PSL — Ecole normale supérieure — DMA — Master 1 — Processus stochastiques

Examen 2025/2026

Semaine du 19 janvier 2026, durée de 3 heures
Documents et internet non autorisés
Faites ce que vous pouvez, et ne vous en faites pas
Il n’est pas nécessaire de tout traiter pour avoir une trés bonne note!

Exercice 1 (Ruine). La fortune d'une compagnie d’assurance a l'instant ¢ € R, est modélisée par
N;
Yi=c+pt—2Z; ou Z;= ZXk et
k=1

— (Xk) =1 sont des v.a. i.i.d. modélisant les sinistres, de moyenne A, et de variance a — A2>0,a= [E(Xlz)
— (Np) ;=0 un PPS(0,11) modélisant la survenue des sinistres, de temps de sauts (T};) ,en, To = 0, indépendant de X
— p>0estle taux (déterministe) de cotisation par unité de temps
— ¢ =0 estle capital initial (déterministe) de la compagnie.
Intéressons-nous au temps de ruine 7 = inf{r = 0: Y; < 0}.

1. Préciser I'allure des trajectoires de Y. Sont-elles monotones? continues?

Rappeler la preuve de % — pp.s. et \/?(% — i) — A (0, ) en loi, quand ¢ — co.

Montrer que le processus de Poisson composé Z vérifie % — Aup.s.et \/f(% — Ap) — A (0, pa) en loi.
Montrer que P(T < oo) =P(sup,,enSn>c)ou So=0et Sy, = Zzzl(Xk —pEy)pourn=1,ou Ex =Ty — Ti_1.
En déduire que si p < Ap alors P(1 <o0) = 1.

Montrer que si p > Ap alors P(t < co) < 1. Indication : propriété de Markov forte.

N ok LD

Montrer que si p = Ap alors P(7 < co) = 1. Indication : LLI.

Exercice 2 (Cascades multiplicatives de Mandelbrot). Considérons I'arbre binaire infini 7. Notons & sa racine, (1)
et (2) les deux sommets de profondeur 1, puis (1, 1),(1,2) et (2,1), (2,2) les quatre sommets de profondeur 2, etc, les
sommets de profondeurs k sont (ay, ..., a), a; € {1,2}, de sorte que T = ukzo{l,z}k, avec {1,2}° = . Disposons sur les
sommets des v.a. positives non-constantes, Wy, 4 pour le sommet (ay,..., ay), i.i.d. de moyenne 1, qui vont jouer le
role de poids. A présent, une quantité d’énergie déterministe disposée a la racine, notée &z > 0, se propage a travers T

par récurrence : chaque sommet transmet la moitié de son énergie a chacun de ses deux sommets enfants, fois leurs
poids. Plus précisément, &, = %ngg et&r = %ngg, puis

1 1 1 1
E1n= A_IWM Wi8s, &= ZWLleé"@, Er1 = ZWZ’I Wolg, &op= ZWZ’ZWZ(%’

etc. Celadonne &,,.. 4, = ZL,C Wa,,...a. - Wa, 6z pour tout k et tout (ay,..., ax) € {1,2}k.
1. Montrer que pour tout k, I'énergie totale de la profondeur k, donnée par 8= Yay,..ai Car,...ar Vérifie E&r = Ep.

Montrer que si logW; € il alors I'énergie renormalisée e = Zkéal,m,l (ou 1 est répété k fois en indice) vérifie

Eer = &y etlimy_. ex = 0 p.s. Indication : exploiter le fait que les v.a. Wy, 4, sont non-constantes.

3. Montrer que 'énergie totale (&)~ est une martingale pour % = oWy, 4 ai €{1,2},i < k).

4. En déduire que (&)= converge p.s.

5. Observons que & = %A + %B ol1 A et B sonti.i.d. de méme loi que &_;, indépendantes de W, et Ws.
En déduire que si [E(le) < 2 alors (€)= converge p.s. et dans L? vers une v.a. &o, de moyenne &g.

6. Montrer que si de plus P(W; >0) =1 alors [P’(goo >0)=1.
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Probleme 1 (Temps forts de stationnarité et convergence a I’équilibre).
Pour une CM (X;,) ,en irréductible de loi invariante y, un temps fort de stationnarité (TFS) est un temps d’arrét T tel
que T et Xt sont indépendantes et X7 ~ u. Cette notion peut dépendre a la fois du noyau et de la loi initiale de X.

