one of
the states of € at time t” is defined. It is further assumed that the probability
P(t',z,t", €) can be given by the formula

P2t = [ 10,20 0)av,, (1)
[

where dV}, denotes the volume element. Here f(t',z,t”,y) has to satisfy the

following fundamental equations:

/ f(t, 2,7, )dV, = 1, o)
R

f(tl,x,tz;,y):Af(tl,-'L',t2,2')f(t2,z,t3,y)dv;, tl <t2 <t3- (3)

The integral equation (3) was studied by Smolukhovskii and then by other
authors.! In the paper ‘Uber die analytischen Methoden in der Wahrschein-
lichkeitsrechnung’? I have proved that, under certain additional conditions,
f(t',z,t" y) satisfies certain differential equations of parabolic type.® But in
A.M. there was no answer to the question® as to what extent f(#',z,t",y) is
uniquely determined by the coefficients A(t,z) and B(¢,z). In this paper the
theory is developed in the general case of a Riemannian manifold R and the

question of uniqueness is answered affirmatively for a closed manifold R.

§1. The first differential equation

Let R be a Riemannian manifold of dimension n. Because of the assumptions

made, f(t',z,t",y) is defined for ¢’ < t” and any pair of points z,y. Moreover,

* ‘Zur Theorie der stetigen zufalligen Prozesse’, Math. Ann. 108 (1933), 149-160.

! See bibliography in: B. Hostinsky, ‘Méthodes générales du calcul des proba-
bilités’, Mem. Sci. Math. 52 (1931).

2 Math. Ann. 104 (1931), 415-458. Referred to in the present paper as A.M. (see
No. 9 of this book).

3 These differential equations were introduced by Fokker and Planck independently
of Smolukhovskii’s integral equation. See: A. Fokker, Ann. Phys. 43 (1914), 812;
M. Planck, Sitzungsber. Preuss. Acad. Wiss. (1917) 10 May.

4 See A.M. §15.
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we assume that f(¢/,z,t"”,y) has continuous derivatives up to the third order
with respect to all the arguments (¢, and the coordinates z1,z,,...,z,,

Y1,Y2, - --,Yn of the points z and y) and satisfies the continuity condition

fm .f(t7 z,t+ A, Z)p3(l', Z)dI/z

In Gz i+ A0, 0 P80 (4

where p(z,2) denotes the geodesic distance® between z and z.
We choose a coordinate system z = (z1,...,2y,) in a neighbourhood A of

z. Then we set

/a f(5,2,5+ A, 2)(2z — 2:)dV; = ai(s, 2, A), )
]ﬂ f(s,2,8+ A, 2)(z — 2:)(zj — 2;)dVi = bij (s, 2, A), )
/m f(5,2,5+ A, 2)p%(z, 2)dVs = B(s, z, A), M
/m £(5,5,5+ A, 2)p%(z, 2)dV; = v(s, 2, A). ®)

Our purpose is to prove that the ratios
ai(s,z,A)/A, bij(s,z,A)/A

tend to limits A;(s, z) and B;;(s,z) as A — 0, independently of . Below this
is proved under the assumption that all N = n + n(n + 1)/2 functions

82

a
—_z:f(saz)t)y)) a:c.-axj f(s7z)tvy)

of y and t (for fixed s and z) are linearly independent, that is, that ¢;,y1,%2,92,. ..

veostk, Yk, ..., tN, YN can be chosen so that the determinant

a

'a‘x—if(sya’,tk,yk)

N —
D% (s,z) = ) 9
ax.azjf(s)z!tkiyk)

1]

is non-zero. $

® See A.M., §13, formula (112).
6 See A.M., §13, determinant (119).
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In A we have
2 — o 2: N z: . 3
P (x,z)_Zg._,(z,—:c,)(z, —.‘L'J)+@p (z’z)’ Iel <C,
while outside & we clearly have
pP(2,2) = ©'p%(z,2), |©'|<C,
where C’ and C are constants independent of z. Hence
B(s,z,A) :/ f(s,z,8+ A, 2)p%(2,2)dV, =
R
= Egij Af(sa z,5+A, Z)(Z,‘ e :B,')(Zj —Zj )dV3+
+/ f(s,z,5 + A,2)0p3(z,2)dV,+
b
+/ f(s,z,5+ A, 2)0'p3(z, 2)dV;, =
R-2A
> gihij(s,2,A) + ©"v(s,z,4), 10"]<C”. (10)

