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The irregular movements of small particles immersed in a liquid, caused by
the impacts of the molecules of the liquid, were described by Brown in 1828.
Since 1905 the Brownian movement has been treated statistically, on the basis
of the fundamental work of Einstein and Smoluchowski. Let z(f) be the
z-coordinate of a particle at time ¢t. Einstein and Smoluchowski treated z(f)
as a chance variable. They found the distribution of z(¢) — z(0) to be Gaussian,
with mean 0 and variance « |t |, where a is a positive constant which can be
calculated from the physical characteristics of the moving particles and the given
liquid. More exactly, such a family of chance variables {z(t)} is now described
as the family of chance variables determining a temporally homogeneous differ-
ential stochastic process: the distribution of z(s 4 ¢) — z(f) is Gaussian, with
mean 0, variance « |¢], and if t; < -+ < 1,

13(1-2) - x(tl)’ e, x(tﬂ) - x(tﬂ—l)

are mutually independent chance variables. Wiener, who was the first to dis-
cuss this stochastic process rigorously, proved in 1923 that the functions z(t)
of this stochastic process are continuous, with probability 1.> This is of course
a desirable result, which makes the stochastic process somewhat more acceptable
as the mathematical idealization of the Brownian movement. It was not ex-
pected, however, that the above distribution of z(s + t) — z(s) would prove
correct for small t. Even if the derivation did not break down for small ¢, the
mathematical fact that z(s + t) — z(s) has standard deviation « | ¢ | so that
z(s + t) — z(s) is of the order of magnitude of |¢|*, implying that dz(s)/ds
cannot be finite, would suggest the desirability of modifications of the Einstein-
Smoluchowski distributions. In fact it is easily seen that (with probability 1)
z(t) is not even of bounded variation, so that the path curves of the Einstein-
Smoluchowski process have infinite length!

A different stochastic process describing the z(¢) was in fact derived in 1930
by Ornstein and Uhlenbeck (15),® and later by S. Bernstein (1), (2) and Krutkow
(11), all using different methods. This new distribution of z(s + ) — z(s) is

1 For a historical account of the subject up to 1913, see Haas-Lorentz (6). (The
numbered references will refer to the bibliography at the end of the paper.)

2 Wiener (18, pp. 148-151) has since given a more simple proof. For a discussion of the
exact meaning of such a statement concerning the continuity of paths, cf. Doob (3) and (5),
§2. The result means that z(t) can be treated as representing one of a multiplicity of
continuous functions of ¢, and integrated, etc. Probability here is formally the study of
measures on certain spaces of functions.

3 Cf. also Ornstein and Wijk (16) and Wijk (17). References to work since 1913 are given
in Ornstein and Uhlenbeck (15).
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352 J. L. DOOB

Gaussian, with mean 0 and variance (a/8)(¢ ™' — 1 4 8]t |), approximately
o | t| for large t, but aBt’/2 for small t. (Here 8 is a second physically deter-
mined constant.)

The purpose of the present paper is to apply the methods and results of
modern probability theory to the analysis of the Ornstein-Uhlenbeck distribu-
tion, its properties and its derivation. It will be seen that the use of rigorous
methods actually simplifies some of the formal work, besides clarifying the
hypotheses. A stochastic differential equation will be introduced in a rigorous
way to give a precise meaning to the Langevin differential equation for the
velocity function dz(s)/ds. This will avoid the usual embarrassing situation in
which the Langevin equation, involving the second derivative of z(s) is used to
find a solution z(s) not having a second derivative.

1. The velocity distribution

The displacement function z(t), as discussed by Ornstein and Uhlenbeck, has
a derivative u(f), and all the probability relations needed can be derived from
those of u(t), as will be seen below. The distribution of u(f) can be described
as follows: the conditional distribution of u(s 4 ¢) (¢ > 0) for given u(s) = u,,
is Gaussian, with mean uee " and variance o3(1 — e ). Here of, 8 are
physically determined constants. When ¢ — o, this distribution becomes the
Maxwell distribution of velocities, furnishing stationary absolute (uncondi-
tioned) probabilities for the process, if these are desired. Using these absolute
probabilities, which make the distribution easier to describe, the full description
of the u(t) distribution can then be stated as follows: for each ¢, u(t) is a chance
variable with a Gaussian distribution, having mean 0, variance o; ; the transition
probabilities are as just described; the process is a Markoff process.* This last
fact means that the Maxwell distribution of u(f) for each fixed ¢, and the
transition probabilities just described determine the full set of probability rela-
tions of the process. Under these conditions, if t; < f,, the pair u(t)), u(t;) has
a bivariate Gaussian distribution, with zero means, equal variances o; , and
correlation coefficient ¢ *“2*’.  This stochastic process goes back at least to
Smoluchowski, although it was first derived by Ornstein and Uhlenbeck as the
process describing the velocity of a particle in Brownian motion. Ornstein and
Uhlenbeck were only interested in the transition probabilities. The formal
manipulations made below will show that there are technical advantages in
defining (unconditioned) probabilities for the wu(t) also. The above described
process will be called the O. U. process below.

The following theorem shows that such a process is essentially determined by
three fundamental properties, of which at least the first two have simple physical

¢ A process is called a Markoff process if whenevert, < :-- < t,, the conditional distribu-
tion of u(t,) for given values of u(ty), -+ -, u(ta—1) actually depends only on u(t,_,). It is
in this case, and only in this case, that the Smoluchowski equation between the transition
probabilities, and the Fokker-Planck differential equations for the transitional probabili-
tiesare valid.
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BROWNIAN MOVEMENT AND STOCHASTIC EQUATIONS 353

significance. (We can exclude Case A of the theorem, since it obviously does
not fit the physical picture.)