1. Questions de cours sur les chaines de Markov.

(@) Une CM irréductible possédant une loi invariante est-elle récurrente positive ?

La loi invariante est-elle unique ? Charge-t-elle tous les états?
(b) Rappeler un exemple de chaine irréductible admettant une mesure invariante mais pas de loi invariante
(c) Rappeler un exemple de chaine irréductible n'admettant pas de mesure invariante

. Collectionneur de coupons. Ou premier temps d’observation de toutes les possibilités. Il s’agit de la v.a. discrete
T:=infln=1:{7,...,Z,} =11,...,d}} ou (Z,) ;> estune suite de v.a. i.i.d. de loi uniforme sur {1,...,d}, d = 1.

(@) Montrer que T suitlaloide T} +---+ Ty ou T1,..., Ty sont indépendantes avec T; ~ Geon=((d —i+1)/d).
En particulier E(T) = dZ?zl % =dlogd+dy+04-.(d).

(b) Montrer que P(T > [dlogd + cd]) < e pour tout ¢ > 0. Indication : A; := Ni<k<ralogd+cd) {Zk # i}.

. Exemple de la marche aléatoire sur I'hypercube. Dans cette partie, les ingrédients sont les suivants :

— (I) ,en+ est une suite de v.a. i.i.d. de loi uniforme sur {1,..., d}

— (Bpn) nen- €st une suite de v.a. i.i.d. de loi uniforme sur {0, 1}

— Xpestunev.a.sur E=1{0,1}%, d =1, et Xo, (I)) yen+» €t (Bp) pen+ sont indépendantes.

Xpi  sii#Inn

Bpi1 sii=1Inp

— (X»)nen est définie pourtoutneNetl<i<dpar X;.1,; = {

(a) Montrer que (X,) ,en €st une CM irréductible apériodique, et que la loi uniforme est invariante.
(b) Montrer que le collectionneur de coupons T :=infilne N:{I},...,I,} ={1,...,d}} estun TFS.

. Exemple de la chaine « top to random shuffle ». Considérons un paquet de d = 2 cartes disposées verticalement.
On insere la carte du dessus aléatoirement a une position uniforme dans le paquet. On répéte cette opération
indéfiniment, de maniere indépendante. On code les positions successives des cartes avec une permutation
de{1,...,d}, ce qui donne une CM (X},) . a valeurs dans le groupe symétrique X4, définie par X,,+1 = 0, Xy,
pour tout n € N, ot 0, est le cycle (Up,..., 1) et (Uy) ,en €st une suite de v.a. i.i.d. de loi uniforme sur {1,...,d},
indépendante de Xp. Le paquet est ordonné au départ lorsque Xy =id = (1) --- (d).

(a) Montrer que la CM (X},) ,eny est irréductible, récurrente, positive, apériodique
(b) Montrer que sa loi invariante est la loi uniforme sur X,
(c) Supposons a partir de maintenant que Xy = (1) - - (d), en particulier Xy(d) = d.
Soit T} le temps au bout duquel la carte initialement en position d se retrouve au-dessus du paquet (pos. 1).
C’est-a-dire que T; :=inf{n e N: X;,(d) = 1}. Montrer que T := 1+ Tj est un collectionneur de coupons.
(d) Montrer que T est un TFS (note : cette question est plus difficile que les autres).

. TFS et convergence a I'équilibre. Soit (X},) ,eny une CM sur E, irréductible, de loi invariante y, et de noyau P.

(a) Montrer que si T est un TFS pour X alors P(T < n, X, = x) =P(T < n)u(x) pour tous n € N et x € E.
(b) En déduire que si T est un TFS pour la condition initiale Xy ~ d4, alors pour tout n € N,

Sx(n) = sup(l - m

up i )sP(T> n).

(c) Montrer que dyr(vy,Vvy) := %erE [Vi(x) —va(x)| = Zywl (y<va(y) V2(¥) —v1()) pour toutes lois v; et v,.
(d) En déduire que dyt(P"(x,-), 1) < sx(n) pourtous neNet x€ E.

Il en découle que si T est un TFS pour Xy ~ d, alors pour tout n € N,
dyr(P"(x,-), ) <P(T > n).

