9. ON ANALYTICAL METHODS IN PROBABILITY THEORY *
The object of investigation

A physical process (a change of a certain physical system) is called stochastically
determined if, knowing a state Xo of the system at a certain moment of time
to we also know the probability distribution for all the states X of this system
at the moments t > .

I systematically consider the simplest cases of stochastically determined
processes, and primarily, processes continuous in time (this is what makes the
method essentially new: so far, a stochastic process has usually been considered
to be a discrete sequence of separate “events”).

If the set A of different possible states of the system is finite, then a
stochastic process can be characterized using ordinary linear differential equa-
tions (Chapter II). If a state of the system depends on one or several continu-
ous parameters, then the corresponding analytic apparatus reduces to partial
differential equations of parabolic type (Chapter IV) and we obtain various

distribution functions, the normal Laplace distribution being the simplest.

INTRODUCTION

1. In order to subject social or natural phenomena to mathematical treat-
ment, these phenomena should first be schematized. The fact is that mathe-
matical analysis can only be applied to studying changes of a certain system if
every possible state of this system can be completely determined using known
mathematical techniques, for example, by the values of a certain number of
parameters. This mathematically defined system is not a reality itself, but a
scheme that can be used to describe reality.

Classical mechanics makes use only of the schemes for which the state y of
a system at time ¢ is uniquely determined by its state £ at any preceding time

to. Mathematically this can be expressed by the formula
y= f(z,tO)t)'

If such a unique function f exists, as is always assumed in classical me-

chanics, then we say that our scheme is a scheme of a purely deterministic

* Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann.
104 (1931), 415-458.
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process. These purely deterministic processes also include processes when the
state y is not completely determined by giving a state z at a single moment of
time ¢, but also essentially depends on the pattern of variation of this state z
prior to t. However, usually it is preferred to avoid such a dependence on the
preceding behaviour of the system, and to do this the notion of the state of the
system at time ¢ is generalized by introducing new parameters. !

Outside the realm of classical mechanics, along with the schemes of purely
deterministic processes, one often considers schemes in which the state z of the
system at a certain time ty only determines a certain probability of a possible
event y to occur at a certain subsequent moment ¢ > t3. If for any given
to, t > tg, and z there exists a certain probability distribution for the states y,
we say that our scheme is a scheme of a stochastically determined process. In

the general case this distribution function can be represented in the form
P(to, Zz, t, 6)

where € denotes a certain set of states y, and P is the probability of the fact
that at time ¢ one of the states y belonging to this set will be realized. Here
we face a complication: in general, this probability cannot be determined for
all sets €. A rigorous definition of a stochastically determined process which
enables one to avoid this complication is given in §1.

As in the case of a purely deterministic process, we could also have consid-
ered here schemes in which the probability P essentially depends not only on
the state z but also on the past behaviour of the system. Still, this influence
of the past behaviour of the process can be bypassed using the same method
as in the scheme of a purely deterministic process.

Note also that the possibility of applying a scheme of either a purely de-
terministic or a stochastically determined process to the study of some real
processes is in no way linked with the question whether this process is deter-

ministic or random.

2. In probability theory one usually considers only schemes according to which

any changes of the states of a system are only possible at certain moments

1 A well-known example of this method is to introduce, in addition to positions
of points, the components of their velocities when describing a state of a certain
mechanical system.
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t1,t2,...,tn,... which form a discrete series. As far as I know, Bachelier 2
was the first to make a systematic study of schemes in which the probability
P(to, z,t, €) varies continuously with time ¢. We will return to the cases studied
by Bachelier in §16 and in the Conclusion. Here we note only that Bachelier’s
constructions are by no means mathematically rigorous.

Starting from Chapter II of this paper we mainly consider above-mentioned
schemes that are continuous with respect to time. From the mathematical
point of view these schemes have an important advantage: they allow one to
introduce differential equations for P with respect to time and lead to simple
analytic expressions which in the usual theory can be derived only as asymptotic
formulas. As for the applications, first the new schemes can be directly applied
to real processes, and secondly, from the solutions of differential equations
for processes continuous with respect to time new asymptotic formulas for

continuous schemes can be derived, as will be shown later in §12.

3. We do not start with the complete system of axioms of probability theory.
Let us indicate, however, all the prerequisites we will use in our further dis-
cussion. We do not make any special assumptions about the set 2 of possible
states . Mathematically, 2 can be considered as an arbitrary set consisting of
arbitrary elements. All assumptions concerning the system § of sets and the
function P(to,z,t, €) are given in §1. In what follows the theory is developed

as a purely mathematical one.
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2 1. “Théorie de la spéculation’, Ann. Ecole Norm. Supér. 17 (1900), 21; IL. ‘Les
probabilités & plusieurs variables’, Ann. Ecole Norm. Supér. 27 (1910), 339; III.
Calcul des probabilités, Paris, 1912.
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Conclusion.
CHAPTER I. GENERALITIES

§1. General scheme of a stochastically determined process

Let G be a system that can be in states z,y,2,..., and § a system of sets €
formed from the elements z,y,z,.... A process of variation of the system &
is stochastically determined with respect to § if for any choice of state z, set &
and moments ¢; and t3 (¢1 < t2) the probability P(t,,z,t2, €) of the fact that,
if = takes place at t;, then one of the states of € takes place at s exists. If
P(ty,z,ts, €) is defined only for t; > t; > tg, then we say that the process of
variation is stochastically determined for ¢ > {,.

Regarding the system §, we assume that it is first additive (that is, it
contains all the differences, as well as finite or countable sums of its elements),
and secondly contains the empty set, the set 2 of all possible states z,y, 2, ...
and all the one-element sets. If the set 2 is finite or countable, then clearly

F consists of all the subsets of . In the most important case when 2 is
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uncountable, the assumption that § contains all the subsets of % does not hold
for any of the schemes known at present.

Of course we assume that
P(tl,x,tg,ﬁ)=l (1)

and for the empty set N,
P(t1,z,t,M) = 0.

We further assume that P(t;,z,t,, €) is additive as a function of €, that is,
for any decomposition of € into a finite or countable number of non-intersecting

summands €, the following identity holds
> P(ty, 7,12, €) = P(t1, 2,15, €). (2)

To formulate further assumptions on P(t;,z,%2, €) we need the notion of
measurability of a function f(z) with respect to the system § and the definition
of abstract Stieltjes integral. We given them here in a form suitable for our
needs.3

A function f(z) is called measurable with respect to the system § if for any
choice of real numbers a and b the set €5 (a < f(z) < b) of all  for which f(z)
satisfies the inequality in parentheses, belongs to §. It can easily be shown
that if the system § is additive and f(z) is measurable with respect to §, then
the set € of all z for which f(z) belongs to a given Borel-measurable set is
contained in §.

Now let f(z) be measurable with respect to § and bounded, and let ¢(€)
denote a non-negative additive function defined on §; then, as is known, the

sum

n

m, /m m+1
(5 < <)
m
tends to a well defined limit as n — oc. This limit will be called the integral

/ £(2)8(d%).
Az

3 Concerning these notions, as well as additive sets of systems, etc., see, for ex-
ample, M. Fréchet, ‘Sur l'intégrale d’une fonctionnelle étendu & un ensemble
abstrait’, Bull. Soc. Math. France 43 (1915), 248.
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This notation differs from the usual one only in the specification of the
variable of integration and the place of the differential inside the parentheses.
In what follows we assume that P(t1,z,12, €), as a function of the state z,
is measurable with respect to the system §. Finally, P(t1, z, t2, €) must satisfy

the fundamental equation

P(ts,, 15, €) = /ﬂ P(t,y, ts, €)P(t1, 2, 13, d%) 3)
Y

for arbitrary t1,1s,%3, (t; < t2 < t3). If A is a finite or countable set of elements

Z1,Z9,...,&y,- .., then

J

and on the right-hand side we have the expression for the total probability

P(t2)y:t3; @)P(tl,l', t2’d2l) = Zp(t2:xﬂ)t3) e)P(tlx:l;)t%:cn)
n

y

P(ty,z,t3, €); therefore (3) is satisfied in this case. In case * is uncountable
we take (3) as a new axiom.

The above requirements completely define a stochastically determined pro-
cess: the elements z,y, 2, ... of an arbitrary set 2 can be considered as charac-
teristics of a state of a certain system, and an arbitrary function P(t;,z,tz, €)
satisfying the above requirements as the corresponding probability distribution.

A non-negative function F(€) defined on §, additive and such that

F() =1, (4)

will be called a normal distribution function. All the requirements imposed
on P(t;,z,t5, €) can now be formulated in the following way: P(t;,z,t,, €),
as a function of €, is a normal distribution function; as a function of z it is
measurable with respect to the system § and satisfies the integral equation (3).