TaEOREM 1.1. Letu(t) (— o <t < + =) be a one-parameter family of chance
variables, determining a stochastic process with the following properties.

1. The process is temporally homogeneous.’

2. The process is a Markoff process.

3. If s, t are arbitrary distinct numbers, u(s), u(t) have a (non-singular) bivariate
Gaussian distribution.

Define m, o by

(1.1.1) m = E{u(®)}, o = E{u@) — m]'}.°
Then the given process is one of the following two types.
A) If ty < -+ < ta, ultr), -+, ut,) are mutually independent Gaussian

chance variables, with mean m and variance o .

(B) (0. U. process) There is a constant 3 > 0 such that if t; < --- < tn,
u(ty), - - -, u(t,) have an n-variate Gaussian distribution, with common mean m
and variance oy, and correlation coefficients determined by the equation
E{[u(f) — m)u(s) — m]} = age 7"\,

Instead of considering u(f), we can consider (1/ao)[u(t) — m], which has
mean 0 and variance 1. Then we shall assume in the following that u(f) itself
has these properties: m = 0, o5 = 1. Let p(f) be the correlation function:

p(t) = E{u(s + t)u(s)}, independent of s by Property 1. If s < ¢, the condi-
tional distribution of u(f) for given u(s) has density

gy e (- 3 MOl -,

(Property 3). Ifty < -+ < ta, u(ty), * -, u(t,) then have an n-variate Gaus-
sian distribution with density

(1.1.2)

= (ujyr — Pidi)z)
’

1 1 . 15
n n—1 exp — sUuU — '2' - 1 _ p2
)

(L13) @0 [La - 2

pi = pltiyr — t), u; = ult;)
using Property 2. Now if u1, «++ , u, have an n-variate Gaussian distribution
with density

1 1

(1.1.4) Zexp (-— §§a;;u.-u,-),
A = det(E{u;u;}) is the determinant of the matrix of variances and covariances,
and (a;,) is the inverse of this matrix. Using these facts we can calculate
p(t3 - tl) = E{ulug} in (1.1.3) With n = 3, and find that p(ta - tl) = p1p3,
that is

& That is, the probability distributions are unaffected by translations of the ¢-axis.
¢ The expectation of the chance variable v will be denoted by E {v}.
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354 J. L. DOOB

(1.1.5) plts — t) = p(tz — t)p(ts — t).

Then p(f) is an even function; | p(f) | < 1 (Schwarz’s inequality); and according
to (1.1.5) p(s + t) = p(s)p(?) for all positive s, . Under these conditions either
p(t) = 0 or there is a constant 8 = 0 such that

(1.1.6) p(t) = ',

In the present case, 8 > 0, by Property 3 (non-singularity of the given bivariate
distributions). Evidently p(f) = 0 furnishes Case A of the theorem, which
certainly has the three given properties. If p(¢) is given by (1.1.6) with 8 > 0,
we show first that the matrix (a;;), the inverse of (o({; — ¢;)) actually determines
a Gaussian density distribution (1.1.4). To see this we consider the density
function (1.1.3) with p; = ¢ ?"“i*17% The coefficients of the quadratic form
in the exponent of (1.1.3) are easily evaluated and the matrix of the form is
found to be the inverse of the matrix (¢ *'“~%!). Thus (1.1.3) actually is the
required probability density. Moreover the probability densities obtained in
this way (as the ¢; vary) are mutually consistent, because integrating out any
variable leaves a quadratic form of the same type, without the integrated
variable, but with the same rule determining the coefficients. The correlation
function (1.1.6) therefore determines a stochastic process. The process ob-
viously is a Markoff process because of the form of the probability density (1.1.3):
an initial factor involving w; only, followed by the product of functions of pairs
of adjacent variables. The proof of the theorem is now complete.

According to a theorem of Khintchine ((9) p. 608), p(¢) is. the correlation func-
tion of a temporally homogeneous stochastic process if and only if it can be put
in the form

00

(1.1.7) o(t) = f cos M dF(N),
0

where F(\) is monotone non-decreasing and bounded. In Case B of the theorem,
(1.1.7) is true when F(\) is given by

_ 2805 f* d\
(1.1.8) F(\) = - b Ee
In the stochastic process of Case B, the variance of u(s + ¢) — wu(s) is
2038 | t| for small ¢:
(1.1.9) E{lu(s + t) — u(s)} = 205(1 — e ?') ~ 2038 | t .

Thus u(s + t) — u(s) is of the order of magnitude of |¢ I*, and du/dt cannot
exist. Physically this means that the particles in question do not have a finite
acceleration (if the given stochastic process represents the Brownian movement
that closely).

TuEOREM 1.2. If u(t) is the representative function of the stochastic process of
Theorem 1.1 Case B, u(t) is a continuous function of t, with probability 1.
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BROWNIAN MOVEMENT AND STOCHASTIC EQUATIONS 355

Let v(¢) be determined by the equation
1
26

Then »(f) has the property that if ¢ < .-+ < t., v(t), --+, v({,) have an
n-variate Gaussian distribution. We find by direct calculation (taking m = 0):

Efv(s + &) —v(s)} =0,
(1.2.2) E{lo(s + 1) — v(s)]*}
E{[U(Sg) - U(S])][v(tz) - U(tl)]} = 0, (81 < 8 _S_ h < tz).

Then v(¢) determines a differential process—in fact precisely the original Einstein-
Smoluchowski process. Since Wiener has proved continuity of the path func-
tions in this case, the theorem follows.