-000-
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Eléments de solution de 'exercice 1.

1.

. LaLGN pour le PPC Z découle de la LGN pour les X et pour N car % =

Elles sont cadlag, succession de lignes de pente p brisées par des sauts vers le bas.

Il'y a presque stirement une infinité de brisures car la loi des X} n’est pas § car la variance des X n'est pas nulle.
Cela revient a considérer le jeu de pile ou face (1x,0) ;-

Techniquement, les sauts peuvent se produire vers le haut car rien n’interdit a Xj d’étre négative, mais comme ces
variables modélisent des sinistres, il serait curieux de considérer des X pouvant prendre des valeurs négatives.

Le PPS est a accroissements indépendants et stationnaires de loi de Poisson. La LGN pour N est déductible de la
LGN pour les v.a. i.i.d. de loi Poi(u) car par monotonie des trajectoires et sommations télescopiques,

NI_NO+"'+NLtJ_NLtJ—lﬂ<&<NI_NO+"'+NLtJ+1_NLtJ L] +1
L] ot lr]+1 r

Alternativement, il est aussi possible d'utiliser T, < t < T, +1, T/n— 1/u p.s. (LGN) et Ny — +oo p.s.
Le TLC pour N peut s’obtenir avec les fonctions caractéristiques et le développement limité de I’exponentielle :

) o . n 0 5
[E(eie‘/ﬂ%_”)) _ e_i#eﬁE(el%N,) NG Z el%n (1) _ e—iu@ﬂ—u[+utel\ﬁ _ e—y%m,am(l).
]

n=0 n.

Xi++Xn, N,

N, ¢
Le TLC pour Z découle du TLC pour les X et pour N car avec les fonctions caractéristiques :

¢2,0) =EEE"X | N) = E((@x, (0)) = e 1100 0 < gt @71
tandis que @y, (0) = 1+iA0 — §6% + 0g_.o(0%), d’'ou

. A0 a2
—1ﬂ/1/,u9+,ut(1——§7)+otﬁoo(l) —,ua£+o 1
P iy @ =e Vi =e [h2 7o,

)

. Comme les trajectoires de Y sont croissantes entre les sauts, le passage en dessous de zéro ne se fait qu’aux

instants de saut, qui sont ceuxde N.Or Y7, =c+ pTp—Zn, =c+pTy— Zzzl Xp=c— ZZZI(X;C -pEr)=c-§,
ol Ex = Ty — Tr—1. D’ott {T < 00} = {sup,,cn Sn > ¢}, d’olt le résultat.

. S, est une somme de 7 v.a. i.i.d. de moyenne m = A — p/u. La LGN indique que S,,/n — m p.s. donc si m > 0,

c’est-a-dire p < Ay, alors S;, — +oo p.s. et donc sup,,cn S = +oo p.s. d’ot le résultat par la question précédente.

. Si m<o0alorsla LGN donne S;,, — —oo p.s. Supposons que 71 = inf{n e N: S, > ¢} soit fini p.s. Alors la propriété

de Markov forte indique que (S7, +, — S7,) ¢ €St de méme loi que S, et donc 72 =inf{n € N: S; ,, — S;, > ¢} est
aussi fini p.s. En itérant ce procédé, il vient que lim, S;, = +o0 p.s., ce qui est impossible car S;, — —oo p.s. Donc
71 n'est pas fini p.s.

. Sim =0, alors la LLI pour les v.a. i.i.d. X; — pEj donne, p.s., en notant 62 = a— A? + p?/ 2,

S — S
lim——2—— =—¢ et lim L

“n y/2nloglogn " y/2nloglogn -

D’oi1 le résultat, comme pour le cas m > 0. Notons que 02 = (a—A?) + p?/u?> = a >0 car p = Apu.

+0.

Eléments de solution de 'exercice 2.

1.

Nous avons E&y, . a, =2 FE(Wy, .. a,) - E(Wp) 8 = 27¥ &y pour tout (ay, ..., ax) € 11,2}, et card({1,2}%) = 2F.

