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Faites ce que vous pouvez, et ne vous en faites pas
Il n’est pas nécessaire de tout traiter pour avoir une très bonne note !

Exercice 1 (Ruine). La fortune d’une compagnie d’assurance à l’instant t ∈R+ est modélisée par

Yt = c +pt −Zt où Zt =
Nt∑

k=1
Xk et

— (Xk )k≥1 sont des v.a. i.i.d. modélisant les sinistres, de moyenne λ, et de variance a −λ2 > 0, a = E(X 2
1 )

— (Nt )t≥0 un PPS(0,µ) modélisant la survenue des sinistres, de temps de sauts (Tn)n∈N, T0 = 0, indépendant de X
— p > 0 est le taux (déterministe) de cotisation par unité de temps
— c ≥ 0 est le capital initial (déterministe) de la compagnie.

Intéressons-nous au temps de ruine τ= inf{t ≥ 0 : Yt < 0}.

1. Préciser l’allure des trajectoires de Y . Sont-elles monotones? continues ?

2. Rappeler la preuve de Nt
t →µ p.s. et

p
t
( Nt

t −µ)→N (0,µ) en loi, quand t →∞.

3. Montrer que le processus de Poisson composé Z vérifie Zt
t →λµ p.s. et

p
t
( Zt

t −λµ)→N (0,µa) en loi.

4. Montrer que P(τ<∞) =P(supn∈NSn > c) où S0 = 0 et Sn =∑n
k=1(Xk −pEk ) pour n ≥ 1, où Ek = Tk −Tk−1.

5. En déduire que si p <λµ alors P(τ<∞) = 1.

6. Montrer que si p >λµ alors P(τ<∞) < 1. Indication : propriété de Markov forte.

7. Montrer que si p =λµ alors P(τ<∞) = 1. Indication : LLI.

Exercice 2 (Cascades multiplicatives de Mandelbrot). Considérons l’arbre binaire infini T . Notons ∅ sa racine, (1)
et (2) les deux sommets de profondeur 1, puis (1,1),(1,2) et (2,1), (2,2) les quatre sommets de profondeur 2, etc, les
sommets de profondeurs k sont (a1, . . . , ak ), ai ∈ {1,2}, de sorte que T =∪k≥0{1,2}k , avec {1,2}0 =∅. Disposons sur les
sommets des v.a. positives non-constantes, Wa1,...,ak pour le sommet (a1, . . . , ak ), i.i.d. de moyenne 1, qui vont jouer le
rôle de poids. À présent, une quantité d’énergie déterministe disposée à la racine, notée E∅ > 0, se propage à travers T

∅

1

1,1 1,2

2

2,1 2,2

par récurrence : chaque sommet transmet la moitié de son énergie à chacun de ses deux sommets enfants, fois leurs
poids. Plus précisément, E1 = 1

2W1E∅ et E2 = 1
2W2E∅, puis

E1,1 = 1

4
W1,1W1E∅, E1,2 = 1

4
W1,2W1E∅, E2,1 = 1

4
W2,1W2E∅, E2,2 = 1

4
W2,2W2E∅,

etc. Cela donne Ea1,...,ak = 1
2k Wa1,...,ak · · ·Wa1E∅ pour tout k et tout (a1, . . . , ak ) ∈ {1,2}k .

1. Montrer que pour tout k, l’énergie totale de la profondeur k, donnée par E k =∑
a1,...,ak

Ea1,...,ak , vérifie EE k = E∅.

2. Pour tout k, les v.a. Ea1,...,ak , (a1, . . . , ak ) ∈ {1,2}k , sont de même loi (mais ne sont pas indépendantes).
Montrer que si logW1 ∈ L1 alors l’énergie renormalisée ek = 2kE1,...,1 (où 1 est répété k fois en indice) vérifie
Eek = E∅ et limk→∞ ek = 0 p.s. Indication : exploiter le fait que les v.a. Wa1,...,ak sont non-constantes.

