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(Comm. by T. TAKAC,, M.I.A., Dec. 12, 1944.)

1. The purpose of this paper is to investigate the properties of
two-dimensional Brownian motions’ and to apply the results thus ob-
tained to the theory of harmonic functions in the Gaussian plane. Our
starting point is the following theorem" Le D be a domain in the
Gaussian plane R2, and let E be a closed set on the boundary Bd(D) of
D. Then, under certain assumptions on D and E, the probability
P(, E, D), that the Brownian motion starting from a point e D will
enter into E without entering into the other part Bd(D)-E of the
boundary of D before it, is equal to the harmonic measure in the sense
of R. Nevanlinna of E with respect to the domain D and the point

It is expected that, by means of this method, many of the known
results in the theory of harmonic or analytic functions will be inter-
preted from the standpoint of the theory of probability. We shall here
give only the fundamental results and a few of its applications, leaving
the detailed discussions of further applications to another occasion.

Most of the results obtained in this paper are also valid for the
case of higher dimensional Brownian motions. But there are also many
theorems in which the dimension number plays an essential rble). For
example, Theorems 6, 7 and 8 of this paper are no longer true in R.
The situation will become clearer if we observe the following theorem"
Consider the n-dimensional Brownian motion in R(n 2), and let
be the closed unit sphere in R’. Then, for any e R’-", the pro-
bability P(,, R-) that the Brownian motion starting from will
enter into for some t 0 is equal to 12- if n 3O, while this
probability is--1 on R’- if n=2). This result is closely related
with the fact that there is no bounded harmonic function, other than
the constant 1, which is defined on R-" and tends to 1 as I]- 1,
while, for any n 3, u($)= ]$ -" is a non-trivial example of a bounded
harmonic function with the said property.

2. Let (z(t, ,)= (x(t, o), y(t, )} I- t <: o, e/2} be a two-
dimensional Brownian motion defined on the z= (x, y}-plane R, i.e. an
independent system of two one-dimensional Brownian motions {x(t,

1) Brownian motions were discussed by N. Wiener and P. Lvy. Cf. N. Wiener,
Generalized harmonic analysis, Acta Math., 54 (1930); N. Wiener, Homogeneous chaos.
Amer. Journ. of Math., 60 (1939); R.E.A.C. Paley and N. Wiener, Fourier transforms
in the complex domain, New York, 1933; P. Lvy, L’addition des variables alatoires,
Paris, 1937; P. Lvy, Sur certains processus stochastiques homog.nes, Compositio Math.,
.7 (1939); P. L(vy, Le mouvement brownien plan, Amer. Journ. of Math., 61 (1940).

2) Cf. R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1937.
3) Cf. S. Kakutani, On Brownian motions in n-space, Proc. 20 (1944).
4) I1 denotes the Euclidean distance of from the origin of Rn.
5) The case n=2 is contained in Theorem 4 of this paper.
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oo <: t <2 oo, e/2} and {y(t, 0) 1- co < t oo, 0 e 9}). It is easy to
see that this definition is independent of the choice of rectangular
coordinate systems in R. Further, it is known that there exists a
null set N in such that, for any o e 2-N, z(t, ) is a complex-valued
continuous function of t.

Let F a closed subset of R. For any e R-F and for any

9-N, let us consider the path of a moving point +(z(t,)-z(O,)),e

t0, starting from (. Then either (i) there exists a positive

number r (, F, o) such that + (z(r, o)-z(0, )) e r and + (z(t, )
-z(O,))eR-r for any t with 0<t<r, or (ii) +(z(t,)-
z(0,o))eR-F for any t with t0. The set of all me-Nfor
which the first case happens is denoted by 9(, F). It is clear that,
for any oe 9(, F), r(, F, ) denotes the time when the moving point

+(z(t, o)-z(O, )) starting from enters into F for the first time
after t=0).

Lemma 1. 9(, F) is a easurable subse of , and (, F, ) is
a real-valued measurable function of on 9(, F).

Proof. It suffices to show that the set {]r(, F, )> a} is mea-
surable for any positive numr a, and this follows from the relation

={ol+(z(t,o)-z(O,))eR-F for any t with 0t}_
d(+((t, )-(0, )), N) for any t wih 0 t a

where 0 means hat Ne interseetion is aken for all rational
numbers f satisfying 0 r .