Suppose now that at ¢ = ¢, we have a normal distribution function Q(to, €)
which gives the probability of the fact that the system & at to is in one of the
states belonging to €. The distribution function Q(¢, €) for ¢ > t( is determined

by means of the second fundamental equation
Q€ = /ﬁ P(to, z,t, ©)Q(to, d%). (5)
We clearly have

Q) = /Q‘Q(to,dﬁ) = Qto,2) =1, (6)
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L P(ty, 7, ts, €)Q(t1, d%) =
=/ﬂ P(tl,:c,tg,@)/w P(to,y,t1,dA)Q(to, dA’) =
= / ’ /ﬁ P(t1,2,t2, €)P(to,y, t1, d%))Q(to, dU') =
, Ja,
-/, P35, €)Q(00, %) = 12, ©) )

Formula (5) is considered as the definition of Q(¢, €), not as a new re-
quirement imposed on &. Note, however, that (5) implies (3) as a particular

case.

§2. The operator Fi(z, €) * Fy(z, €)

Let Fy(z, €) and F,(z, €) be two normal distribution functions which, consid-

ered as functions of z, are measurable with respect to §. Set
F(z,€) = Fi(z, €) + Fa(x, €) = Fy * Fa(z, €) = / Fay, €)Fi(z,d%); (8)
ﬂy

It is easy to see that F(z, €) satisfies the same conditions of measurability and
additivity as Fj(z, €) and F3(z, €) and (4) also holds:

F(z,%) = /&, Fy(y, %) Fy(w, d') = L Fi(z,d) = 1;

consequently, F'(z, €) is also a normal distribution function.

Further, the operator F) * F» is associative,
Fy x (Fy % F3) = (Fy * Fy) * Fa, 9)
which can easily be seen by the following simple calculation:
Fy x (Fy x F3)(z, €) = /g‘ /3, Fs3(z, €)Fy(y,dA') Fi(z,d2A) =
y /9%

= / Fs(z, €) / Fa(y, d%')Fy(z, d%) = (Fy * Fy) * Fa(z, €).
A Ay

By contrast, Fy * F; is not, in general, commutative.
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Now we define the unit function p(z, €), which for any normal distribution
function F(z, €) satisfies

puxF(z, &) = F+pu(z, €) = F(z, €). (10)

To this end it suffices to set yu(z, €) = 1 when « belongs to € and p(z, €) =0

otherwise. We then have

pxF(z, €)= /; F(y, &) u(z,dA) = F(z, €),

y

Fxp(z, € = /gl u(y, €)F(z, d%) = /e F(z,d€) = F(g, €).

The probability P(t1,z,t2, €) has been defined so far only for t5 > t1; now

set for any ¢
P(t,z,t, €) = p(z, €). (11)

In view of (10), this new definition does not contradict the fundamental equa-

tion (3), since (3) can be written as

P(tlaz’t%e) *P(t2)x;t3; e) = P(tl)x)t& e) (12)

§3. Classification of particular cases

If the changes in the state of the system & take place only at certain moments

which form a discrete series
to<ti<ta<...<t, <...— 00,

then obviously
Pt z,t", €)= P(ty,z,ts, €) (13)

for all moments ¢’ and t” such that
tm S 14 < tm+1) tn S "’ < tn+1-
Introducing the notation

P(tm,z,tn, €) = Pmn(z, €), (14)
Pa_1n(z, €) = Py(z, €), (15)
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we have

Prn(2,€) = Ppyt * Ppyo ... % Py(z, €). (16)
Hence in this case the process of change of G is totally determined by the
elementary distribution functions P,(z, €).

Now let Pi(z, €), Po(z, €), ..., Pa(z, €) be arbitrary normal distribution
functions which are assumed to be measurable as functions of z; further, let
tp <t; <...<t, <...be a certain sequence of moments of time. Defining
Ppn(z,€) and P(t',z,t"”, €) by (16), (14) and (13), we also obtain normal

distribution functions which satisfy the equations
Pran(z, €) * Ppp(z, €) = Prp(z, €) (m < n<p), (17
and hence the equation
P, z,t", €)x P(t" z,t" € = P(t',z,t",€) (t'<t"<t").

But this latter equation is none other than the fundamental equation (12) or
(13). Thus we see that every sequence of arbitrary normal distribution func-
tions P,(z, €), measurable as functions of z, characterizes a certain stochasti-

cally determined process.
The schemes with discrete time defined above are those usually considered

in probability theory. If all the distribution functions P,(z, €) coincide,
P,(z,€) = P(z, €), (18)
we have a homogeneous scheme with discrete time; in this case (16) yields
Ponip(z, €) = Pz, €) * P(z,€) % ... x P(z, €) = [P(z, )t = PP(z, €).

P t;;nes
(19)

As far back as 1900 Bachelier considered stochastic processes continuous

in time.? There are good grounds for giving schemes with continuous time
a central place in probability theory. It seems that most important here are
schemes homogeneous in time, in which P(¢,z,t + 7, €) depends only on the

difference t5 — ¢;:

P(t,z,t + 7, €) x P(1y, 2, €) = P(7, 2, €). (20)

4 See the first of the papers cited in footnote 2.
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The fundamental equation in this case takes the form
P(r,z,€) * P(r2,2,&) = P(r; + 73,2, €). (21)

Another series of particular cases is obtained under special requirements on
the set & of elementary states z. Here one should distinguish the cases of finite
or countable sets 2; in the continuous case the classification is performed with
respect to the number of parameters determining the state of the system. The
subsequent subdivision of the material in this paper is based on distinguishing
such particular cases.

$4. The ergodic principle

Without special assumptions on the set 2 of all possible states z, we can only
prove several general theorems, namely those dealing with the ergodic principle.
We say that a stochastic process obeys the ergodic principle if for any t(9), z,y
and €

Jim [PA®, 2,1, €) - P, y,t,&)] = 0. (22a)

For a scheme with discrete time (22a) is clearly equivalent to the following:
nllrfgo[Pmn (2, €) — Pmn(y, €)] = 0; (22b)
and in the latter case the following theorem holds:
Theorem 1. If for any z,y, and &
Pa(z,€) 2 A Pa(y, €), An 20, (23)
and the series

S s (24)

diverges, then the ergodic principle (22b) holds and the limit in (22b) is uniform
with respect to z,y and €.

Proof. Let
s:p Prn(z, €) = Mia(€), igf Prn(z, €) = mpa(€).
For ¢ < k we clearly have
Pin(2,€) = [ Prn(t, ©)Pus(2, %) < Min(®) | Pi(e,2) = M (€)
(25)

Yy



72 ON ANALYTICAL METHODS IN PROBABILITY THEORY

and, similarly,
P,',-.(:L‘, G) > mk,,(e). (26)

By (23), for any z and y we have

Pi(z,€) — A Pi(y, €) > 0,
Pi—1n(z,€) = A Pin(z, €)Pi(z,dRA) =
= /ﬂ Pin(z, €)[Pi(z, dA) — A Pr(y, d2A)]+
+Ak / Pin(z, €)Pi(y,d) >

%,

> min(€) /m [Pi(2,d%) — \uPa(y, d2)] + Ak Pec1 n(y, €) =
= mkn(e)(l - ’\k) + AkPk—l,n(y’ e);
Pi_1,0(y, €) — Pr_1,n(2, €) < (1 = At)[Pr-1,n(y, €) — mia(€));

hence by (25),
Pe_1,n(9) €) = Peo1,n(2, €) < (1 = X)) [Min(€) — mea(€)].  (27)
Since (27) holds for any z and y, we also have
Mi—1,n(€) = mi—1,n(€) < (1= Ak)[Min (€) — min(€)]. (28)

Setting k = m+1,m+2,...,n successively in (28) and multiplying all the

resulting equalities we find

Myn(€) — mpmn(€) < f[ (1= Ag). (29)
k=m+1

The right-hand side of (29) tends to zero as n — oo; this proves the
theorem.