The transition from w(f) to v(f) just used reduces every property of the
Ornstein-Uhlenbeck stochastic process to a corresponding property of the
Einstein-Smoluchowski process, and vice versa. Many properties of the indi-
vidual functions of the latter process, that is, properties possessed by almost all
the individual functions, in other words possessed ‘“‘with probability 1,” have
been proved in recent years, besides the continuity property we have just used.
The following theorem gives the counterparts of two of these for the O. U.
process.

THEOREM 1.3. If u(t) is the representative function of the O. U. process of
Theorem 1.1 Case B,

(1.3.1) lim sup — uy —u0) 1 lim sup -

(1.2.1) o(t) = t*u( log t>, t> 0.

2
Uot,

u(t)  _
=0 (4008t log log (1/t))} ’ t=0 (205 log £}
with probability 1.
Let v(¢) be defined by (1.2.1). Then Khintchine ((10) pp. 68-75) has proved

. (1418 — (1) . v(t) — v(0)
1.3.2) lim sup — =1, 1 AL\ LA
( ) mtl—m p (20¢t log log (1/t))} 1r§1_’s°:1p (205t log log t)}

and (1.3.2) becomes (1.3.1) when v(t) is expressed in terms of u(f).

)

2. The distribution of -displacements

It does not seem to have been realized by earlier writers that the distribution
of displacements in the O. U. process can be obtained directly from that of the
velocities. In fact, we have seen that as ¢ varies, u(f) considered as one of a
multiplicity of continuous functions of ¢{. Integration of () is therefore ad-
missible, and will give the displacement function. If z(f) is the z-coordinate
of a particle at time ¢,

.1) (1) — (0) = f " u(s) ds
0
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356 J. L. DOOB

with probability 1 (that is, neglecting the discontinuous u(f) functions which
have total probability 0). The main advantages of the rigorous approach to
stochastic processes depending on a continuous parameter is precisely that the
u(t) of the process, as ¢ varies, can be regarded as an individual function or
rather, as one of many functions with whatever regularity properties the given
probability distributions imply. Theorem 1.3 limits the actual upper bounds
of the velocity functions u(f). The following result takes advantage of the
oscillations in sign.

Tueorem 2.1. If u(f) is the representative function of the O.U. process of
Theorem 1.1 Case B, with m = 0,

(2.1.1) lim—i ‘u(s) ds = lim z(t) — 2(0) _

t—o0 0 t—o0 t

0,

with probability 1.

This theorem is simply the ergodic theorem applied to the u(t) process to give
the strong law of large numbers, (cf. Doob (4) p. 294). From (2.2.3) below, it
is quite obvious that the expectation of the square of the left side of (2.1.1)
goes to 0 as t — =, so that the left side goes to 0 in the mean. The strength of
(2.1.1) is that it is a statement about the path of the individual path functions,
or physically, a statement about the path of a single particle. The same was
true in Theorems 1.2 and 1.3.

In order to find the distribution of 2(f) — x(0) we proceed as follows. Rie-
mann integrability of «(¢) implies that (with probability 1)

(2.2.1) z(t) — z(0) = lim }__‘( u(tj/n)t/n.
n—0 j=

Now the n-variate distribution of the variables summed is Gaussian. Then the
sum is Gaussian, so the distribution of z(¢) — z(0) is also Gaussian, if it can be
shown that the variance of z(t) — z(0) is positive. The distribution of
z(t) — z(0) is thus completely determined by its first two moments, which we
proceed to calculate. We shall suppose, that E{u()} = 0, E{u(®)?} = o;.
Then we find

(2.2.2) E{z(t) — 2(0)} = [ E{u(s)} ds = 0,
and, if t > 0,

E{[z(t) — z(0)"}

f t fo " Blu(s)uls)} ds ds’
(2.2.3) °

t t , 20_2
os f f e Pl ds ds’ =~ —29 (e — 14 Be).
o Jo B

7 By Fubini’s integration theorem, we can find the expectations under the integral sign,
before integrating with respect to s.
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BROWNIAN MOVEMENT AND STOCHASTIC EQUATIONS 357

The same sort of argument shows that if ¢, -- - , ¢, are any distinct numbers,
the chance variables

{x<t1) - I(O)y u(tj)’ .7 = ly et ;n}

have a 2n-variate Gaussian distribution, which can then be evaluated explicitly
by finding the first and second moments. For example, the following equations
determine the bivariate distribution of z(f) — x(0), u(¢), (¢ > 0):

2

Efla(®) — 2O} = [ Bluu(s)} ds = T,

(2.2.4) E{xz(t) — 2(0)} = 0,
2

E{lx(t) — z(0))*} = % (P —1+8), E{u)}=0, E{u()}=oa.
Thus the bivariate density of z(tf) — xz(0), u(t) is Gaussian, with common
mean 0, and variances (203/8%) (¢ ® — 1 + Bt), o , respectively, and correlation
coefficient

—

(2.2.5) 1-e

2t (e — 1 + )t
It is to be expected that if s; < s; £ & < to, z(se) — z(s1) and z(t) — z(t)

become independent as ¢, — «. In fact, these two normally distributed vari-
ables have correlation coefficient.

(eﬁaz _ eﬂll)(e—ﬂlx _ 6_5‘2)
2077 — 1 4 B(ss — s0))' (€7 — 1+ Bl — )}

(2.2.6)

which goes to 0 when ¢ and ¢, become infinite.