Le us further

for any e 9(, P). Ig is easy o see gha, for any e (, N), (, N, )
is the oin at whieh ghe moving oin +((t, )-(0, )) sarting
from enters into N for he firs ime after t=O.

Lemme e. a(, F, ) is a complex-valued eufablefunction of
on 9(, F).

Proof. It suffices to show that, for any closed subset E of F, the

1) Cf. S. Kakutani, loc. cit. 3) p. 700.
2) Put (i) r(,F,o,)=oo if ceR-F and o,e-N-1(,F), (ii) r(’,F,)=0 if

e F and ) e/2-N. Then r(, F, o) is defined for any eR and e/-Ar. In case e F,
there is another function r/(, F, o) which is useful in some problems /(, F, o) is

the inf of all > 0 such that + (z(, o)-z(O, o))eF. If there is no such t>> 0, then

r’(, F, m)=
3) d(, F)=inf , e F --’1 is the distance of from F.
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set {o a(, F, o)e E} is a measurable subset of .2(, F) and this follows
from Theorem 1 if we observe that

(3) {o a(, F, ,o) e E) {,o (, F, o)=(, E, o)).

3. Let F be a closed subset of R. For any e R-F, let D=
D() be the component of R-F which contains . Then the boundary
Bd(D) of D is a closed subset of F and it is clear that

(4)

(5)

for any e YJ(, F).
Let us finally put

(6) P(:, E, O)=Pr{w a(:, .d(O), w) e E}
for any closed subset E of the boundary Bd(D) of D. This is the pro-
bability that the Brownian motion starting from will enter into E
for some t 0 without entering into Bd(D)-E before it.

P(,E,D) may also be defied for any Borel subset of Bd(D).
Further, for any Borel subset E of R, we may put P(, E,D)=
P(, E Bd(D), D). If E Bd(D), or in particular if E= F, where
F is a closed subset of R from which D=D() is defined as the com-
ponent of R-F which contains :, then P(:, E, D)=P(:, Bd(D), D) is
equal to the probability Pr(/2(, F)} that the Brownian motion starting
from will enter into F for some t > 0. It is easy to see that

Lemma 3. P(, Bd(D), D)I on D if D is a bounded domain.
We can prove that Pr(2(, F)} =1 for any e R-F if F is a

closed set containing a continuum. It will be shown later (Theorem 7)
that this probability is 0 or 1 on R2-F according as F is of zero
or of positive capacityD.

4. Under a Jordan domain we understand a finitely connected
domain in R2 whose boundary Bd(D) consists of a finite number of
simple closed Jordan curves disjoint from one another. In case D is
bounded, there exists one and only one simple closed Jordan curve among
these which separates every point of D from o. This curve is called
the outer boundary of D and is denoted by OBd(D). (If D is not bounded,
OBd(D) is understood to be empty). The remainder Bd(D)-OBd(D)
is called the inner boundary of D and is denoted by IBd(D). IBd(D)
is either empty, in which case D is simply connected, or consists of
a finite number of mutually disjoint simple closed Jordan curves.

A subset E of the boundary Bd(D) of a Jordan domain D is an
elementary set if it consists of a finite number of mutually disjoint
non-abutting Jordan arcs on Bd(D), in- or excluding the end points.
It is clear that E is an elementary subset of Bd(D) if and only if

1) As for the notion of capacity, cf. R. Nevanlinna, loc. cit. 2). Usually capacity
is defined only for compact sets. The capacity of a closed unbounded set F is defined
as the supremum of the capacities of all compact subsets of F,
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Bd(D)-E is so. Further, e E is an er pot of an elementary set
E on Bd(D) if it is not an end point of an arc constituting E.