2. Nous avons E(ey) = 2k2’k[E(W1) --E(W..1)E5 = 5. D'autre part, e = Egexp(Xy +--- + X) ou X; = long, T

——
i fois

qui sont des v.a. i.i.d. de méme loi que log W, intégrable par hypothese. Comme P(W; = 1) < 1, par I'inégalité de

.....
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Wa,..

ak . .
—5~8&q,,..ar_,» il vient que

3. Comme & = Xaa 3

_ W,
EGk| Fr-1)= Y E(—22%84 o, | Fri)

ay,...,aj 2

W, _
= Z E(%)gm ..... e — Z Eéaal ..... ap_1 — Z éaal ..... ak,lzéak—b

ay,...,ag

4. D’apres le cours, une martingale positive, en tant que sous-martingale bornée dans L' ou en tant que surmartin-
gale positive, converge p.s. vers une v.a. intégrable.

5. Il vient, par indépendance, et du fait que E(W;) = E(W,) =1 et [E(Ek_l) =&y,
—2 1 o =2 1 9 =2 2 —
E(&L) = ZE(WI JE(E 1) + Z[E(Wg JE(E 1) + Z[E(W1)[E(W2)[E(é"k—1)
1 —2 1
= 5[E(Wf)[E(g’k,l) + Egg.

Donc si E(W?) <2, alors p := $E(W?) < 1, et la martingale ()= est bornée dans L.
Elle converge donc p.s. et dans L? vers une v.a. &, de carré intégrable, de moyenne E(&) = &g.

6. Supposons que [E(le) <2 et que de plus P(W; > 0) = 1 (est utilisé ci-dessous pour =). Nous avons

oil A et B sont indépendantes, de méme loi que &, et indépendantes de W, et Wa, d’ott
P =0)=PW,A=0et WoB=0)=P(W;A=0)> ZP(A=0)?> =P(Ec = 0)?
Donc P(goo =0) €{0,1}. Or comme goo est une v.a. positive de moyenne &g > 0, il vient que I]J’(Eoo =0)=0.

Fléments de solution du probléme 1.

1. (a) D’apresle cours, une chaine irréductible qui admet une loi invariante est forcément récurrente positive, et
de plus, il s’agit forcément de 'unique loi invariante.

(b) D’apres le cours, une chaine irréductible récurrente nulle admet des mesures invariantes, toutes propor-

tionnelles, mais pas de loi invariante. Un exemple familier est celui de la marche aléatoire simple sur Z,

dont les mesures invariantes sont les multiples de la mesure de comptage (elles sont de plus réversibles).

(c) Le processus de Derman, vu en cours, est irréductible mais n'admet pas de mesure invariante. Il est donné
par E=N,P(x,x+1) = py, P(x,0) =1 - py, x=1,etP(0,1) =1,avec 0 < py < 1let[[32, px >0.

2. (a) Soit T; =inf{n=1:card{%,..., Z,} = i}, pour tout 1 < i < d. Alors (jeu de pile ou face) 71 =1 ~ Geon- (d/d),
T, —T; ~Geon-((d—-1)/d), ..., Tg—T;-1 ~ Geon-(1/d).
(b) Soit ¢ > 0. Soit A; := N1<k<[dlogd+cd] 1 Zk # i}, pour tout 1 < i < d. Nous avons

d
P(T > [dlogd + cd]) = P(UL A;) < ; P(A)).

Comme P(Z #1) =1—1/d et comme les événements {Z} # i} sont indépendants, nous avons
d d
1\ ldlogd+cd) dlogd +cd _
ZP(Ai)=Z(1——) sdexp(—g—)ze ‘.
i=1 i=1 d d
3. (a) Il s’agit bien d'une CM car suite récurrente aléatoire de la forme X1 = f (X, €n+1), R €N, avec £,41 =
(In+1,Bn+1) et (€n) nen- suite de v.a. i.i.d. indépendante de Xp. Son noyau de transition est

ﬁ silx—-yl=1
P(x,y)=41 six=y
0 sinon
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On reconnait la marche aléatoire paresseuse sur I'hypercube (Z/ 27)% = {0, 114 = E.
Ce noyau est symétrique sur E fini, donc la loi uniforme est réversible donc invariante.
Lapériodicité est garantie par le fait que la marche est paresseuse (la diagonale du noyau est non nulle).