For a homogeneous scheme with discontinuous time the following holds:
Theorem 2. If for any xz,y and €
P(z,€) > AP(y,€) (2> 0), (30)

then P™(z, €) converges uniformly to a certain distribution function Q(€).
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Proof. We have
Mo n45(€) = sup PP(z, €) = My(€),

Min,n4p(€) = inf PP(z, €) = m,(€),
An = A,
and, by (29),
My(©) — my(€) < (1= AP (31)

But (25) and (26) imply that for ¢ > p,

pl(z, €) = Pog(z, €) < My_p,(€) = Mp(€), (32)
Pi(z, €) > my(€); ’ (33)

therefore, |
Mp(€) > My(€) > my(€) > my(€). (34)

Our theorem now follows immediately from (31) and (34).
Important particular cases of Theorem 2 were proved by Gostinskii and
Hadamard.® As has been shown by Hadamard, in these particular cases Q(€)

satisfies the integral equation
@)= [ Pe o). (35)
~ For the most general stochastically determined scheme one has:

Theorem 3. If for some sequence
to<t1 <...<th <...— 00
and any z,y and €,
P(tn-1,2,tq, €) > A P(tn-1,4,t0, €), A 20, (36)

and if the series Y .o, An diverges, then the ergodic principle (22a) holds and

the convergence in (22a) is uniform with respect to z,y, €.
Proof. For a given ¢(9) Jet
sup P(t z,t,€) = M(t, €),

inf P(t, 2,1, €) = m(t, €).
T

5 C. R. Acad. Sci. Paris 186 (1928), 59; 189; 275.
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If
O <ty <tn <t <tnya,

then, in the same way as in the proof of Theorem 1, we obtain the analogous
formula to (29),

M(t, €) — m(t, €) < f[ (1= Ap).
k=m+1

Since n — oo together with ¢, it follows that M (¢, €) — m(t, €) — 0 as t — oo,
which proves the theorem.
Finally in case of a scheme homogeneous in time one has the following

theorem, analogous to Theorem 2:
Theorem 4. If there exists o such that for any z,y, €,
P(o,z,€) > AP(0,y,€) (A >0), (37)

then P(r,z,€) converges uniformly to a certain distribution function Q(€) as

T — O0.

CHAPTER II. FINITE STATE SYSTEMS
§5. Preliminary remarks

Let us now assume that % is formed from a finite number of elements
Z1,Z92y...,Zp.

In this case set
P(ty,z;,t2,2;5) = Pij(ty,t2). (38)

Since for any set € we obviously have

P(ty, @i ts, €) = Y Pa(ts,t2), (39)
zrCE€

we can confine ourselves to the probabilities P;;(t1,%2). The fundamental equa-

tion (3) now takes the form

> Pij(t1,t2) Pik(t2,ts) = Pir(t1,3), (40)
J
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whereas (1) can be written as
> Py(ty,ty) = 1. (41)
J

Any non-negative functions P;;(t1,12) satisfying the conditions (40) and (41)
determine some stochastically determined process of variation of the systems
G.

In this case the operator is defined as follows:

Fa=FQ «FP =3 FVFR, (42)

J

hence the fundamental equation (40) reduces to
Pir(t1,12) * Pir(ta,13) = Pig(t1,13). (43)
For a scheme with discontinuous time we set
Pog(wi,z5) = PO, Py(zi,z;) = PP
Then the probabilities Pi(jp ) satisfy

S PP =1, (44)
j
and, conversely, arbitrary non-negative values Pijp ) satisfying (44) can be con-
sidered as the corresponding values of the probabilities of a certain stochasti-
cally determined process.
The probabilities P,-jp 9 can be calculated by the formula

+1 +2
PPY = PtD 4 PPt 4 4 PP (45)
For a homogeneous scheme with discontinuous time we have

PP =Py, PV =[Pt = Py,

If all the P;; are positive, then obviously the conditions of Theorem 2 (§4)
hold, hence P,%- tend to a certain limit @; as ¢ — co. The integral equation

(35) transforms in our case into the system of equations

J
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These results were obtained by Gostinskii and Hadamard. ¢

§6. Differential equations of a continuous stochastic process

By (11) we have
Pi(t,)=1, Py(t,)=0, i #j. (a7

If the variations of our system & are possible at any time ¢, then it is natural

to suppose that
Alim Pyi(t,t+A)=1, Alim0 P(t,t+A)=0, i #j, (47a)

that is, for small time intervals the probability of a change in the state of
the system is small. This assumption is contained in the hypothesis of the
continuity of the functions P;;(t;,t3) with respect to ¢; and ¢,.

Now assume that the functions P;;(s,t) are continuous and differentiable
with respect to ¢ and s for ¢ # s. We do not require differentiability of these
functions at ¢ = s. It would be imprudent to assume @ priori the existence of
a derivative at these special points. ”

For t > s we have

OPir(s,t) _ . Puls,t+A) = Pu(s,t) _
6t - A—0 A -
.1
= lim = [Z,: Pyi(s,)Pix(t,t + A) — Pa(s,)] = (48)
o P;(t,t+ A) Pu(t,t+A)—1
= lim [E Pij(s,1) =557 4 Pu(s,1) - J-
J#k
If the determinant
= = |Py(s,1)]
is non-zero, then the equations
Pip(t,t+ A Pa(t,t +A) -1 ,
ZPij(s,t)—-’—'f-(—+—) + Pi(s,t) ek(i+A) =aix (i=1,...,n)
£ A A
J#k
can be solved:
Pkk(t,t-f-A)-—l:A_:k_’ ij(t,t-f-A)zéii ]#k (49)

A = A =’

6 See Footnote 5.
7 Compare with the functions F(s, z,t,y) considered in Chapter 4, which neces-
sarily have points of discontinuity at ¢ = s.
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Since by (48) a; tend to the limit values 0 P;(s,t)/0t as A — 0, the values
(49) tend to well defined limits®
Pkk(t,t + A) -1

lim A = Akk (t), (50&)
t,t+ A .
tim 2D ), gk (50b)
In fact it is evident from the relation
limE =1, (51)

s—t

which holds by (47) and the continuity of =, that Z may be non-zero under a
proper choice of s < t.
From (48) and (50) we immediately obtain the first system of differential

equations for the function P (s,t):

M ZA,k(t)P,,(s t) = P (s, t) * Aix(t). (52)
In this case, by (47) and (50),
Aji(t) = [6P’k(t u)]u_ (53)
Ajp >0, j#k, A <0, (54)
and, by (41) and (50),
zk:A,-k =0. (55)

The equations (52) were established only for s < t; however, (47) and (53)
show that these equations are valid also for ¢ = s.

For s < t we have
O0Pik(s,t) .. Pu(s+A,t)— Pi(s,t)
———~ = lim =
Os A—0 A

.1
= Al-r-.no A {P.-k(s +At) - zj: Pij(s,s+ A)Pjr(s + A,t)] =

= — lim {P“(s’s +4)- lPik(S + A, t)+

A—0 A

+3 Pi(s’—zsii)P,-k(s +a,0)] (56)
J#i

8 We could equally well have taken the opposite approach: to assume a priori that
the conditions (47a) and (50) hold and to derive from this the continuity and
differentiability of the function P;j(s,t) with respect to .
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and, by (50), we obtain the second system of differential equations

6L”:’)(s£’—t_) == ZJI Aij(8)Pjk(s,t) = —Aix(s) * Pir(s,1). (57)

If the functions A;;(s) are continuous, then clearly the equations (57) are also
true for s = ¢.

Now assume that at {5 we know the distribution function
Q(to,zx) = Qi(to), D Qx(to) =1,
k

of the probabilities that the system & at ¢ is in the state . Then equation
(5) takes the form

Qi(?) = _ Qi(to) Pk (to, 1)-
By (52) the functions Q(t) satisfy

dQx(t) _
dat

ZAjk(t)Qj(t) (k=1,...,n). (58)

If the functions A;k(t) are continuous, then the functions Pi(s,t) form
the unique system of solutions of (52) satisfying the initial conditions (47);
consequently, the considered stochastic process is totally determined by all the
Aix(t). The real meaning of the functions Air(t) can be illustrated in the
following way: for 7 # k A;x(t)dt is the probability of passing from the state z;

to the state =} during the time from ¢ to ¢ + dt, whereas
Akk(t) = — ZAkj(t).
i#k
It can also be shown that if we have any continuous functions A;x(t) satisfying
the conditions (54) and (55), then the solutions Pi(s,t) of the differential
equations (52) under the initial conditions (47) are non-negative and satisfy the

conditions (40) and (41); in other words, they determine a stochastic process.
Indeed, by (52) and (55) we have

oY Pu(st) = T [Y 4] Pyt =0, (59)
k k

and, by (47),
S Pa(tt)=1
k
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Thus (59) implies (41).

For t; < t5 we now assume that

Pip(t1,t) = P (t1,t), ifty <t <ty (60)
Pl(t1,1) = Z Pij(t1,t2) P (ta,t), ifty <t. (61)

The functions P}, (t;,t) are continuous and satisfy the differential equations
(52); consequently, (60) holds for any ¢t and not merely for t < t¢5; but then
(61) with ¢ = t3 coincides with (40),

It remains to show that the solutions Pj;(%1,t) are non-negative. For this

we assume that for fixed s,
¥(t) = min Py (s, t).

Choosing appropriate i and k we clearly have

DH(t) = w Pi(s,1) = 9(2),

and if ¥(t) < 0, then by (54),
Arr(t)Pir(s,t) > 0,

Ajk(t)Pij(s,t) > Aj(8)0(2), 7 # k,

DHy(t) = Qfﬁ(—s—tl ZAJk(t)P,, (5,8) >

> D A()$(t) = R(Ey().
%k
Since ¥(s) = 0, ¥(t) is clearly greater than any negative solution of the
equation

dy/dt = R(t)y,

and therefore it cannot be negative itself.