If in this discussion only the conditional distribution functions are wanted,
for u(0) = uo, for example, two procedures are possible. Setting u(0) = wuo
instead of using the initial distribution we have used above, carrying out the
same type calculations as above, now would give the desired conditional proba-
bilities. Or the conditional distributions could be calculated from the distribu-
tions just derived, since the conditional distributions of a multivariate Gaussian
distribution are easily found. Theorems 1.2, 1.3 and 2.1 hold no matter what
initial distribution is assigned to u(0).

Finally, there is one more fact which we shall need in the next section. Define
B(t) by

(2.2.7) B(t) = Blz(t) — z(0)] + u(t) — w(0).

Then B(t) has for each t a Gaussian distribution, with mean 0. Evidently the
distribution of B(s + {) — B(s) is independent of s. It is Gaussian, with
mean 0, and the variance is easily calculated to be 2438 |t|. Moreover, if
81<82§t1<t2,
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358 J. L. DOOB

(2.2.8) E{[B(t) — B(t))l[B(s2) — B(s1)]} = 0.

Thus the B(f)-process is again the Einstein-Smoluchowski process.

3. Derivation of the velocity distribution using the Langevin equation

Ornstein and Uhlenbeck base their investigation on the Langevin equation

(3.1) = —pu(v) + 40),

which is simply Newton’s law of motion applied to a particle, after dividing
through by the mass. The first term on the right is due to the frictional re-
sistance or its analogue, which is supposed proportional to the velocity. The
second term represents the random forces (molecular impacts). Probability
hypotheses are imposed on the A(¢), including relations between A(t) and u(t),
to determine the u(¢) distribution. Unfortunately this «(¢) distribution (Case B
of Theorem 1.1), as we have seen, has the property that the velocity function
has no time derivative. Then the solution can hardly satisfy (3.1).

Bernstein ((2) p. 361) replaces (3.1) by a finite difference equation:

Af,
(3.2) A (Ki") = —BAL + an, n=1,2 .-
Here &, &, - is a sequence of chance variables, Af, = £, — £, ete., and
ai, as, - -+ is a given sequence of mutually independent chance variables. If

we think of £; as the analogue of z(jAt), the correspondence between (3.2) and
(8.1) is clear. The equations of (3.2) determine definite distributions for the
£;1n terms of those of the «;. Bernstein shows that as At — 0 the distribution
of At./At (~ Az/At) becomes the u(t) distribution we have been discussing, if
suitable hypotheses are made on the ;. This approach is essentially different
from that of Ornstein and Uhlenbeck in that Bernstein, as he states explicitly
((1) pp. 5, 6) is not writing a difference equation in the displacement functions
z(t) themselves: (3.2) determines distributions only, and these are approximated
by the limiting distributions described in Theorem 1.1 Case B.

In our treatment, we shall replace the Langevin equation by a formalized
differential equation for the velocity function u(f). This equation is to be
exact, not merely asymptotically true. The equation will be perfectly proper
mathematically, so that solution by ordinary methods will provide all the infor-
mation relevant to the desired distributions, and solution of more general prob-
lems, involving external forces, will require no special methods.

The problem is to find a proper stochastic analogue of the Langevin equation,
remembering that we do not expect u’(f) to exist. We write the equation in
the following form:

(3.3) du(t) = —Bu(t) dt + dB(t),

and try to give these differentials a suitable interpretation. We shall suppose

This content downloaded from 206.212.0.156 on Thu, 22 Aug 2013 08:44:37 AM
All use subject to JSTOR Terms and Conditions



BROWNIAN MOVEMENT AND STOCHASTIC EQUATIONS 359

that the B(f)-process is a differential process: that is, if 4§ < -+ < ¢,, we
suppose that

B(’?) - B(tl)y ftty, B(tﬂ) - B(tn—l)

are mutually independent chance variables. We also suppose temporal homo-
geneity, that is that the distribution of B(s + t) — B(s) is independent of s.
The physical meaning of these hypotheses is clear, and they will be justified
further below. Equation (3.3) can be interpreted roughly in terms of small
changes in momentum. An important particular case is that in which the
second moments of the B({)-process are finite:

(3.4) o'(t) = E{[B(s + t) — B(s)’} < .
The first moment E{B(s + t) — B(s)} then exists. If this first moment

vanishes, ¢°() satisfies the functional equation

a'(s + t) = o*(s) + o’(t).

2

Then ¢°() must be proportional to t: ¢*(t) = te*. If f(t) is continuous,

b
(3.5) [ 1w By

has been defined under these hypotheses (Wiener (18), pp. 151-157, Doob (3),
pp. 131-134), even though the functions B(t) are known not to be of bounded
variation. The definition makes all the formal processes correct. For example,
if f'(t) exists and is continuous,

b b b
66 [ f0dBWO = JOIBO - 51| ~ [ B0 - BOI/© d?

with probability 1. The usual Riemann-Stieltjes sums converge to (3.5) in the
mean. Moreover

E { f o) dB(t)} -0,

B{[ [ 10 am ][ [ o080} = & [ 0000 a

Now it can be shown even without the hypothesis of the finiteness of the second
moment in (3.4) that the formal integral in (3.5) can be defined, and will satisfy
(3.6). The form of the characteristic function of B(s + t) — B(s) has been
derived by Lévy ((14) Chapter VII) and using this it is easy to prove that the

(3.7)

8 We never write B(t) alone in an equation, since strictly speaking only differences like
B(t) — B(0) are defined. It is unnecessary to define B(0) itself, although for convenience
it can be taken identically 0, without affecting any of the equations to be used. Differential
processes have been discussed in detail by Lévy ((12), (13), (14) Chapter VII) and Doob
((3) §3).
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360 J. L. DOOB

usual Riemann-Stieltjes sums for the integral (3.5) converge in probability.
The integral is defined as the limit, and (3.6) is readily verified. On the other
hand, (3.7) cannot be expected to hold, since if f(f) = 1 the integral becomes
B(b) — B(a), and we have not supposed that the expectation of this difference
is finite. The special case in which the second moment is finite is the only
important one for the purposes of this section, but less restrictive conditions will
be needed in §5. We shall justify later the assumption that the B(t) process
is a differential process.