But since, by the continuity condition (4),

B(s,z,A)

v(s,z,8) oo 280, (1

formula (10) implies that

2 ijbij(s,z,A)

V(5,2 8) — 400 as A—0. (12)

Now, for fixed z,y,s,7,t, s < 7 < t, we consider only A so small that
s+ A < r. Then f(s+ A,z,t,y) and its derivatives with respect to z up to
the fourth order are uniformly bounded and continuous in & (we assume that

2 is compact). Hence, for every point z in A we have

fs+A,2t,y)~ fs+A,z,t,y) = (2 - xi)g%f(s +4,z,t,9)+

62
+1D (2 —zi)(z5 — :c,-)mf(s +Az,t,y)+0p%x,2), [O]<C, (13)
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where C does not depend on A or z. On the other hand, the fundamental
equation (3) implies that

fe2t) = [ Foa5+ 8,f6+ A5 L4V, =
”
:/ f(s,z,s+A,2)f(s+ A,z,t,y)dV,+
%"
+/ f(s,z,s+ A, 2){f(s+A,2,t,y)— f(s+ A, z,t,y)}dV,+

2

+ [ Femst AU+ ALY - fs+ Az L)V =
R
=1 + I, + Is. (14)
By (2),
L= / £(5,2,5+ A, 2)f(s + A, 2,1, y)dV, =
%"
= f(s+ A,x,t,y)/ f(s,z,s+ A, 2)dV, = f(s+ A, z,t,y). (15)
®"
Then (13), (5) and (6) imply that

L= [ fo25+ AU+ A,58)— fs+ Az, L)V, =

D

:Af(s,z,s+ A,Z){Z(Z,’ - a:,-)aixif(s + A z,t,y)+

1 0?
+35 Z(z,' —z;)(25 — z")mf(s + A, z,t,y)+
+9p3(:c,2)}de = Ea;(s,x,A)%f(s + A, z,t,y)+
1 0
+5 Zb;j(s,x,A)Wf(s+A,:c,t,y)+

+Af(s,z,s+ A,2)0p%(z, z)dV;. (16)
Finally, since throughout R — A we have
pa(:c,z) > K >0,
where K does not depend on z, in R — A we can set

f(S-I-A,Z,t,y) - f(8+ A,:L‘,t,y) = 6’/)3(2),2).
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Then

I3 - R gf(s;x’s+A’z){f(s+Aaz’t’y)_f(s+A’x’t’y)}de =
1

= f(s,2,5+ A,2)0 p*(z,2)dV,, |0'|<C' =—. (17)
R-% K
Substituting (15)—(17) into (14) we finally obtain

a
f(S,z,t,!/)Zf(s'*'A,z,t,y)'f' § a;(s,z,A)axif(s+A,a:,t,y)+
1 0
+—E bis(s,z, A)———f(s+ A,z,t,y)+
2 J( )axiazj ( )

+/mf(s,x,s + A, 2)0"p%(z,2)dV,, 10”|<C”. (18)
If we also take into account the obvious equality
Af(s,a:,s + A, 2)0"p?(z, 2)dV, = G)”’/mf(s,z,s + A, 2)p3(z, 2)dV, =
=0"y(s,z,A), [0"|<C",

then (18) can be rewritten as follows:

A; y &y - YWy by 4 A) o
fls+ xt3£ f(sxty)z_z —a(s: ) —f(s+A,z,t,y)-
b,--(s,z,A) 62 ,”V(S,Z,A)
—Z ’ 2A  0z;0z; —Je+ Aty -6 A (19)