§7. Examples

In schemes homogeneous in time the coefficients A;x(t) appear to be indepen-
dent of the time t; in this case the process is completely determined by the n?

constants A;;. Equations (52) now take the form

2Ru(l) = 3 Anri(t (62)
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and solving these equations is not difficult. If all the A;; are non-zero, then
the conditions of Theorem 4 (§4) hold and consequently, P;(t) tends to a limit
Q@ as t — oo. The quantities @y satisfy the equations

ZQI:: 1, ZA,');Q,' =0(k=1,...,n).
p 3

For example, let
n=2 Ap=An=A, An=Ax»=-A,

that is, the probabilities of transition from the state z; to the state z2 and the
reverse transition from z; to z; are the same. The differential equations (62)
in our case give
Piy(t) = Pu(t) = 5(1 —e724),
Pyi(t) = Pyy(t) = %(l + =241,
We see that Pii(t) tends to the limit Q; = % as t — 00.
The following example shows that approaching the limit can be accom-

panied by oscillations damping with time:
n=3, Ajp=A;n=Asn=A4,
Agy = Aza =A13=0, A1 = Az = Azz=—4;

2 _ 1
Pll(t) = P22(t) = P33(t) = :3-6 3/24t cosat + §,

1 . 1 1

Piy(t) = Pys(t) = Pa(t) = e—3/241 (.\_/_g sin ot — 3 cos at) + 3
—s2ar( L . 1 1
Py (t) = Pag(t) = Pya(t) = —e (—— sinat + 3 o8 at) + 3

V3
V3
2
Similar damping oscillations for schemes with discontinuous time were

A.

o=

found by Romanovskii.
Chapter III. COUNTABLE STATE SYSTEMS
§8. Preliminary remarks. Discontinuous schemes
If A consists of a countable set of elements

ZL1,%2,--3Tpny..,
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all the notations and results of §5 of Chapter II remain valid. The convergence

of the series

D Paltits)=1, Y Fa=1
k k

is assumed, and from this we derive convergence of the series (40), (42), (46);

by contrast, we do not require that the series
> Pty ta)
i

should converge.

We now make a few remarks on schemes with discontinuous time, in par-
ticular homogeneous ones. The conditions of our theorems concerning ergodic
principles for schemes with a countable set of states fail in most cases, but
nevertheless the principle itself often appears to be satisfied.

Consider, for example, a game studied recently by S.N. Bernshtein: in any
separate trial a gambler wins only one rouble with probability A and loses it
with probability B (B > A, A+ B < 1), the latter, however, provided only
that his cash is non-zero; otherwise he does not lose anything.

If we denote by z, the state in which the cash of our gambler is n — 1

roubles, then the conditions of the game can be written as follows:
Pn,n+1 :A, Pn+1,n =B (n = 1,2,3,...),

Pu=1-A Pum=1-A-B (n=23,4,..),

P;; =0 otherwise.

It can easily be proved that

lim P = (1- —‘g-) (%)j_1 =@, X @=1
J

p—+0

which implies the ergodic principle in this case.
Note that the fact that the limits

lim Pf = A

p—00 8 -

exist, implies the ergodic principle only if

Y Aj=A=1

J
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It can be shown that always A < 1 and that for A < 1 the ergodic principle
fails.

If all the A; exist and are zero, then there arises the question of the asymp-
totic expression for Pf}- as p — oo. If such an expression exists independently
of i:

P’-’; = /\_'; + o(/\f),
then we say that the local ergodic principle holds. This principle seems to be
of great significance in the case of a countable set of possible states.

Now let all possible states z be enumerated by the integers (—oco < n <
+00). All the notation and formulas of §5 are then true, but now the sums run

over all the integers. We consider the case
Pij =P,
in more detail. Clearly in this case we have
Ph=PL, P{*' =3 PIPL, PM"=3 PP,
i i
If the series

a=> kP, b'=) KPR
k k

are absolutely convergent, then there arises the question on the conditions of
applicability of the generalized Laplace formula
1 (k — pa)? 1
P _ _ —
Fe = by/27p exp[ 2pb? ] + O(ﬁ)' (63)

All we know is that it holds in the Bernoulli case, when

Po=1—-A, P =A, (64)
and the other P; vanish. Lyapunov’s theorem is of no help for our problem, as
is clear from the following example:

Pyy=P =1 P.=0, k#=l,
where (63) is inapplicable. In order for (63) to hold, it is necessary ? that for

any integer m there exists k such that

k#0(modm), P #0.

9 More details on this question can be found in R. von Mises Wahrscheinlichkeits-
rechnung, Berlin, 1931, especially the chapter on “local” limit theorems. (Re-
mark by Russian editor.)
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Note also that only for a = 0 does formula (63) actually give an asymptotic

expression for P! for a given k. In this case it follows from (63) that for a given

1 1
P — -
P = 7] +o(\/1_)) (65)
and given 7 and j, ) ;
P o(L).
bv27p VP

By (66) we obtain the ergodic principle in the case considered.

(66)

We obtain special approximation formulas for P,‘; when the probabilities

Py;, that is, the probabilities of the facts that the state of the system does not

vary at any particular moment, are very close to one. For example, in the
Bernoulli case, for small A the approximate Poisson formula can be used:

Akpk

B~

e 4P, (67)

A general method for deriving such formulas can be obtained by using
differential equations for processes continuous in time, as is shown in §10 for

formula (67).

§9. Differential equations of a process continuous in time

As in §6, we assume that the functions P;;(s,t) are continuous and have deriva-
tives with respect to ¢ and s for £ # s. In the case of a countable set of possible
states formulas (48) and (56) still remain valid; but to prove the possibility of
changing the order of the sum and the limit in these formulas and thus arrive at
the differential equations (52) and (57), we have to introduce new restrictions,
namely:

A) the existence of limit values in (50);

B) uniform convergence in (50b) with respect to j for a given k;

C) uniform convergence of the series

E Pir(t,t+A)  1-P;;(t,t+A)
A - A

(68)
k#j

with respect to A (the fact that this series converges follows immediately from
(41)).
In §6, for a finite number of states we deduced condition A) from the

differentiability of P;;(s,t) for t # s; by contrast, in the case of a countable set
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of states this condition does not seem to follow from this property of P;;. With
regard to condition B), note that uniform convergence in (50b) with respect to

k for a given j follows from the obvious inequality
Pir(t,t+ A) < 1- Pj;(t,t + A).

Note, further, that we do not require uniform convergence in (50b) for any j
and k, nor do we require uniform convergence in (50a) with respect to k; these
requirements would have been inconvenient for applications.

Since the factors P;;(s,t) in (48) form an absolutely convergent series, we
can, in view of conditions A) and B), change the order of the signs lim and
Y in this formula and obtain (52). Then the variables A;;(t) clearly satisfy
the formulas of the last condition; moreover, since the factors Pjr(s + A,t) are
uniformly bounded, we can change the order of the sum and limit signs in (56),
which suffices for deducing (57).

§10. Uniqueness of solutions and their calculation for

a process homogeneous in time

In the present case, (52) takes the form

dP(t) _

i = ZAjkP,'j (t) = Pik(t) * Aik, (69)
J

with constants Ajz. We will prove that if the series

Y 14l = BY,
j
> B4zl = B,
j

........ (70)

(n)
ZBk &, k=12,..., |2/<0(>0), (71)

converge and the initial conditions

Pii(o) =1, P"J'(O) =0, i#7, (72)
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hold, then the equations (69) have the unique system of solutions P;(t) satis-
fying the conditions of our problem.
Indeed, since always P;;(t) < 1, (69) and (70) imply

|dP;(t)/dt] < B,

therefore (69) can be differentiated term by term

& Pis(2) dP;(t) _
g = A ’k(t) * Aix.

In a similar way the general relations are obtained:

d?

o uc(t)l < B, (73)
dn+1 dn
dt"+1 zk(t) 7 P,'k(t) * Ak (74)

From (73) and the assumption of convergence of the series (71) it follows

that the functions Pj; are analytic. Further, by (69) and (74) we find that
dn n
o Pk (1) = Pur(t) * [Aue]l; (75)
in particular, for ¢ = 0 we have, by (72),
n

T Pa(0) = [4all, (76)

which implies that the analytic functions P;i(t) are uniquely determined by the
constants A;x. Formulas (76) and (75) serve also for calculating the solutions
of the system (69) using Taylor series.
For example, if
Aiiv1 =4, Ai=-A4,
Aij = 0 otherwise,

then we easily obtain

Ay,
(n-m)

Prn(®) =0, m>n,

Prn(t) =

that is, the formula of the Poisson distribution: for k = n — m, p = t the

resulting formula coincides with (67).
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If the ergodic principle holds and Pi;(t) — Qi as t — oo, then obviously

the constants Qi satisfy the equations
Q=1 Y AxQi=0 (k=12,..). (77)
k i

If, for example

Aiiy1=A, Aij1i=B, B>A,
An = —A, Ay = —-(A + B), 1> 1,

A;j =0 otherwise,

then we easily obtain from (77)
Qn = (1- A/B)(A/B)*" 1.