3. Montrer que l’énergie totale (E k )k≥1 est une martingale pour Fk =σ(Wa1,...,ai : ai ∈ {1,2}, i ≤ k).

4. En déduire que (E k )k≥1 converge p.s.

5. Observons que E k = W1
2 A+ W2

2 B où A et B sont i.i.d. de même loi que E k−1, indépendantes de W1 et W2.

En déduire que si E(W 2
1 ) < 2 alors (E k )k≥1 converge p.s. et dans L2 vers une v.a. E∞ de moyenne E∅.

6. Montrer que si de plus P(W1 > 0) = 1 alors P(E∞ > 0) = 1.
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Problème 1 (Temps forts de stationnarité et convergence à l’équilibre).
Pour une CM (Xn)n∈N irréductible de loi invariante µ, un temps fort de stationnarité (TFS) est un temps d’arrêt T tel
que T et XT sont indépendantes et XT ∼µ. Cette notion peut dépendre à la fois du noyau et de la loi initiale de X .

1. Questions de cours sur les chaînes de Markov.

(a) Une CM irréductible possédant une loi invariante est-elle récurrente positive ?
La loi invariante est-elle unique ? Charge-t-elle tous les états?

(b) Rappeler un exemple de chaîne irréductible admettant une mesure invariante mais pas de loi invariante

(c) Rappeler un exemple de chaîne irréductible n’admettant pas de mesure invariante

2. Collectionneur de coupons. Ou premier temps d’observation de toutes les possibilités. Il s’agit de la v.a. discrète
T := inf{n ≥ 1 : {Z1, . . . , Zn} = {1, . . . ,d}} où (Zn)n≥1 est une suite de v.a. i.i.d. de loi uniforme sur {1, . . . ,d}, d ≥ 1.

(a) Montrer que T suit la loi de T1 +·· ·+Td où T1, . . . ,Td sont indépendantes avec Ti ∼ GeoN∗((d − i +1)/d).
En particulier E(T ) = d

∑d
i=1

1
i = d logd +dγ+od→∞(d).

(b) Montrer que P(T > ⌈d logd + cd⌉) ≤ e−c pour tout c > 0. Indication : Ai :=∩1≤k≤⌈d logd+cd⌉{Zk ̸= i }.

3. Exemple de la marche aléatoire sur l’hypercube. Dans cette partie, les ingrédients sont les suivants :
— (In)n∈N∗ est une suite de v.a. i.i.d. de loi uniforme sur {1, . . . ,d}
— (Bn)n∈N∗ est une suite de v.a. i.i.d. de loi uniforme sur {0,1}
— X0 est une v.a. sur E = {0,1}d , d ≥ 1, et X0, (In)n∈N∗ , et (Bn)n∈N∗ sont indépendantes.

— (Xn)n∈N est définie pour tout n ∈N et 1 ≤ i ≤ d par Xn+1,i =
{

Xn,i si i ̸= In+1

Bn+1 si i = In+1
.

(a) Montrer que (Xn)n∈N est une CM irréductible apériodique, et que la loi uniforme est invariante.

(b) Montrer que le collectionneur de coupons T := inf{n ∈N : {I1, . . . , In} = {1, . . . ,d}} est un TFS.

4. Exemple de la chaîne « top to random shuffle ». Considérons un paquet de d ≥ 2 cartes disposées verticalement.
On insère la carte du dessus aléatoirement à une position uniforme dans le paquet. On répète cette opération
indéfiniment, de manière indépendante. On code les positions successives des cartes avec une permutation
de {1, . . . ,d}, ce qui donne une CM (Xn)n∈N à valeurs dans le groupe symétrique Σd , définie par Xn+1 =σn Xn ,
pour tout n ∈N, où σn est le cycle (Un , . . . ,1) et (Un)n∈N est une suite de v.a. i.i.d. de loi uniforme sur {1, . . . ,d},
indépendante de X0. Le paquet est ordonné au départ lorsque X0 = id = (1) · · · (d).