We shall interpret an equation in differentials like (3.3) to mean the truth
(with probability 1, that is for almost all functions u(t)) of

(3.8) j £@) dult) = —8 f FOult) dt + f 1) dB(1)

for all a, b, whenever f is a continuous function. Here the first two integrals
are to be defined as the limits (in probability) of the usual Riemann or Riemann-
Stieltjes sums. Equation (2.2.7) implies

[ 10 auwy = = 8 [ 10 axty + [ 5 By
(3.9) ’ ) ’

—8 [ fouw e+ [ 50 dB),

Thus (3.3) holds for the u(t) of the O. U. distribution if the B(t) is defined by
(2.2.7). Moreover (2.2.7) with B(¢) replaced by B(f) — B(0) is an immediate
consequence of (3.3). In this case, B(t) has the property that the differences
B(s + t) — B(s) have finite second moments and even Gaussian distributions,
but we are not making either assumption in solving (3.3).

If (3.3) is true, then (with probability 1)

t t t

(3.10) f " du(r) = —Bf " u(r) dr + f " dB(r),
0 (] 0

which implies, since integration by parts is applicable,

(3.11) u(t) = u(0)e™® + ¢ fot ¢ dB(7)

for all ¢, with probability 1. Conversely suppose that u(¢) is defined by (3.11).
Since B(t) is known to be continuous in ¢ except for non-oscillatory discon-
tinuities (jumps) (Lévy (12) pp. 359-364, (13); Doob (3), pp. 134-138), the
same must be true of the right side of (3.11), and therefore of u(¢f). Then u(t)
is Riemann integrable with probability 1. Moreover

(3.12) f ' 1) et d, 'é ' & dB(r) = f ’ 1(t) dB(1),

so that from (3.11)
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BROWNIAN MOVEMENT AND STOCHASTIC EQUATIONS 361

b b
(3.13) [ 10 e uty — wo)) = [ 1) aB,
proving incidentally that the left side exists. The left side can be simplified to
b b
(3.14) 8 [ o e+ [ 50) duto,

and putting this into (3.13) we find that (3.8) is satisfied. Then (3.11) furnishes
the complete solution of (3.3) under the stated conditions. We stress again
that although (3.11) implies strong connections between the u(f) and B(t) proc-
esses, we have made no such hypothesis in the derivation not implicit in (3.3).
Lévy ((14) pp. 166-167) has shown that the only differential processes whose
path functions B(f) — B(0) do not have jumps have the property that the
distribution of B(t) — B(0) is Gaussian. Then it is only in this case, which will
lead to the O. U. process, that u(¢) will not have jumps.

The term Bu(¢) in the Langevin equation is supposed to account for the total
frictional effect, including the Doppler friction, caused by the fact that more
impacts decelerate than accelerate the motion of a moving particle. The term
A(t) in (3.1) or dB(?) in (3.3) represents the “purely random’ impulses, that is,
the residual effect after the frictional effect has been subtracted out. One idea
running through any treatment of the Langevin equation is that this term or,
sometimes, z(t) itself, is independent of the given velocity at any time. This
hypothesis goes back to Langevin, and has caused much controversy. We shall
make the hypothesis only to the following extent. The chance variable u(0)
will be given various initial distributions, but will always be made independent
of the B(t)-process for £ = 0. This means thatif 0 < ¢t < --- < t, the chance
variable «(0) is supposed independent of the set of chance variables

{B(tﬂ-l) - B(ti)y j= Iee-,n — 1}'

We shall describe the above hypothesis in the following physical terms: the
wnitial velocity w(0) is independent of later residual random impacts. It would
be a serious drawback to the whole treatment if when «(0) is so chosen u()
for each t, > 0 were not independent of the B(t)-process for t = t,, that is if
u(ty) were not independent of later residual random impacts for all {,. We
can prove, however, the following statement, which incidentally justifies our
hypothesis that the B(t)-process is a differential process. Let the B(t) process
be a differential process, and define u(t) by (3.11). If the chance variable u(0) is
independent of the B(t)-process for t = 0, then u(t) will be independent of the
B(t)-process for t =t , for allty > 0. Conversely suppose only that the B(t)-process
is regular enough that the integral (3.5) can be defined as the limit in probability
of the usual sums, and that (3.6) is true. Then if u(f) is defined by (3.11), and
if choosing u(0) tndependent of the B(t) process for t = 0 implies that u(ty) will be
independent of the B(t)-process for t = &, , for all ty > 0, then the B(t)-process 18 a
differential process.
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Proor. Let the B(t)-process be a differential process, define u(t) by (3.11)
and let u(0) be independent of the B(¢)-process for ¢ = 0. Then from (3.11)
with ¢ = &, u(ty) involves only w(0) and the B(¢{)-process for ¢ < & . Then
u(to) is independent of the B(t)-process for ¢ = ¢ because the B(t)-process is a
differential one, with differences involving t-values beyond ¢ independent of
those involving t-values before ¢, . Conversely suppose that choosing «(0) inde-
pendent of the B(t)-process for ¢ = 0 implies that u(f) will be independent of
the B(t)-process for ¢ = ¢, for all 4, > 0. Then if «(0) is so chosen,

u(0) + fo ® o dB(r)

and therefore

to
f ¢ dB(r)
(]

are independent of the B()-process for ¢ = ¢, . This fact implies that the pre-
ceding integral determines a differential process, that is, if {§{ < ++« < t., the
integrals

ti+1
f ¢ dB(r)
t

i
are mutually independent. Then (applying this fact to subintervals of the
intervals (¢;, ¢;41)

ti+1 t
f e_ﬂ'd,f &7 dB(r), j=1,-,n
ti ty
are mutually independent, and these repeated integrals are simply
B(tj41) — B(t)) J=1-:,n—1L

The latter differences are therefore mutually independent, as was to be proved.