As a second example, we set
Aiiy1 = A, A1, =1B,
Ay =—-A-(-1)B,
A;; =0 otherwise,

so that from (77) we have

Qn41 = ;%(%)ne““/’;

bl

which again is Poisson’s formula.

CHAPTER IV. CONTINUOUS STATE SYSTEMS,
THE CASE OF ONE PARAMETER

§11. Preliminary remarks

Suppose now that the state of the system considered is determined by the
values of a certain real parameter z; in this case we denote by = both the state
of the system and the value of the parameter corresponding to this state. If &,

is the set of all states « for which z < y, then we set

P(ty,z,t2, Qiy) = F(tl,z,tz, y).
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As a function of y, F(t;,z,t2,y) is monotone and right continuous and satisfies

the boundary conditions
F(t1,z,t3,—0) =0, F(t1,z,t2,+00) =1. (78)

For the function F(t1,,%2,y) the fundamental equation (3) transforms into:

F(tlyx;t3,z) :/ F(tZay7t3’z)dF(t17z’t%y)' (79)

- 00

Thus we have to use integral distribution functions of random variables and
ordinary Stieltjes integrals.

Integral (79) exists according to Lebesgue ! if F(t2,y, 3, z) is Borel-meas-
urable with respect to y. In what follows we assume that the system § (see §1)
coincides with the system of all Borel sets, which implies Borel-measurability
of F(t1,z,t2,y) as a function of . In this case, as is known, the additive
set function P(t1,z,t2, €), for all Borel sets €, is uniquely determined by the
corresponding function F(t1,z,%s,y).

A function F(y), monotone and right continuous, such that

F(-00) =0, F(+00)=1

is called a normal distribution function. If F)(z,y) and Fs(z,y), as functions
of z, are Borel measurable and, as functions of y, are normal distribution

functions, then the same is true for the function

00

F(z,y) = Fi(z,y) ® Fa(z,y) = / Fy(z,y)dF(z, 2). (80)

-00

This operator @, like *, obeys the associative law; using this law, the funda-

mental equation (79) can be expressed as
F(th Zat3a y) = F(th zatZay) 57 F(tz,x,t;«;, y) (81)
with Fy(z,y) = Vi(y—z), Fa(z,y) = Va(y—=z). Then, as can easily be shown,

Fi(z,y)® Fa(z,y) = V(y—2) = Vi(y - 2) © Va(y — 2), (82)

10 g, Lebesgue, Legons sur lintégration et la recherche des fonctions primitives,
Gauthier-Villars, Paris, 1928.
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where

V(z) = Vi(2) © Va(x) = /_ Z Va(z — 2)dVi(2). (83)

The associative law also holds for the operator ® while for normal distribution
functions the commutative law holds as well; if V;(z) and V(z) are considered
as distribution functions of two independent random variables X; and X,
then Vi(z) ® Va(z), as is known, is the distribution function of the sum!!
X =X; + Xs.

If F(t1,z,12,y) is absolutely continuous as a function of y, then we have
y
F(tljx)tZ)y) =/ f(tlxx,t%y)dy' (84)
—00

In this case the non-negative function f(¢1,z,t2,y) is Borel measurable with

respect to  and y and satisfies
o0
/ f(tl,z)t%y): 1, (85)

f(tlxxatB;z) = /oo f(tlaz)tzay)f(tz)y’t3az)dy' (86)

Conversely, if (85), (86) hold for f(t1,z,12,y), then the function F(t1,z,t2,y)
defined by (84) satisfies (78) and (79): hence, such a function determines the
scheme of a stochastic process. This function f(t1,z,t2,y) will be called the
differential distribution function for the random variable y.

Note also that the following mixed formulas hold:

F(tl,:l,‘,tg,Z) =/ F(tg,y,t3,z)f(t1,x,t2,y)dy, (87)
oo

f(tl,x,t3,2') = / f(tz,y,ta,z)dF(tl,z,tg,y). (88)
—-00

When the scheme is discontinuous in time, the functions
an(m;y):F(tmaxatnay)a Fn(x,y) =Fn—1,n(l',y);
are considered; they satisfy the equations

Fm,n+1 (:L‘, y) = an(il?, y) @ Fﬂ+1(z’y)’ (89)
Fkn(z;y):ka(zay)e;an(x)y) (k<m<n)' (90)

11 gee P. Lévy, Calcul des probabilités, Paris, 1927, p.187.
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If
y
an(l‘,y) = /; fmn(x’y)dy; fn(z;y) = fn—l,n(z;y)a

then, in addition, we have

Frnsr(@,2) = / " a2, ) fos1 (9, 2)dv, (91)

fin(z,2) = /:: Jim(z,9) fmn(y,2)dy (k< m < n). (92)

§12. Lindeberg’s method.

Passage from discontinuous to continuous schemes

As we noted in §3, probability theory usually deals only with schemes that are
discontinuous in time. For these schemes, the main problem is to find approx-
imate expressions for the distributions Fp,,(z,y) for large n — m, or what is
essentially the same, to construct asymptotic formulas for F,n(2,y) as n — oco.
The Laplace-Lyapunov theorem is the most important result achieved in this
direction. Now we will consider in more detail the proof of this theorem given
by Lindeberg 12 with the purpose of outlining his main idea in as general a form
as possible and thus obtaining a general method for constructing asymptotic
expressions for Fnn(z,y).
Let

Fﬂ("”:y) = Vﬂ(y - .1:),

an(z) = /_:(y —z)dFu(z,y) = /

oo

ydVa(y) =0,

bf‘(z) = /_°° (y— x)zdF,,(:c,y) = /00 yden(y) = b,z,,

—00
B,Zr‘n:b,zn+1+b'2n+2+..+b?‘.

The Laplace-Lyapunov theorem states that under certain additional assump-

tions, for constant m and as n — oo we have

Frn(2,9) = 2(55=>) + o(1)

12 Math. Z. 15 (1922), 211.
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uniformly with respect to z and y, where

2
P(z) = \/_127/ e~*' 124y

Along with the stochastic process with discontinuous time determined by
the functions Fy,(z,y), we will consider another one, with continuous time; we

suppose that it is characterized by the function

T4 " _ y—z
Tzt ,y)_<1>(————m).

Further, let

t() = 0, t" = Bg",
an(z;y) = —F‘-(tm,z,tmy)a Fn(r,y) = Fﬂ—l,n(z,y)-

Clearly we have

— y—z
Fo(z,y) =@ ,

n(2,9) ( B )

an(z) = / (y— z)dFp(z,y) =0,

_ = _

B2(2) = / (v — 2)?dFn(z,y) = b2.
—00
The first and second moments @,(z) and b2(z) of the distribution F(z,y)

coincide with the corresponding moments a,(z) and b2(z) of the distribution
Fu(z,y). From this Lindeberg deduced that

Frn(,y) ~Fn(z,y) > 0 asn— oo,

after which the Laplace-Lyapunov theorem follows directly from the obvious

identity

Frn(z,y) = (I>(yB;:)

In the general case of arbitrary functions Fy,(z,y) we can only apply Linde-
berg’s method if we know a function F(t,z,t",y) characterizing a continuous

stochastic process, and which, for a certain sequence of instants of time

lo<ti<ils<... <t <...
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gives the moments a,(z), b2(z) which coincide with a,(z), b2(z), or are close

to them. A general method for constructing such functions F is obtained by

using differential equations of continuous processes, considered in the sections

below. To pass from F to F we can use the following:

Transition Theorem. Let the functions F,,(z,y) and Fn(z,y) determine two

stochastic processes with discontinuous time. If

[ w-aamen=ae [ :(y — 2)dFa(z,y) = n(z),  (93)

/ " (v = 2)2dFa(a, ) = (), i :(y — 2)dFa(z,y) = B2(z), (94)

/ Z -elaaen) =@, [ l-aPdFuen) =), 09

[an(z) = @n(z)| < Pn, [bn(z)=b2(2)| < gn, cn(z) < 7n, En(z) < Tu, (96)

and if there ezists a function R(z) such that
R(z)=0, forz<0,
0<R(z)<1, forO0<z<l,
R(z)=1, forl<z,

and for i,
Upn(z,2) = / R(z - 9)dFn(z,)

- 00

the tnequalities

liU,c (z z)l <KW |—3—2-U,,,,(x 2)| < kK@
ax n ) — n ) 6x2 b — n b

53
— < K® =
last""(”’z)l <K®, (k=0,1,...,n),
hold, then the relation
Fon(z,y —1) — en < Fon(z,y) < Fon(2,y +1) + €n,

holds, where

n 1 n 1 n
=KW + =K@ +=K®N (rp + 7
en = K§ ;Pk 5K§ ’;qk 5 ;{k %

~—

(97)

(98)!