(a) Montrer que la CM (Xn)n∈N est irréductible, récurrente, positive, apériodique

(b) Montrer que sa loi invariante est la loi uniforme sur Σd

(c) Supposons à partir de maintenant que X0 = (1) · · · (d), en particulier X0(d) = d .
Soit T1 le temps au bout duquel la carte initialement en position d se retrouve au-dessus du paquet (pos. 1).
C’est-à-dire que T1 := inf{n ∈N : Xn(d) = 1}. Montrer que T := 1+T1 est un collectionneur de coupons.

(d) Montrer que T est un TFS (note : cette question est plus difficile que les autres).

5. TFS et convergence à l’équilibre. Soit (Xn)n∈N une CM sur E , irréductible, de loi invariante µ, et de noyau P.

(a) Montrer que si T est un TFS pour X alors P(T ≤ n, Xn = x) =P(T ≤ n)µ(x) pour tous n ∈N et x ∈ E .

(b) En déduire que si T est un TFS pour la condition initiale X0 ∼ δx , alors pour tout n ∈N,

sx (n) := sup
y∈E

(
1− Pn(x, y)

µ(y)

)
≤P(T > n).

(c) Montrer que dVT(ν1,ν2) := 1
2

∑
x∈E |ν1(x)−ν2(x)| =∑

y :ν1(y)<ν2(y)(ν2(y)−ν1(y)) pour toutes lois ν1 et ν2.

(d) En déduire que dVT(Pn(x, ·),µ) ≤ sx (n) pour tous n ∈N et x ∈ E .

Il en découle que si T est un TFS pour X0 ∼ δx , alors pour tout n ∈N,

dVT(Pn(x, ·),µ) ≤P(T > n).

– oOo –
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Éléments de solution de l’exercice 1.

1. Elles sont càdlàg, succession de lignes de pente p brisées par des sauts vers le bas.
Il y a presque sûrement une infinité de brisures car la loi des Xk n’est pas δ0 car la variance des Xk n’est pas nulle.
Cela revient à considérer le jeu de pile ou face (1Xk ̸=0)k≥1.
Techniquement, les sauts peuvent se produire vers le haut car rien n’interdit à Xk d’être négative, mais comme ces
variables modélisent des sinistres, il serait curieux de considérer des Xk pouvant prendre des valeurs négatives.

2. Le PPS est à accroissements indépendants et stationnaires de loi de Poisson. La LGN pour N est déductible de la
LGN pour les v.a. i.i.d. de loi Poi(µ) car par monotonie des trajectoires et sommations télescopiques,

N1 −N0 +·· ·+N⌊t⌋−N⌊t⌋−1

⌊t⌋
⌊t⌋
t

≤ Nt

t
≤ N1 −N0 +·· ·+N⌊t⌋+1 −N⌊t⌋

⌊t⌋+1

⌊t⌋+1

t
.

Alternativement, il est aussi possible d’utiliser TNt ≤ t ≤ TNt+1, Tn/n → 1/µ p.s. (LGN) et Nt →+∞ p.s.

Le TLC pour N peut s’obtenir avec les fonctions caractéristiques et le développement limité de l’exponentielle :

E(eiθ
p

t ( Nt
t −µ)) = e−iµθ

p
tE(ei θp

t
Nt ) = e−iµθ

p
t−µt

∞∑
n=0

ei θp
t

n (µt )n

n!
= e−iµθ

p
t−µt+µte

i θp
t = e−µ

θ2

2 +ot→∞(1).

3. La LGN pour le PPC Z découle de la LGN pour les Xk et pour N car Zt
t = X1+···+XNt

Nt

Nt
t .

Le TLC pour Z découle du TLC pour les Xk et pour N car avec les fonctions caractéristiques :

ϕZt (θ) = E(E(eiθ(X1+···+XNt ) | Nt )) = E((ϕX1 (θ))Nt ) = e−µt+µtϕX1 (θ) = eµt (ϕX1 (θ)−1)

tandis que ϕX1 (θ) = 1+ iλθ− a
2θ

2 +oθ→0(θ2), d’où

ϕp
t ( Zt

t −µλ)(θ) = e
−i

p
tλµθ+µt

(
iλθp

t
− a

2
θ2

t

)
+ot→∞(1) = e−µa θ2

2 +ot→∞(1).