Theorem 1. Let D be a Jordan domain. We do not assume
that D is bounded or simply connected. Let further E be an elementary
set on the boundary Bd(D) of D. Then the probability P(, E, D), that
the Brownian motion starting from a point e D will enter into E
for some t 0 without entering into Bd(D)-E before it, is a bounded
harmonic function of in D and

(7) limD..oP(, E, D)= 1 or 0

according as o is an inner point of E or of Bd(D)-E.
Proof. We shall first discuss the case when D is bounded. In

order to prove the first proposition, it suffices to show that

1 IP(o+re, E, D)dO P(o, E, D)(8)
2, 0

for any (o e D and for any r :> 0 such that the circular domain K((0, r)
={$1 I$-0l <r) is entirely contained in D (i.e. contained in D
together with its boundary C((o,r)=((I I-01=r}) If A is an arc
on the circumference C(’o, r) and if we denote by IAI the angular
measure of A divided by 2, then the direction homogeneity of the
two-dimensional Brownian motion will imply

(9) P((0, A, K((0, r))= [A[.
By using (9), (8) may be written as

(10) IO(,o.r,P(Co, d:, K(o, r))P(Z, E, D)=Y(C0, E, D).

Since the Brownian motion is a temporally homogeneous differential
process, the relation (10) is intuitively clear if we appeal to the notion
of conditional probability. But in order to prove (10) rigorously we
need to show that

(11) Pr{E A} Pr{E A} --, p(c, E, D)Pr{} AI
as A shrinks down to a point e C(0, r), where

(13) = {01 "(:o, C(:0, r), w) e A}.
This, however, requires a complicated argument, and so will not be
discussed in this paper.

The second proposition of Theorem 1 is also intuitively clear; but
it is not so easy to prove it in a rigorous way. We omit the
proof.

In order to prove our theorem for an unbounded D, let (D [m
=1,2...) be a sequence of bounded Jordan domains such that
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DU- =D. Let us put

(14) u() P(, E, D)

for any ’eD, where E is an elementary set on IBd(D)=Bd(D).
Then it is easy to see that u+(’) u($) on D,, re=l, 2, Hence
limu(’)=a() exists on D= U_D,, and the convergence is uniform
on every compact set contained in D. It is not difficult to see that the
limit function u(), which is harmonic in D and is clearly independent
of the choice of the sequence {D Ira= 1, 2, ...}, is equal to the pro-
bability P(, E, D) that the Brownian motion starting from will enter
into E for some t 0 without entering into Bd(D)-E before it. From
this follows easily that u($)=P(, E, D) has the properties as stated
in Theorem 1.. We shall give some applications of Theorem 1.

Theorem 2. Let F be a closed set in R with an inner point.
Then, for any e R-F, the probability Pr {/2(’, F)} that the Brownian
motion starting from will enter into F for some t 0 is 1.

Proof, It suffices to discuss the case when F is a closed circular
domain K(o, r)= {’i I-0] <1 r}. From Theorem 1 we see that

Pr{J(,K(o,__ r))} is a bounded harmonic function of defined on

R-K(o, r) which tends to 1 as I-$0]-r. Since there is no such
function other than the constant 1, this proves our theorem.

Remark. Lemma 3 is a special case of Theorem 2.
Theorem 3. Let D be a Jordan domain. We do not assume that

D is bounded or simply connected. Let f($)be a real-valued continuous
function defined on the boundary F=-Bd(D) of D. Then, for any o e D,
the value U($o) of the solution u() of the Dirichlet problem for the
domain D and the boundary values f($) is obtained by taking the
integral of a Poisson type of f() with respect to the kernel P(o, E, D)
on F or by taking the mathematical expectation of the composed func-

f(a(o, F, )).tion

In Theorem 3 D can be any domain regular for the Dirichlet
problem. The assumption that D is a Jordan domain is not essential.
Further, even if D is not regular, we may still get a generalized solu-
tion of the Dirichlet problem in this way. The discussions of such
general cases are left to another paper.

Theorem 4. Let D and D be two Jordan domains such that
D D and Bd(D) r Bd (D) - O. If E is an elementary set con-
tained in Bd(D) Bd(D), then P(, E, D) P(, E, D) for any e D,
where the equality holds if and only if D D.