(99)

(100)
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In applying this theorem to the case when the moments a(z), b(z), c(z) are
unbounded as z increases, it is often possible to eliminate this unboundedness

by introducing a new properly chosen variable z’ = ¢(z).
Proof of the Transition Theorem. By (98) we have

Uk—l,n(za y) = —Fk—l,n(x’ y) (8>} R(y - (l!) =
=Fi(2,9) ®Fr41(2,9)® ... ® Fp(z,y) ®R(y — z) =

=fk(z,y)®Ukn(3”y) (101)

and by (93)-(95), (99),
Uk-—l,n(zay) = [w Ukn(z’y)dfk(zaz) =

[o ] 6 -
= [ [Vinle) + 5oUkna ) T

(z z)? O

3 Zz -
662Ukn(:c Y) 6 25Uk (€, y)( z)° ]dF;,(a: z) =

)
= Uka(z, y)+ Ukn(z,y)ak($)+
+66—Ukn(x y)b"(”) +0K(3>c"(’:) 6] < 1. (102)

Setting
‘/k—l,n(zay) = Fk(:c’y)@Ukﬂ(xay)’ (103)

we obtain a formula similar to (102),
0
Vi-1,n(2,y) = Un(z,y) + —zUkn(z,y)ak($)+
6 bz (= c
5.5 0kn(2,9) "5 ’°( ) 4 oKD 2L ’°( ) o] <1.  (104)
From (102) and (104) and using (96) and (99) it follows that

1 1 _
Uk=1,0(2,9) = Vic1,n(z, )| < KPpi + §K,(.2)% + gKﬁs)(ﬂc + 7). (105)
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Now let
Win(z,y) = For(,y) © Urn(z,y) =
= Fi(z,y) ® Fa(2,9) ® ... ® Fr(2,y) ® Urn(z,9) =
= Fok-1(2,y) ® Vi—1n(2, ). (106)
Then by (105) we have
|Win(z,y) — We-1,n(z,9)| =

= |Fo,k-1(2,9) @ Vi-1,n(2,9) — Fok-1(2,y) ® Ur-1,n(2,9)| £

o
< / WVeo1n(2:9) = Us-1n(5s 0)ldFo 12, 2) <

—o00
1 1
<sup [Vic1n(2,¥)—Uk-1,a(2,9)] < Kr(ll)pk+§Kr(|2)qk+'é'Kr(ua)(rk'*'Fk)' (107)

IW,,,.(:c,y) - WOﬂ(z’y)I <

<KMY p+ '2‘K,(.2) e+ EK,(P) > (re+ ) =€n.
k=1 k=1 k=1

But
Wan(z,y) = Fon(z,y) ® R(y — z) = /_ ” R(y — 2)dFon(z, 2)

and
Won(2, ) = Fon(2,y) ® R(y — 2) = /_ R(y — 2)dFon(z, 2).

Taking into account (97) we obtain
y
Wan(z,y) S/ dFon(2,2) = Fou(z,y),
—00

Y
Wnﬂ(x)y'*'l) Z/ dFo,,(z,z)zFo,,(z,y),
—00

- (108)
Won(2,9) 2 [ dFon(z,2) = Fon(ay =),
-0
v+l —
Won(e,y +) < [ dFon(2,2) = Fon(e,+ ),
~00

Formula (100) now follows immediately from (107) and (108). The details of

the proof can be found in Lindeberg’s paper referred to above.
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§13. The first differential equation for processes

continuous in time

If the state of our system & can be changed at any moment ¢, then it is
natural to assume that significant changes of the parameter £ during small

time intervals will occur very seldom, or, more exactly, that for any positive e,
P(t,z,t+ A, l[y—z|>€) >0 asA—0. (109)

In most cases we may assume that the stricter condition

+o00
m®(t, 2, A) = / ly— zlPdF(t,z,t + A,5) =0 asA—0  (110)
—00
holds, at least for the first three moments m(!), m(?) and m(3). A general study
of the possibilities that arise under these assumptions is of great interest; some
remarks to this end will be given below in §19.
In the following sections we also assume that the following important con-

dition holds:
m®(t,z,A)

m)(t,z,A)
This condition will certainly hold if in the definition of m®)(¢,z,A) via (110)

only infinitesimally small differences y — z play a significant role for infinitesi-

—0 asA—0. (111)

mally small A or, more precisely, if
+
f:_: ly — z|3dF(t,z,t + A, y)

—1 as A—0. 112
fj;o ly—:c|3dF(t,z,t+A,y) ( )

Strictly speaking, only in this case is our process continuous in time. For-
mula (111) also implies that

m(t,z,A)

Finally, we will also assume that for s # ¢ all the partial derivatives of the
function F(s,z,t,y) up to the fourth order exist, and that these derivatives for
constant ¢,y are uniformly bounded with respect to s and z fort —s > k > 0.

From (78) and (110) we conclude that for s =t the function F(s,z,t,y) is, by

contrast, discontinuous. The function

f(s,2,8,9) = %F(s,x,t,y), (113)
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clearly satisfies (84)—(86) and, at given t,y, has for t — s > k > 0 deriva-

tives up to the third order that are uniformly bounded with respect to s and

t. All further calculations are made for this differential distribution function

f(s,:c,t, y)
Set

daaAr=[f@—xvaw¢+Awwm

(114)

b2(t,z,A) = /oo (y—2)°f(t,z,t+ A, y)dy = mP(t,2,4), (115)

o0
c(t,z,A) = / ly — :c|3f(t,x,t + A, y)dy = m(s)(t, z,A).

— 00

By (85) and (86) we have

ﬂaauw=/mfmas+moﬂaAauwa=
= /oo f(s,:z,s+A,z)[f(s+A,x,t,y)+

+(,%f(s + A, z,t,y)(z — z)+
(z— =)
2

53 PRY
+a o+ a6ty T

82
+8—z2‘f(3+A,x,t,y) +

Jaz =

5]
=f(s+4A,z,t,y)+ %f(s + A, z,t,y)a(s, z, A)+

2
b%(s, z, ) +0c(s,:z:,A)

9
5 e 6] < C,

32
- t
+35f(s+8,2,1,9)

(116)

(117)

where for s + A < 7 < t, C can be chosen independently of A. From (117) we

immediately obtain

f(S-l-A,:L‘,t,y) —-f(s,x,t,y) -

A
9 a(s,z, )
= — o f(s+ Azt ) 0
6? bi(s,z,A) (s, z,A)
——b—ﬁf(s+A,x,t,y) TN -6 A

(118)
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First we prove that if for given z and s the determinant
o t o o " "
=f(5,2,t,y)  =f(s,z,t",y")

D(s,2,t,y',t",¢") = a? 1 82 "o
'ﬁff(syx)tay) Wf(saz)t 'Y )

(119)

does not vanish identically for any t/,y/,t",y"”, then the ratios
a(s,z,A)/A and b%(s,z,A)/2A

tend to well defined limits A(s,z) and B2(s,z) as A — 0.
Thus, let t/,y/,t",y" be chosen so that (119) is non-zero; in this case, for

any sufficiently small A we also have
D(s + A’ x)tl) yl)tll’ y”) # 0’

so that the equations

NA) o= (s B, 2,8,1/) + i(A) 5 F(s + A, 2,8",5") =0,
(120)
o? d?
/\(A)Wf(s +A,z,t,y)+ p(A)—-;i-f(s +Az,t"y)=1
have a unique solution. In this case A(A) and p(A) tend to A(0) and u(0) as
A — 0. Further, by (118) we obtain

f(s + A’x)t,)yl) - f(s,x,t’,y’)+

A(A) 2
f(S + A’ :c,t”,y") - f(s) lf,t”, y”) _
b2 A A
—_ (82)2) ) —- (0/ + 0!/)6(8162 )‘ (121)

The left-hand side of formula (121) tends to

0
Q= MO0) 2 £(s,2,8,/) + HO) o S (8,2,",1/)

as A — 0, whereas on the right-hand side the second term is infinitesimally
small as compared with the first one, by (111); therefore this term tends to the
limit

2
B%(s,z) = lim Ye28) g (122)

0 2A
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It follows immediately from (122) and (111) that
c(s,z,A)/A -0 asA—0. (123)
By (122) and (123), formula (118) for A = 0 becomes:

a(s,z,A)] _

) d 5]
A]Hlo [(—‘ﬂf(s,:c,t,y) —-gf(s,z,t,y)—

32
_Eﬁf(s’z’t’y)Bz(s)z)'

Since 8f(s,z,t,y)/0z does not vanish identically for any ¢ and y, the following
limit also exists:
a(s,z,A)
—x— =
_ —0f(s,z,t,y)/0s — B(s,z)0%f(s,2,t,y)/0z?
B 0f(s,z,t,y)/0z '
Passing to the limit in (118), (122), (123) and (124) we obtain the first

fundamental differential equation

A(s,z) = Ali_r{x0

(124)

0 ) d?
'a—sf(s’ z,1, y) = —A(s,z)%f(s,z,t, y) - Bz(sa z)ﬁf(s) z,t, y)' (125)

When the determinant D(s,z,t',y’,t"”,y") vanishes for any t',y’,t",y",
then the limits A(s,z) and B(s,z) do not in general exist, as is clear from the

following example:

2
3" -2 40t-), (126)

festn) = s s

Here, for z = 0 we have
b%(s,z,A)/2A — 400 as A — 0.