The left-hand side in (19) tends to 2 f(s,z,t,y) as A — 0.
Suppose that the determinant D (s,z) is non-zero for t1,y1,t2,¥2,- -
., tn,yn. Then DN(s + A,z) # 0 for sufficiently small A. Hence, there
exist Ag(A), k=1,2,...,N, such that

yk) = oy,
(20)
Z/\k(A)mf(s + A, z,tk, yk) = 0.
k Lt

If we multiply (19) by Ax(A) with t = ¢ and y = y and sum all the N
equalities thus obtained, then we have

f(s + Aax’tk)yk) - f(sixitk)yk) _
Do a(d) A =

=_Zaia;(sz,A)_zah ,,(szA) E)‘ (A)e,,,u(s:cA). (21)

i i,
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If A tends to zero, then the Ax(A), as solutions of (20), tend to the solution
Ak(0) of the equations

0
E’\k(o)a—.‘f(s)xatkayk) = ay,
& i

2 (22)
zk:'\k(o)mf(&z,tk,yk) = 5.
Hence, the left-hand side of (21) has a finite limit
a .
Ay = Ap(0)— (4
0 zk: k( )asf(sax; k)yk) (23)

as A — 0.

In particular, if we set o; = 0, ay; — g;5, then
9ijbij (5,2, A v(s,z,A
—2—2—2’%———2-{-21\;‘(/3)92”—(—?—) —A asA—0. (29
By (12), the second term in (24) is infinitesimally small as compared with the
first one (since the Ag(A) are bounded). Hence we have
> gishij(s,2,A)/28 — Ag as A — 0. (25)
But (25) and (12) imply
v(s,z,A)J/A—0 asA—0. (26)

If we now equate all but one of the coefficients o; and «;; in (21) to zero,

then a similar passage to the limit using (26) shows that all the limits

Ai(s,z) = lim a.-(LAa:,_é_) as A — 0, (27)
Byj(s,2) = lim & 28 (oA g, (28)

2A

exist and do not depend on the choice? of A. Then (27), (28), (26) and (19)
immediately imply the first differential equation

2 f(oym,t,) = = Y Ailo, )5 £(5,2,1,9)

62
—EBij(s,z)mf(syz7tiy)' (29)

7 See A.M.,§13, formulas (122)-(124).
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Certainly the condition that Dy(s,z) does not vanish identically can be
replaced by the direct requirement that the limits (27) and (28) exist, since
(28) implies the existence of a finite limit (25) and therefore of (26).

At certain exceptional points the limits (27) and (28) need not exist. This
was illustrated in A.M.2 by the following example: R is the ordinary number

axis and
2

3 _ 23)2
f(s,z,t,y) = ;—:z_—s)exp [—(—ZG—:-%]; (30)

for £ = 0 we easily obtain
b(s,z,A)/2A — 400 as A — 0.

Hence there is no finite limit B(s, z).

§2. The second differential equation

Assume now that in a neighbourhood 2 of the point yg for a given ¢ the limits
A;(t,y) and B;;(t,y) exist uniformly and that v(t,y, A)/A tends uniformly to
0 in . Suppose further that R(y) is a non-negative function vanishing outside
A with bounded derivatives up to the third order. Then for y € A, z € A we

have
R(y) = R(z)+ 3 (i z.->g;—,,R<z>+

o2
430 - w0 — %) g5 RE

+0'p°(y,2), ©'1<C,  (31)

whereas for y€ R— 2 and z € ¥,
R(y) = R(2) +©"p%(y,2), [0"|<C". (32)

Finally, forye R—%, ze R-2A

R(y) = 0. (33)

8 See A.M., §13, formula (126).
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If in the corresponding regions R(y) is replaced by (31)—(33), we obtain
[ ROy Ss 2,904 =
2 ot
0 0
= 2 [ R0 = 5 [ RS2 0av, =
=1 1 R t+ A t,y)ldV, =
- lmKA (y)[f(s,.’c, + ,y)—f(s,.’c, ,y)] -
.1
= llm-A—{/mR(y)/mf(s,:c,t,z)f(t,z,t+A,y)dedVy-—
_/ R(y)f(s,:c,t,y)dVy} =
R
.1
- hm—A—{/m (5,2, z)/mR(y)f(t,z,t + A, y)dV,dV,—
—/ R(z)f(s,x,t,z)de} =
R
= lim%{/q f(s,x,t,z)/i;‘R(z)f(t,z,t+A,y)dVdez+
d
+ /Q‘ £(5,2,t,2) A [ - w5 RE:)+