We shall need the following lemma.

LEmMA 3. Suppose that a < 1, and let o, %, - -+ be mutually independent
chance variables with a common distribution function. If there is a chance variable
y with a Gaussian distribution such that the distribution function of D= a" 'z ;
approaches that of y as n — «, then the x; have Gaussian distributions.

Many of the hypotheses of the lemma are unnecessary, but its statement is
general enough for our purposes, and the proof will apply to a situation to be
discussed in §5, where the distribution of y will not be Gaussian. The hypothe-
ses imply that the distribution of ). a’z; approaches that of a™ 'y as n — .
If () is the characteristic function of z; and ¥(f) that of y, writing D1 a’z;
in the form ax + ) 7 a’z; shows that

¥(1) = e(at)-¥(at).

Solving for ¢ we find that it is the characteristic function of a Gaussian distribu-
tion, as was to be proved.
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In the physical picture under discussion, further conditions on the solution of
(3.3) are known. In fact the Brownian movement is simply a visible example
of molecular or near molecular movement. The general principles of such move-
ments are therefore applicable, and the principle of equipartition of energy leads
to the Maxwell distribution of velocities. Let k be the Boltzmann constant,
and T the absolute temperature. We can formulate the significance of the
Maxwell distribution (as much as we shall need it) as follows.

M,. Tendency towards the Maxwell distribution. Whatever the initial distri-
bution of u(0), the transition probabilities have the property that when t — «
the distribution function of u(t) converges to the Gaussian distribution function
with mean 0 and variance kT/m. (Here m is the mass of the moving particle.)

M,. Stability of the Mazwell distribution. If u(0) is independent of later
residual random impacts, and if it has the Gaussian distribution described in
M, , u(t) will have this same distribution for every positive ¢.

These two statements are closely related, but neither apparently can be de-
duced from the other without further assumptions. Since these principles act
the part of a deus ex machina in a discussion of the Langevin equation, we shall
use them as little as possible. It will usually be sufficient to use a weakened
form of M, :

M; . There is an initial distribution of %(0), such that the transition proba-
bilities have the property that when ¢ — o the distribution function of u(f)
converges to the Gaussian distribution functjon with mean 0 and variance kT /m.
It is understood here as before that u(0) is to be independent of later residual
randora impacts.

Conditions M,; and M, restrict the possibilities for the B(¢)-process. In fact
suppose that condition M, is satisfied. Then (3.11) shows that

t
e P f ¢ dB(r)
o

is nearly Gaussian for large ¢, with mean 0 and variance kT /m. We write this
integral as a sum, replacing ¢ by nt:

nt n—1
(3.15) e_ﬂ"'f " dB(r) = D P gy,
(] 0
where
(+D) ¢t »
(316) T =f eﬂ(r—:l) dB(T)
it

Since the B(f)-process is a differential process, and is temporally homogeneous,
the x; are mutually independent, with identical distributions. According to
the lemma, the right side of (3.15) cannot become Gaussian for large ¢ unless
the distribution of z; is Gaussian. Thus, since ¢ is arbitrary in the above
discussion,

f. " & dB(+)
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has a Gaussian distribution for all s, ¢. Since the¢ chance variables

(GH+Dt/n
(3.17) f ¢ dB(7), Jj=1-,n
itin
are mutually independent and Gaussian, the chance variable
-l G t/n
(3.18) 2 e f ¢ dB(r)
0 it/n

also has a Gaussian distribution. When n becomes infinite, (3.18) becomes
B(t) — B(0), with probability 1. The latter difference thus has a Gaussian
distribution, with mean 0. The B(f)-process therefore has finite second mo-
ments ¢°(t) = to" as defined in (3.4). According to (3.7) the last term in (3.11),
which we now know has a Gaussian distribution, has mean 0 and variance
(1 — e %" /28. Then u(f) — e **u(0) has this same distribution. The vari-
ance becomes ¢°/28 when ¢ — <« and therefore, according to M;, o = 28kT/m.
Thus condition M; completely determines the B(f)-process. We show next that
condition M, determines this same B(t)-process. In fact suppose condition M,
is true, and assign to u(0) the distribution of that condition. Then w(0) is inde-
pendent of the integral in (3.11), and in (3.11), w(f) (which has a Gaussian
distribution, according to condition M;) is expressed as the sum of two inde-
pendent chance variables, of which the first is Gaussian. The characteristic
function of the second is the quotient of the characteristic functions of two
Gaussian distributions, and is therefore the characteristic function of a Gaussian
distribution. Thus the expression

(3.19) P j; L dB(r)

has a Gaussian distribution for all ¢, and this implies, as above, that B({) — B(0)
has a Gaussian distribution, with variance ¢°t. The variances on the right side
of (3.11) add up to that on the left, giving an equation for o":
(3.20) BT _ kD 1=

m m 26
Then o° = 28kT/m as above.