1) =@,r,), and hence f(=(,r,,)), is defined only on 9(’,F). But since

-/(,F) is a null set in our case, so we may speak of the integral of f(a(,- r, ))
on 9.
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In the theory of harmonic functions this theorem is known as the
principle of the extension of domain. In our argument this follows
immediately from the definition of P($, E, D).. Theorem 5. Let F be a compact subset of R such that the com-
plemenCary R-F is connected. (For example, we may take as F any
totally disconnected compact set in R.) Let D be a simply connected
boundedD Jordan domain which contains F, and observe a function
P($, F, D-F) of defined in D-F. Then P(’, F, D-F) coincides
with the harmonic measure in the sense of R. Nevanlinnd) of F with
respect to the domain D-F and the point . If F is of zero capacity,
then P(,F,D-F)--O on D-F. If F is of positive capacity,
then P($,F,D-F) is harmonic and 0 in D-F. Further, (i)
P(, F, D-F) --> 0 as -o e Bd(D). (ii) if o e F and if F is locally of
zero capacity at o (i. e. if there exists an ro 0 such that F K(o, to)
is of zero capacity), then P(, F, D-F) can be extended to a function
harmonic and 1 in (D-F)
locally of positive capacity at o (i.e. if Fr-K($0, r)is of positive
capacity for any r 0), then SUpze(D-F):(Zo, ru)P(, F, D-F)= 1 for any
rO.

Proof. Let (. In= 1, 2, ...} be a sequence of bounded Jordan
domains such that c:. D, - /, OBd(,,)= Bd(D)=--C, IBd()-
F, D+, n=I, 2, and U =D-F.

Let us put

(16) v() P(, 1,

for n= 1, 2, This is the probability that the Brownian motion start-
ing from will enter into F. for some t > 0 without entering into
Bd(,)-I’=Bd(D)--C before it, Thus each v() is bounded and
harmonic in . and v($) - 0 or 1 according as -- ’0 e C or -- Q e F.

It is clear that v.+($) v($) in /., n=l, 2, Hence lim,v()
and the convergence is uniform onv() exists in D F=U,_

every compact set contained in D-F. The limit function v($), which
is bounded and harmonic in D-F and is clearly independent of the
choice of the sequence ( In= 1, 2, ...}, is nothing else than the har-
monic measure in the sence of R. Nevanlinna of F with respect to the
domain D-F and the point

On the other hand, from the definition of v.($), it is easy to see
that, for any e D-F, the limit function v(’) is equal with the proba-
bility P($, F, D-F) that the Brownian motion starting from will
enter into F for some t 0 without entering into Bd(D-F)-F=
Bd(D)-C before it. This completes the proof of the first proposition
of Theorem 6. The rest of the theorem then follows easily from the

1) It is inessensial that D is bounded or simply connected.
2) P(, F, D-F) is defined as the probability that the Brownian motion starting

from ceD--F will enter into F for some 0 without entering into Bd(D-F)-F-=
Bd(D) before it.

3) Cf. R. Nevanlinna, Eindeutige analytische Fanktion, Berlin, 1936.
4) K(o, ro) (1 -01 <: r0} is a circular domain with the center 0 and the

radius ro K(, to) is the closure of K(0, r) so that K(0, to)= (1 1--o[ r}.
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well-known properties of harmonic measure and capacity.
Remark. It is quite natural to expect that, if 0eF and if F is

locally of positive capacity at 0, then P(,F,D-F)-I as -*0.
But it may be shown by an example that this is not always the case.

7. Theorem 6. Let F be a compact set in R. Then the probability
Pr(12(,F)} that the Brownian motion starting from eR-F will
enter into F for some t 0 is 0 or 1 on R-F according as F is
of zero or of positive capacity.

Proof. Let us first discuss the case when Re-F is not connected.
As is well known,i) such a case can happen only when F is of positive
capacity. Let e R-F, and let D=D(0 be the component of R-F
which contains . If D is bounded, then Lemma 3 implies that

Pr(2(,F)}=P(,Bd(D),D)=I, If n is not bounded, then n is the
only component of R-F which extends to co, and hence Pr((,
=Pr(12(,F’)}, where F-R-D is a compact set containing F as a
subset such that the complementary Ra-F’=D is connected. Thus
we see that it suffices to discuss the case when R-F is connected.