2
F3 Y0 )W — 5) e B £+ A, 9)dV Ve +

5202
+Lf(s,z,t,z)/9‘6"'p3(y, 2)f(t, z,t + A, y)dVydV, —
—/aR(z)f(s’z’t’Z)dV’} = lim%{/ﬁ( £(s,2,t, 2)R(z)dV+
+/gf(s’z’t’z)[zai(t,z,A)a%R(m

62
+% Zb‘j(tazv A)E—Z’,_B-Z:R(Z)] dVZ+

+@Af($,$,t,2)V(t,Z,A)de _Af(s,x,t,Z)R(Z)d%}:
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7]
= /ﬂ f(s,z,t,2) [Z Ai(t, z)a_z,-R(Z)+

52
+3 " B, z)mR(z)]m.
Replacing 2z by y in the right-hand side of the equation we obtain
/ R f(s, 2,1, 9)dV, = / £(,2,,9) [ At v) o R(3)+
" 6t Rt g | Yy % [ At | 1\" 6y"
52
+)_Bij(t, y)mR(y)] dvy.  (34)

Now assume that A;(t,z) and B;;(t, z) are twice continuously differentiable

in &A. Then we set

Qt,y) = lgi; (¢, v)l

and after integration by parts, we obtain
0
[ 6.2, 4i0) RV, =

A Yi

i)
= [ 162 LA 1RV 5 RGndss . dyn =
i)
= /ﬁ 6—y_[f(s,z,t,y)A.-(t,y)Q(t,y)]R(y)dyldyz--.dyn- (35)

Double integration by parts (since all the derivatives vanish on the boundary
of 2A) yields

62
/ﬁ $5,2,4,4)Bis (1, 3) g o RV, =

62

= Ja ondn [f(s, z,t,¥)Bij(t, v)Q(, ¥)|R(y)dy1dy: . . . dyn. (36)

Formulas (34)-(36) immediately imply that
[ R@Q0) 2 16,2, )dndus .y =
A
= [ Ro){- L -lat @0,z t )+

2
+ Z Bfg‘&;[Bij(t) y)Q(tv y)f(s: z, t’ y)]}dyldyZ v d}/rv
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Since R(y) is arbitrary, apart from the above conditions, it is easy to conclude

that at interior points of A the second differential equation
i) 7]
Q(t’ y)’a_tf(s’ z,t, y) = Z —a;_[Ai(t’ y)Q(t, y)f(s) z,t, y)]+
3

+Z%[Bij(t,y)Q(t,y)f(s,:c,t,y)] (37)

also holds.
If at time #( the differential function of the probability distribution is given,

that is, a non-negative function g(tg, y) of y satisfying the condition
[ stto,)a¥; =1, (38)
n
then for arbitrary ¢ > to the distribution function g(,y) is given by the formula
st.9) = [ oto,)fto,2,,9)dV%. (39)

The function g(t,y) satisfies the equation ®

) i 0
Q-g‘(tl =— E %;(A;Qg) + Z m(Bing)- (40)

§3. Uniqueness

Under a change of the coordinate system the coefficients A;(s,z) and B;;(s, z)

are transformed in the following way:

oz! 0%z!
[ 3 1
A; = E _B:ckAk + 9250, By, (41)
8z oz’
' t J
B = E 9z, Oz, Bu. (42)

Here we always have

B = limﬁ%@- = Iim% ./9( f(s,z,8+ A, 2)(z; —z;)%dV, > 0. (43)

Hence the quadratic form
Y Biji; (44)

® See A.M., §18, formulas (169) and (170).
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is non-negative. This is crucial in the proof of the following theorem. 1°

Uniqueness Theorem 1. If R is closed, then (40) has at most one solution

g(t,y) with given continuous initial condition g(to,y) = g(y).