It can be shown, however, that these singular points (s,z) form a nowhere
dense set in the (s, z)-plane.

The practical significance of these very important quantities A(s,z) and
B(s,z) is as follows: A(s,z) is the mean rate of variation of the parameter z
over an infinitesimally small time interval and B(s, z) is the differential variance

of the process. The variance of the difference y — z for the time interval A is

b(s,z,A) = B(s,2)V2A + o(VA) = O(VA); (127)
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and the expectation of this difference is
a(s,z,A) = A(s,z)A + o(A) = O(4). (128)

It is worth mentioning that the expectation m(1)(¢, 2, A) of |y — z|, like the
variance b(s, z,A), is a quantity of order VvA.
As will be shown in the following sections, the functions A(s,z) and B(s, z)

in some cases uniquely determine our stochastic scheme.

§14. The second differential equation

In this section we retain all the requirements imposed on f(s,z,t,y) in §13
and, in addition, assume that f(s,z,t,y) has continuous derivatives up to the
fourth order. Then, from (120) it clearly follows that if the determinant (119)
is non-zero, then A(0) and p(0) have continuous derivatives with respect to s
and z up to the second order; by (122) and (124) the same is also true for
B?(s, z) and A(s, z).

Now, assume that for a certain ¢ we are given an interval ¢ < y < b such
that at each point of this interval the determinant D(t,y,v’,2’,u",2") does
not vanish identically for any u’,2’,u”, z"”. Next, let R(y) be a function that
is non-zero only on the interval a < y < b, is non-negative and has bounded

derivatives up to the third order. In this case we have
b b
| gt ntnre= 5 [ 1wt )rwiy =
= llm —/ [f(s,z,t+ A, y) — f(s,z,t,y)R(y)dy =
= 11m ——{/ R(y)/ f(s,z,8,2)f(t,2,t + A, y)dz dy—
[0 0] . 1
—/ f(s,z,t, y)R(y)dy} = AhElo e
x{/ f(s,z,t,2) / ft,z,t+Ay) [R(z) + R'(z)(y — z)+

—[:f(s,x,t,z)R(z)dz = 11m —/ f(s),2,1,2)x



ON ANALYTICAL METHODS IN PROBABILITY THEORY 99

*(t, 2 c(t,z
X [R’(z)a(t,z,A) + ()] (t,2,A) +8 (t,G,A)]dz

= /—oo f(s,z,t,2)[R'(2)A(t, 2) + R"(2) B*(t, 2)]dz =

b
- / £(s,2,t, 9)[R () At, 5) + R"(v)B(t, v)d, (129)
6] < sup |R"(£)!.

The passage to the limit with respect to A in deriving these formulas is justified
by the fact that a(t,z,A)/A, b*(t,z,A)/2A and c(t,z,A)/A tend uniformly
to A(t,z), B%(t,z) and 0 respectively, and the integral of the factor f(s,z,t,z)
with respect to z is finite.

Integrating by parts we obtain

b b 6
/ f(s, 2,1, 9) R (1) A(t, y)dy = — / sVt ARG, (130)

In exactly the same way, integrating by parts twice, we obtain

b b 62
/ f(s,2,t, ) R" () B(t, y)dy = / 5ol (65 L) B DIRG)My, (131

since R(a) = R(b) = R'(a) = R'(b) = 0. Formulas (129)-(131) immediately
imply that

b b
/a%f(s,:c,t,y)R(y)dy:/a{—%[A(t’y)f(s’x,t,y)]_i_
+:_y22[32(t,y)f(s,:c,t,y)]}R(y)dy- (132)

However, since the function R(y) can be chosen arbitrarily only if the above
conditions are fulfilled, we easily see that for points (¢,y) at which the deter-
minant D(t,y,u’, 2’,u”,2") does not vanish identically the second fundamental

differential equation also holds:

D (s 0,4,9) = —2AW ) (o, 5, 1] + B ) (5,2 1 y)). (133
ot 5,z,L,Y)= y W f(s,z,t,y) dy? ,9)f(s,z,t,y)].  (133)

This second equation could also have been obtained without using the

first one, using the methods described in §13 directly; then, however, new and
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more stringent restrictions (that we omit here) would have to be imposed on

f(s,z,t,y). In that case we start from the formula, similar to (118),

%[f(sﬂ‘,t,y)—f(S,xyt—A,y)]=
= f(s,z,t — A,y)%[/;oo = Azt y)dz — 1]+
+6iyf(s,:c,t—A,y)%/_wf(t—A,z,t,y)(Z—-y)dZ+
2 o0
%f(s,x,t—A,y)%[_w flt - A, z,t,y)(z — y)’dz+

o0
vox [ = A sty (134
6A J_o
Then we prove that
Jim —/ f(t-A,2,4,9)lz — yPdz =0

and that the limits

11m02—A—/ ft— A, z,t,y)|z — y[’dz = B2(,y), (135)‘
A—»OA/ flt = A, z,t,y)(z — y)dz = A(t, y), (136)
Ai_@o%( /_ Z £t - Az t,9)dz — 1) = N(t,3), (137)

exist. Thus we would have obtained our second equation in the following form

(%f(s,z,t,y) =N(t,y)f(s,z,t,y)+

+At )5 f(s z,t,y) + B2(t, y) f(s,r,t,y)- (138)

To show the identity of this equation with the one denved before, we would

have to prove that
B(t,y) = B*(t,y), (139)
A1) = ~A49) + 5o B4, (140)

— 7] 02
N(t)y) = %A(tay) + WBz(t’y)' (141)
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§15. Statement of the uniqueness and existence problem of

solutions of the second differential equation

In order to define the function f(s, z,t, y) uniquely by the differential equations
(125) and (133) we have to set up some initial conditions. For the second
equation (133) the following approach can be adopted: according to (85), the

function f(s,z,t,y) satisfies the condition
o0
/ f(s,2,t,y)dy =1 (142)
—00
for every t > s and, in view of (110), we also have
o0
[ w-ofeatniy =0, wt—s (143)
—o00

The main question regarding the uniqueness of solutions is as follows: under
what conditions can we assert that for given s and z there exists a unique
non-negative function f(s, z,t,y) of the variables ¢, y defined for all y and t > s
and satisfying (133) and the conditions (142), (143) ? In certain important
particular cases such conditions may be described: these are, for example, all
the cases considered in the following two sections.

Now given the functions A(t,y) and B2(t,y), the question is whether there
exists a non-negative function f(s,z,t,y) such that, on the one hand, it sat-
isfies (85) and (86) (as was indicated in §11, these requirements are needed
for f(s,z,t,y) to determine a stochastic system), and on the other hand, after
passing to the limit via formulas (122) and (124), it gives these functions A(t, y)
and B(t,y).

To solve this problem, we can, for example, first determine some non-
negative solution of our second differential equation (133) satisfying the condi-
tions (142), (143) and then check if it is indeed a solution to our problem. In
doing this, the following two general questions arise:

1) Under what conditions does there exist such a solution of equation
(133)?

2) Under what conditions does this solution really satisfy (85) and (86)7

There are good grounds for assuming that these conditions are of a suffi-

ciently general character.
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§16. Bachelier’s case

We now assume that f(s,z,t,y) is a function of the difference y — z, depending
arbitrarily on s and ¢, that is, that our process is homogeneous with respect to

the parameter
f(s,z,t,y) = v(s,t,y—z). (144)

In this case, clearly A(s,t) and B(s,t) depend only on s, so that the differential

equations (125) and (133) are now expressed as

%Jsﬁ - _A(s)% - BZ(s)-‘;%, (145)

%{. = —A(t)g—'; + Bz(t)g—zg. (146)
For the function v(s,t,z), we obtain from (145) and (146):

%E = A(s)% - Bz(s)%, (147)

%% - —A(t)% + Bz(t)—g—g. (148)

Equation (148) was found by Bachelier, 13 but strictly speaking, was not
proved.