We can now finally derive the O. U. velocity process as the solution of the
Langevin equation. Suppose the B(¢)-process is the one derived in the preceding
paragraphs, and choose the chance variable w(0) to be independent of the
B(t)-process for t = 0. Then «(0) is independent of the integral in (3.11), and
this means that the conditional distribution of u(f) for u(0) = wu, is Gaussian,
with mean 0 and variance kT(1 — e *')/m. Moreover, (3.11) implies

s+t
(3.21) u(s + t) = u(s)e™ + P f & dB(r).

As we have seen, u(s) is independent of the B(f)-process as far as it appears
in (3.21) and therefore is independent of the integral. Thus the transition
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probabilities from s to s 4+ ¢ are the same as those from 0 to ¢, which are pre-
cisely those of the O. U. process. Incidentally it follows that the full condition
M, is satisfied. Finally, if »(0) is not only supposed independent of the B(f)-
process, for ¢t = 0, but also is supposed to have a Gaussian distribution with
mean 0 and variance kT'/m, the same will be true of u(t) (as can be calculated
from (3.11)) and condition M, is thus satisfied. We can summarize all our
results as follows.

TueoreM 3. Let the B(t)-process be a temporally homogeneous differential
process. Then (3.11) furnishes the solution of (3.3). The following conditions on
the solution are equivalent.

(i) The solution satisfies condition Mj .
(i1) The solution satisfies condition M; .

(iii) The solution satisfies condition M, .

(iv) B(t) — B(0) has a Gaussian distribution, with mean 0 and variance
o't = 128kT/m.

If the above conditions are satisfied, u(t) — e © u(0) will have a Gaussian distri-
bution with mean 0 and variance kT(1 — e ***)/m; if u(0) is independent of the
B(t)-process for t = 0, u(s) is independent of the B(t)-process for t = s for all
s > 0, and the transition probabilities of the u(t)-process are those of the O. U.
velocity process. If in addition u(0) has the Gaussian distribution with mean 0
and variance kT /m, the u(t)-process becomes the O. U. process, with m = 0,
os = kT/m.

The Langevin equation gives a physical interpretation to every property of
the O. U. process. It is interesting to verify that as h — 0 the correlation
coefficient of the pair B(s + h) — B(s), u(t) (any s, t) goes to 0. In this sense
then, dB(s), the effect of the residual random impacts at time s, is independent
of the velocity at any particular time ¢. Since in (3.11) u(f) is written in terms
of the B(f)-process, u(t) is of course not independent of this process.

We have written u(t) in terms of the B(t)-process. It is easy to write x(¢)
in terms of the B(f) process by combining (2.1) with (3.11):

1—e*
(3.22) z2(t) = z(0) + —5
Instead of finding the distributions of the displacement and velocity processes,
and their correlations, as at the beginning of the paper, we could easily derive
the desired results using (3.11) and (3.22). The various expectations can be
calculated using (3.7).

In physical applications, the correlation function E {u(s)u(s + t)} is sometimes
wanted as a time average. Now the transformation S, taking B(t) — B(0) into
B(t + h) — B(h) preserves the B(f) probability relations (temporal homo-
geneity), and the family of transformations {S;} is well known to be metrically
transitive.’ Then applying the ergodic theorem to the function u(0)u(h), con-
sidered as a function of the B(¢), we find that

— B¢

1f s
u(0) + 3 fo [1 — ¢*%] dB(r).

® Cf. for example Doob, (3) p. 125.
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t

(3.23) {@%omm@+m@=gmwmn=%fm,
with probability 1, that is for almost all functions w(tf). The ergodic theorem
was applied to the B(f)-process in essentially this way by Wiener ((18) p. 169)
who has been interested in the harmonic analysis of functions like the w(t) dis-
cussed here. The work of this paper verifies in this particular case the impor-
tance Wiener gave to the functions of the B(f)-process of the type (3.5).

There is no difficulty in extending the above results to bound particles. For
example, the Langevin equation of the harmonically bound particle is

du

(3.24) 7= —Bu — o'z + A(),
which in our treatment becomes
(3.25) du = —Budt — v’z dt + dB.

The usual methods of solving the differential equation (3.24) are still applicable
to (3.25) and again the distribution of w turns out to be Gaussian."” The
distribution of displacements is then obtained as above.

4. The B(t)-impact process

When the B(t)-process and the initial conditions on «(0) are given, the solu-
tion u(t) is determined by (3.11). Conversely if the solution u(¢) is known,
B(t) is determined by the equation

(4.1) mo—mm=e[m@@+mw—mm

which is derived immediately from (3.3). The O. U. velocity distribution for
the wu(t)-process can therefore be given only by the B(t)-process described in §3.
We shall investigate the possibility that a different choice of the B(t)-process
might have led to a different velocity process compatiblé with the known
physical conditions like M; and M, . If we suppose that u(0) can be chosen so
that the velocity at each moment is independent of subsequent residual random
impacts, then we have seen that the B(f)-process must be differential, and is
then uniquely determined by conditions M; or M, . Any velocity process other
than the O. U. process satisfying the Langevin equation and M; or M; would
therefore imply dependence between velocity and later residual impacts. This
is really another way of saying that the frictional resistance cannot be con-
sidered as proportional to the velocity. Before going further we put a condi-
tion going back to Maxwell in its modern setting. We formulate a hypothesis
M; as follows.

M;. In two or more dimensions (using any orthogonal axes) the velocity
components are mutually independent.

10 Cf. Ornstein and Wijk (16) and Wijk (17). The B(t, A) used in these papers corre-
sponds formally to our dB(t). The difference is that it is possible to give a precise descrip-
tion of the B(t)-distribution.
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In conjunction with the following lemma, due to Kag ((8) p. 278), hypothesis
M; implies that all quantities linear in the displacement or velocity functions
have Gaussian distributions.