Proof. Clearly it suffices to consider the initial condition g(to,y) = 0 and prove
that g(t,y) = 0 also for ¢t > t;. We can transform (40) into the form

i)
a—"t'=2 3 ayJ+ZS———+T (45)

Now set
v(t,y) = g(t,y)e™*

The function v(t,y) satisfies the equation
8t =Y B 4 3y ay,+ZS' +Tv — cv. (46)
For fixed tg and ¢; the constant ¢ can be chosen so large that
T(t,y)—c<0

for all y and ¢, t¢ < ¢t < ;. Under these conditions v(¢,y) cannot have a

positive maximum at any point (¢,y), to <t < t;, since at such a maximum

Ov v 9?v
—_—= = E B;; ——— <0, — ,
; 0, £ 0, Jaiaj 0 (T v <0

which contradicts (46). Neither can there be a negative minimum of v(t, )

within these limits. Since v(Zp,y) = 0 at t = tp, we obtain for 1o <t < 1,
v(t,y) < maxv(ty,y) = e~ max g(t;,y)
9(t,y) < e~ "D maxg(t,y).

Since ¢ was arbitrarily large, it follows that

9(t,y) = 0.

10 See: E. Rothe, ‘Uber die Wirmeleitungsgleichung’, Math. Ann 104 (1931),
353-354 (uniqueness proof).




ON THE THEORY OF CONTINUOUS RANDOM PROCESSES 167

Uniqueness Theorem 2. Let R be closed. Then there is at most one non-
negative continuous solution f(s,z,t,y) for (2) and (3) that satisfies (29) with
given twice continuously differentiable coefficients Ai(t,y) and Bij(t,y), and
the continuity condition (4).

The continuity condition (4) can be replaced by the following, weaker one:

/ f(s,z,t,9)p*(z,y)dVy = 0 ast—s. (47)
R

Proof. Assume that two different functions fi(s, z,t,y) and fa(s,z,t,y) satisfy
all our conditions. Then we can choose s and a continuous function g(z) such
that

gl(t,y)=Ag(3)f1(3,1,1,y)d%,

gz(t,y):_/‘J‘g(:::)fg(s,:::,t,y)dVz

are also different. By (2) and (47), ¢1(¢,y) and g2(t,y) tend to g(y) as t — s.
Since the functions g; (¢, y) and g2(¢, y) satisfy (40), this contradicts Uniqueness

Theorem 1.

§4. An example

The following example, which is interesting also for applications, demonstrates
that the quadratic form (44) need not be positive definite: let R be the usual
Euclidean plane and let

2V/3 (31 — 21)? _

) ,t) ) = T 9 T 77N
f(s,21,22,t,y1,92) w(t — 5)2 exp A(t—s)

3lys —za — (t — 8) (31 +22)/2°
- o b

A simple computation shows that

Byy=1, Bi2=0, B3=0, A3 =0, A(s,z)=z.

§5. The himit solution

Let R be closed and f(s,z,t,y) everywhere positive and dependent only on

the difference t — s:

f(s,z,t,y) = ¢(t —s,2,y). (49)
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Then general ergodic theorems!! imply the existence of the limit probability
distribution. In other words, for any distribution g(¢,y) determined by (38)
and (39) and any region € the relation

/Q5 o(t,4)dV, — P(€) as t — +oo, (50)

holds, where P(€) does not depend on g(to,y). It can easily be proved that

g(t,y) is uniformly continuous for large t. From this we deduce that 12
P(©) = - [ swav, (51)
9(t,y) = g(y) ast— +oo. (52)

Clearly, g(y) and P(€) do not depend on g(to,y).
Now, let g(y) be the solution of the equations

Y AR + ¥ g B R =0, 6

/ g9(y)dVy = 1. (53a)
R

Setting g(to,y) = g(y) it can easily be seen that g(t,y) = g(y) also for t > t,
(see (40) and Uniqueness Theorem 1). From this we deduce that the solution
of (63) and (53a) (if it exists) is uniquely determined and coincides with the
limit function g(y).

As a particular case, (52) implies

f(s,z,t,y) = g(y) ast— +oo. (54)

Klyazma, near Moscow, 12 April 1932

11 See A.M., §4, Theorem IV.
12 Gee footnote 1.