If we have A(t) = 0 and B(t) = 1 identically, then (133) (respectively
(146)) turns into the heat equation

of/ot = 8%f/0y?, (149)

for which the only non-negative solution satisfying (142), (143) is given, as is

well known, by Laplace’s formula

1 —(y—2)24(t—s
f(s,f,t,y)=\/—Tt—_‘?)C W=o)'/40t-2), (150)

In general we assume that
s t
=z —/ A(u)du, ¢ =y —/ A(u)dy,
a a

s t
s =/ B?(u)du, ¢ =/ B?*(u)du.
a a

13 Gee papers Nos. 1 and 3 in footnote 2.
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Then (146) turns into
6f/6t' — 62f/6y’2,

and the conditions (142), (143) retain the same form in the new variables

s',z',t',y as in the variables s,z,t,y. Hence in the general case, the function

e_(yl_zl)2/4(tl_’l) - 1 e_(y_a)2/4ﬂ

1
font= 7= v
(,B = /St Bi(uw)du, a=z+ /: A(u)du) (151)

is the only solution of equation (146) satisfying our conditions.

§17. A method of transforming distribution functions

Let
s'=¢(s), t'=¢(), = =49(s2), ¥=9@y)
f(s,z,t,y) = (0¢(t,y)/0y) f'(s', 2", 1Y), (152)

and assume that ¢(t) is a continuous, nowhere decreasing function, whereas
¥(t,y) is arbitrary with respect to ¢ and has a continuous positive derivative
with respect to y. If f(s,z,t,y) satisfies (85) and (86), then the same is also
true, as can easily be demonstrated, for the function f’ with respect to the new
variables s’,z',t',y'; in other words, our transformation gives a new function
f'(s',2',t',y’") which, like f(s,z,t,y), determines a stochastic scheme.

If ¢(t) and (¢, y) have appropriate derivatives, then under transition to
the new variables (125) and (133) turn into

(] ! 2 £7
%ﬁ;’ =-A'(s, z’)% - B’Z(s’,z’)gzj,;, (153)
of' 5} 62
o - ~ 5l 1+ 5B (154)

where we have set

_ (0%9(t,9)/0y*) B(t,y) + (0%(t, y)/Oy) A(t, y) + 09 (2, y) /O
0¢(t)/0t ’

Bt y) = (azﬁ(t,%g?}; (ty) (155)

A,(t,, yl)
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With the help of the above transformation the solutions of (133) can be
obtained for many new types of coefficients A(t,y) and B2(t,y). For example,
let

Alt,y) = a(t)y +b(t), B2(t,y) = c(t); (156)

we set

é(t) = / o(t)ye-2S oWty

(157)
Y(t,y) = ye S oO* / bty SO
and obtain in the new variables s’,z’,t/,y', f’ the simplest heat equation:
af' Jot' = 82 f' /oy 2. (158)

In this case the initial conditions (142) and (143) remain valid for f'(s’,2’,t',y’)
as well; therefore the formula
'] 1 —(y'—z')’/‘i(t’—s')
= ——— 159
== (159)
together with (157) and (152) gives the unique solution f(s,z,t,y) of (133)

with coefficients of the form (156) satisfying our conditions. It is easy to see

that in this case the function f(s,z,t,y) is of the form

1 ~-0)/4p (160)

T

where a and § depend only on s,z and ¢, but not on y.

It is an important problem to find all possible types of coefficients A(t, y)
and B2(t,y) such that for any s,t,z we always obtain a function of the form
(160), that is, the Laplace distribution function.

As a second example consider the case
Alt,y) =)y —c), B(ty) =)y - o). (161)
This time, setting
80 = [s0d, vy =tw-o+ [Bo)-aler (16

we again obtain for f’(s’,z’,t,y") equation (158) for which the solution (159)

is already known. Note that here it suffices to consider only the values z > ¢,
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y > ¢, since as z or y varies from ¢ to +o0o the variable z’ (hence y') runs through
all the values from —co to +00. Certain complications arising in connection
with this when transferring the conditions (142) and (143) to f’ can easily be
eliminated.

In particular, for
Alt,y) =0, B(t,y) =4 (163)
we have the formula

(164)

_ 1 o _(ny+t-Inz—s)?
f(S,f":t:y)——‘ym p{ 4(t — s) }

For applications the most important is the case when A(¢,y) and B?(t,y)
depend only on y, but do not depend on the time ¢t. The next step in this

direction would be to solve our problem for coefficients of the form

A(y)=ay+b, Bi(y)=cy®+dy+e. (165)

§18. Stationary distribution functions

If at time to the differential function of a probability distribution g(tq,y) is
known, then, as for the general formula (5), the distribution function g(t,y) is

determined for any ¢ > to by the formula

9(t,y) -_-/ g(to, ) f(to, z,t,y)dz. (166)
Clearly, g(t, y) satisfies the equation

dg 0 8%,

ot - ‘ay [A(t) y)g] + ayz [B (t)y)g]' (167)

We now assume that the coefficients A(t,y) and B?(t,y) depend only on y
(the process is homogeneous in time) and study the functions g(t,y) which in

this case do not change with time. It is clear that for such functions we have
~Ag+ (B%*g) =C. (168)

If we assume that g and g’ tend to 0 so rapidly as y — oo that the entire
left-hand side of (168) tends to 0, then clearly C = 0 and we have

d/g =4~ (B?)/B. (169)



106 ON ANALYTICAL METHODS IN PROBABILITY THEORY

Moreover the function g(y) must also satisfy the condition

/00 gdy=1. (170)

)

In most cases it appears possible to prove that, if there exists a station-
ary solution g(z), then f(s,z,t,y) tends to g(y) as t — oo and for arbitrary
constants s and z; thus, g(y) appears to be not only a stationary, but also the
limiting solution.

If the coefficients A and B? are of the form (165) , then (169) turns into

the Pearson equation
/

g y—pr

= 171
9 Q@+ qay+ ey’ (171)

with
d—2b e _ d _ e
W=3"9 T BT T

Hence we can construct stochastic schemes for which any of the functions of

P=—5 (172)

the Pearson distribution is a stationary solution.

§19. Other possibilities

The theory presented in §§13-18 is essentially determined by the assumption
(111). If we get rid of this assumption, then even when the condition (110)
is retained, a number of new possibilities appear. For example, consider the

scheme determined by the distribution function
y
F(s,z,t,y) = e ¢~ o(y—z) + (1 - e"“(t_"))/ u(z)dz, (173)
—00

where o(z) = 0 for 2 < 0 and o(2) = 1 for z > 0, and u(2) is a continuous

non-negative function for which

/00 u(z)dz =1

—00

and the moments

/m w2)zfdz (i=1,2,3)

-0
are finite. It can easily be shown that the function F(s,z,t,y) satisfies (78)
and (79), as well as (110).
This scheme can be interpreted as follows: during an infinitely small time

interval (t,t + dt) the parameter y either remains constant with probability
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1 — adt, or takes a value y', z < ¥’ < z + dz with probability au(z)dtdz. Thus
a jump is possible in any time interval, and the distribution function of the
values of the parameter after the jump does not depend on the values of this
parameter prior to the jump.

This scheme could also be generalized in the following way: imagine that,
during an infinitely small time interval (¢, + dt) the parameter y retains its
former value with probability 1 — a(¢,y)dt and turns into ¢/, 2 < y' < z + d=
with probability u(t,y, z)dt dz. Clearly we assume that

o
/ u(t,y,2)dz = a(t,y). (174)
—~00
In this case for g(t,y) the integro-differential equation
a o0
9t =—at et + [ owueznd:  am
—00

should hold.
If we wish to consider not only jumps but also continuous changes in y,

then it is natural to expect that g(t,y) satisfies

oo

£063) = —at, et + [ ottt v)ds

- 00

0  _
~ 5y AL VItV + 5587t v)e(ty)],  (176)
provided (174) holds and the coefficients A(,y) and B?(t,y) are as indicated
in §13.
CONCLUSION

If the state of the system under consideration is determined by n real param-
eters z1,23,...,2Z,, then under certain conditions similar to those of §13 we

have the following differential equations for the differential distribution function

f(S L1y zn)t Y, ... :yn):

52
= —ZA (s,21,. :cn) ZZB,](S :cl,...,zn)—a—&?f;;, (177)

i=1j=1

af Z a A (t Yi,--- )yn)f]+

+ZZa oy Dby wa)f] - (78)

i=1j=1
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For the case when A;(t,v1,...,¥,) and B;i;(¢,%1,...,¥,) depend only on
t, these equations were discovered and solved by Bachelier.'* In this case the

solutions satisfying the conditions of our problem have the form
1
f= Pexp{—a Zpij (% — i — ¢i)(y; — = — qj)}, (179)

with P,Q,p;; and ¢; depending only on s and ¢.
It is also possible to consider mixed schemes, where the state of the system

is determined by parameters some of which are discrete and others continuous.

Moscow, 26 July 1930

14 See item II in footnote 2.