Lemma.  Let (21, %1), -+, (Tn, Yn) be 2n chance variables with the property
that the sets of chance variables

{rjcos 0 + yjsinb,j=1,--+ n}{—z;sin 0 4+ yjcos 0,5 =1, «++ ,n}

are mutually independent for each value of 6. Then (z,, - - - , ,) have an n-variate
Gaussian distribution or a singular Gaussian distribution.

We can combine the Maxwell hypotheses to obtain another justification of
the O. U. velocity process.

THEOREM 4. Let the B(t)-process be any process such that the distribution of
B(ty) — B(t) or of any quantity depending on such differences is unaffected by
translations of the t-axis, and that the integral (3.5) can be defined as the limit in
probability of the usual sums, with (3.6) valid. Then if u(t) is defined by (3.11),
and if conditions M, and M3 are satisfied, the B(t)-process must be precisely that
finally obtained in §3, leading to the O. U. velocity process.

Suppose that condition M, is satisfied, and let u(0) be fixed as in that condi-
tion. Just as in §3, (3.11) then implies that the integral

wm=[me

has a Gaussian distribution with mean 0 and variance (kT/m)(e®® — 1). If
condition M; is also satisfied, B*(t;) — B*(t1), and more generally any finite set
of such differences, has a one or more dimensional Gaussian distribution. Ustng
the fact that the distribution of e *'[B*(s 4+ t) — B*(s)] is the same as that of
B*(t), in evaluating the expectations in the following equation

(4.2) E{B*(s + )"} = E{[B*(s) + [B*(s + t) — B*)II'},

we find that B*(s) = B*(s) — B*(0) and B*(s + t) — B*(s) are uncorrelated.
These two variables are therefore independent. Going further, similar calcula-
tions show that any differences B*(ty) — B*(ty), B*(s;) — B*(s;) with 0 =< s <
82 = t; < ty are independent. Using the fact (derived from condition Mj) that
any finite set of differences has a multivariate Gaussian distribution, the B*(¢)-
process is thus a differential process. This means, by a method we have used
above, that the B(f)-process is a differential process, leading to the O. U. velocity
distribution, because condition M. is satisfied.

It is easily seen from counterexamples that Theorem 4 is no longer correct if
condition M, is supposed instead of condition M, .

6. Velocity processes not subject to Maxwell’s laws

In all the above work the role of the Maxwell velocity distribution has been
fundamental. In certain studies, however, other distributions play a somewhat

11 The result is stated slightly incorrectly by Kag.
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analogous role.”” It is interesting to note that the Langevin equation can be
solved to give a distribution whose transition probabilities are asymptotically
any of the symmetric stable distributions classified by Lévy ((14) §30, §56, §57).
Such a distribution has characteristic function

2|z|7
Pt

where ¢} is a positive parameter and 0 < y £ 2. The Gaussian distribution is
obtained wheny = 2. The parameter o; plays the role of the variance, although
the second moment is never finite when v < 2. The velocity process we shall
derive will be called the O. U. (y) process. It is the O. U. process when y = 2.
The O. U. (y) process can be described as follows.

1. The process is temporally homogeneous, that is translations of the t-axis
do not affect the probability distributions.

2. The process is a Markoff process.

3. For each fixed ¢, u(f) has a symmetric stable distribution with parameter
value oj , exponent y. The conditional distribution of u(s + ¢) for u(s) = wuo
is the stable distribution symmetric about ue ”, with. parameter value
as(1 — ¢ """y and exponent 7.

We can obtain this process as a solution of the Langevin equation by choosing
the B(t)-process properly. In fact, let the B(t)-process be the temporally
homogeneous differential process in which B(s 4+ t) — B(s) has a symmetric
stable distribution with exponent v and parameter value o’t. Let w(¢) be the
corresponding solution of the Langevin equation, given by (3.11). If y is the
sum of two independent chance variables with stable symmetric distributions,
hfving parameter values o7 , o5 , and with the same exponent v then y also has a
symmetric stable distribution, with the same exponent, v, and with parameter
value of + o2 . From this fact it is simple to check that the integral (3.5) in
the present case has a symmetric stable distribution with exponent y and
parameter value.

[ o

If «(0) is given a symmetric stable distribution independent of the B(t)-process
for t = 0, with parameter value o°/y8, the distribution of u(t) can be calculated,
using characteristic functions, and is found to be symmetric and stable, with
exponent y and parameter value ¢°/y8. The u(f) thus defined determines an
0. U. (y) process, with the above three properties, setting o5 = o*/v8.

We shall not spend any time on the details of the analysis of the O. U. (y)
process, since the work runs parallel to that for the casey = 2, already discussed.
There are, however, a few essential differences. If v(f) is determined by the
equation

(1.2.1) v(t) = t”’u(-—l— log t), t>0,
8

12 Cf. Holtzmark (7).
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the »(t) process can be analyzed using (3.11). The v(f)-process has the same
distribution as the B(f)-process just described. The continuity properties of the
velocity process can now be derived from those of the v(f)-process, which are
known. Wheny < 2, the velocity function u(f) is no longer a continuous func-
tion of ¢ with probability 1, but is certain to have discontinuities. These dis-
continuities are however non-oscillatory (jumps).” We omit the details of the
analogue of Theorem 1.3. Theorem 2.1 is still true if ¥ = 1. The considera-
tions of §3 have their obvious counterparts here. Lemma 3 played an essential
role, but its statement and proof are correct if the variable y of the lemma is
supposed to have a symmetric stable distribution and if the conclusion is that
the z; have a symmetric stable distribution with the same exponent as y.
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