Let now F be a compact set in R such that the complementary
R-F is connected. Let (D[m=l, 2,...} be a sequence of simply
connected bounded Jordan domains such that F D, D D/, m=
1, 2, and L/_D=R. For each m, put

(17) w() P(, F, D-F),

where P($,F, D-F) is a harmonic function function of $ defined
on D-F discussed in 6. It is easy to see that w+($) w()
on D-F,m=I,2,... Hence lim_,ow($)=w($) exists on R-F
UT(D-F), and the convergence is uniform on every compact set
contained in R-F. The limit function w(0 is harmonic in R-F and
is clearly independent of the choice of the sequence (D,.[ re=l, 2, ...}.
Further, it is not difficult to see that w(0 is equal to the probability
P(’, F, R-F)=Pr((, F)} that the Brownian motion starting from

will enter into F for some t 0.
It is clear that w($)=P(, F, R-F)--O on R--F if F is of zero

capacity. This follows from the fact that P(, F, D-F)=--O on D-F
for m=1,2,... Let us assume that F is of positive capacity. Let
{ In= 1, 2, ...} be a sequence of bounded Jordan domains with the pro-
perties, as stated in the proof of Theorem 5, with respect to the com-
pact set F and the simply connected bounded Jordan domain D1. Let
D.. be the bounded Jordan domain such that OBd(D.,)=Bd(D)=--C
and IBd(D.) -- IBd()----- F,, m, n= l, 2,... It is easy to see that
D,., . D. if m’m and n’ :> n, and further that U._D.
R-F. For any e D.. and for any elementary set E on the boundary
Bd(D.,)=CI’ of D.., let us consider a function P(,E,D.,)
of defined on D., and put

(18) V.(0 P(, I, D..).

1) In order that a compact set F be of zero capacity it is necessary that it is
totally disconnected.
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.() is a bounded harmonic function defined on D, which tends to
0 or I according as tends to a point belonging to C or F, and so
denotes the probability that the Brownian motion starting from will
enter into I for some t 0 without entering into C before it. It is
clear that

(19) limv.()=w()

on D-F, and that the convergence is uniform on every compact set
contained in D-F.

For any oeR-F, let no be so large that oe D.. for m, n n.
Since w() is harmonic on R-F, so we see from Theorem 3 that

(20) v(0) IrP(o, d, D,.)w()+IcP(’ d, D.)w()

Let n-co in (20). Then the first integral on the right hand side
tends to v(0) since

(21) Ir,P(6’ d, D.n)W() => II"np(O’ d, D.,)w()=w(o)
and

(22) IrP(’ d, D.)w() <= IrP(’ d, D.,)= P(o, 1’, D.)

v.(0) w(o).

integral converges to P(o, d, D-F)w(),The second where
Cm

P(o, E, D-F) (E is an elementary set on the boundary Bd(D)--C
of D) is the probability that the Brownian motion starting from
will enter into E for some t > 0 without entering into Bd(D-F)-E
=F(C-E) before it. This follows simply from the fact that
P(o,E,D.,)-P(o,E,D-F) as n--c. Thus we see

(23) W(o) w,,(’0)/ P(o, d’, D-F)w()
JCm

Let us put

(24) =min:cw().

Since F is of positive capacity, so w() ,w.(():> 0 in D-F, and
hence we must have 3 0. Since w() is bounded and harmonic in
R-F, so we see that w() 0 on R’-D. Consequently, (23)
implies

(25) w(0)-w(0) P(o, C, D-F)

=(1 w(4"o)) a(1 --w(:o))
From this follows immediately that W(o)=l; for, W(o)<: 1 would
imply W(o)-W(o) (1-W(o)) >- 0 for m= 1, 2, ..., which is clearly
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a contradiction. Since ’o is an arbitrary point of Rs-F, this completes
the proof of Theorem 5.

8. We shall state some theorems which follow easily from
Theorem 6.

Theorem 7. Let F be a compact set in R of positive capacity. Then,
for any e R, he probability ha$ the Brownian no$ion sar$ing from

will enter into F infinitely many times for infinitely large is 1.
This is an immediate consequence of the following fact, which

follows easily from Theorem 6" for any e R2 and for any to 0, the
probability that the Brownian motion starting from will enter into
F for some t with t to is 1.

Theorem 8. In the Brownian moion in R2, almost all paths con-
stitute an everywhere dense set in R2, and come back 0 any neighbor-
hood of any given point infinitely many times for infinitely large t."

This follows from Theorem 7 and the fact that there exists in
the Gaussian plane a sequence of circular domains {Kln 1, 2...} with
the property that for any open set G of R there exists an n such
that K G.