(b) Lav.a. T estun temps d’arrét pour &, = 0(Xy, I1,..., I, B1,...,By). De plus X7 a des coordonnées i.i.d. de
loi de Bernoulli p symétrique sur {0, 1}, donc suit la loi u®¢, qui se trouve étre la loi uniforme sur E = {0,1}4.
Enfin, laloi de X7 ne dépend pas de (I;;) ,en+, tandis que T ne dépend que de (1) ,en+, d’ ot 'indépendance.

(a) Lensemble de transpositions 9 = {(d,d - 1),...,(2,1)} u{(d, 1)} engendre X ;. D’autre part (2,1) et (d,...,1)
engendrent J . Ainsi 'ensemble des cycles {(k,...,1) : 2 < k < d} engendre X4, et X est bien irréductible.
Comme E = X ; est fini, elle est donc récurrente positive. Comme (Uy,...,1) =id si Uy = 1, il vient que la
chaine peut rester sur place avec probabilité non nulle, elle est donc apériodique.

(b) Comme Z; est un groupe, il y a exactement d états qui conduisent a chaque état, donc les colonnes de la
matrice de transition ont exactement d coefficients non nuls, tous égaux a 1/d, donc sa transposée est une
matrice de transition (la matrice est doublement stochastique), donc la loi uniforme est invariante.

(c) Soit Ty =inf{n € N: X;,(d) = k} le premier temps au bout duquel la carte initialement en position d est
en position k. Par définition, T;_; =inf{n e N: X;,(d) = d — 1} est aussi le premier temps au bout du quel
une carte est insérée pour la premiere fois en position d, ce qui fait remonter d'une position la carte
initialement en position d. Ce temps suit la loi Geon-(1/d). De méme, T;_» =inf{n e N: X,(d) = d — 2} est
le premier temps au bout duquel une carte est ensuite insérée pour la premiere fois en position d — 1 ou d,
ce qui fait remonter a nouveau d'une position la carte initialement en position d. U'écart T;_, — T;_; est
indépendant de T;_; et suit la loi Geon (2/d). Ce procédé se poursuit jusqu’'a T; =infin e N: X, (d) = 1}.
Ainsi, 1 =G+ +Gg1ou G =Ty—; = Ty_i-1, T4 =0, Gy,...,G4-1 indépendantes, et G; ~ Geon- (i/d).

(d) Pourtoutl <k <d-1, conditionnellement a Ty = inf{n e N: X,,(d) = k}, les d — k cartes qui se trouvent
en positions d,d —1,...,d — k + 1 ont un ordre invariant par permutation. Ainsi, au temps T'= T} + 1, les d
cartes du paquet ont un ordre invariant par permutation, ce qui signifie que X7 suit la loi uniforme sur Z;.
De plus P(X7 =0, T = k) ne dépend pas de o. Il vient alors que %[P’(T =k)=PXr=0,T=k),etdonc T et
Xt sont indépendantes.

(a) Nous avons, en utilisant successivement le fait que T est un temps d’arrét, le fait que X est une CM(E,P),
I'indépendance de T et X7, le fait que X7 ~ yu, et 'invariance de p,

n
PT=nX,=x)=) Y P(T=kX,=x,Xk=Y)
k=0yeE

n
=Y Y PRy 0P(T =k Xp =)
k=0yeE

n
=Y Y PRy, 0u@P(T = k) = p(0)P(T < n).
k=0yeE
(b) Fixons x € E.Pourtous ye Eetnel,
Py 1- Px(Xn=1Y) <1- Px(X,=y,T=n)
©y) py ©y) '
Comme T est un TFS pour Xy ~ d, la question précédente donne
1_[P>(Xn:y,Tsn|X0:x) _1_,u(y)IP(TSn)
K(y) K(y)

(c) Comme v; et v, sont de méme masse, (v —v2)(A) = (va — v1)(A°). Ainsi, avec A= {y:v1(y) <va (1)},

=P (T > n).

1 1 1
dvr(vi,v2) = 7 Y e ()=vi(y) + > Y. i) —va(y) = 25 Y a2 (1) =vi(y).
JEA YEA® YEA

(d) Pourtous x€ EetneN,enposant Ay, :={y€E:P"(x,y) <u(},

P (x,
dvr(P"(x,), ) = ), () -P"x, )= ) /u(y)(l— = y))s
V€Axn YEALn wy)

( _P'(xy)

o) ) = sy(n).

S
YeE
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