4. Comme les trajectoires de Y sont croissantes entre les sauts, le passage en dessous de zéro ne se fait qu’aux
instants de saut, qui sont ceux de N . Or YTn = c +pTn −ZNTn

= c +pTn −∑n
k=1 Xk = c −∑n

k=1(Xk −pEk ) = c −Sn

où Ek = Tk −Tk−1. D’où {τ<∞} = {supn∈NSn > c}, d’où le résultat.

5. Sn est une somme de n v.a. i.i.d. de moyenne m = λ−p/µ. La LGN indique que Sn/n → m p.s. donc si m > 0,
c’est-à-dire p <λµ, alors Sn →+∞ p.s. et donc supn∈NSn =+∞ p.s. d’où le résultat par la question précédente.

6. Si m < 0 alors la LGN donne Sn →−∞ p.s. Supposons que τ1 = inf{n ∈N : Sn > c} soit fini p.s. Alors la propriété
de Markov forte indique que (Sτ1+n −Sτ1 )n∈N est de même loi que S, et donc τ2 = inf{n ∈N : Sτ1+n −Sτ1 > c} est

aussi fini p.s. En itérant ce procédé, il vient que limn Sn =+∞ p.s., ce qui est impossible car Sn →−∞ p.s. Donc
τ1 n’est pas fini p.s.

7. Si m = 0, alors la LLI pour les v.a. i.i.d. Xk −pEk donne, p.s., en notant σ2 = a −λ2 +p2/µ2,

lim
n

Sn√
2n loglogn

=−σ et lim
n

Sn√
2n loglogn

=+σ.

D’où le résultat, comme pour le cas m > 0. Notons que σ2 = (a −λ2)+p2/µ2 = a > 0 car p =λµ.

Éléments de solution de l’exercice 2.

1. Nous avons EEa1,...,ak = 2−kE(Wa1,··· ,ak ) · · ·E(Wa1 )E∅ = 2−kE∅ pour tout (a1, . . . , ak ) ∈ {1,2}k , et card({1,2}k ) = 2k .

2. Nous avons E(ek ) = 2k 2−kE(W1) · · ·E(W1···1)E∅ = E∅. D’autre part, ek = E∅exp(X1 +·· ·+Xk ) où Xi = logW1, . . . ,1︸ ︷︷ ︸
i fois

,

qui sont des v.a. i.i.d. de même loi que logW1, intégrable par hypothèse. Comme P(W1 = 1) < 1, par l’inégalité de
Jensen, E(Xi ) < logE(W1,...,1) = 0. La LGN donne alors 1

k (X1 +·· ·+Xk ) → E(X1) < 0 p.s. d’où ek → 0 p.s.
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3. Comme E k =∑
a1,...,ak

Wa1,...,ak
2 Ea1,...,ak−1 , il vient que

E(E k |Fk−1) = ∑
a1,...,ak

E
(Wa1,...,ak

2
Ea1,...,ak−1 |Fk−1

)
= ∑

a1,...,ak

E
(Wa1,...,ak

2

)
Ea1,...,ak−1 =

∑
a1,...,ak

1

2
Ea1,...,ak−1 =

∑
a1,...,ak−1

Ea1,...,ak−1 = E k−1.

4. D’après le cours, une martingale positive, en tant que sous-martingale bornée dans L1 ou en tant que surmartin-
gale positive, converge p.s. vers une v.a. intégrable.

5. Il vient, par indépendance, et du fait que E(W1) = E(W2) = 1 et E(E k−1) = E∅,

E(E
2
k ) = 1

4
E(W 2

1 )E(E
2
k−1)+ 1

4
E(W 2

2 )E(E
2
k−1)+ 2

4
E(W1)E(W2)E(E k−1)2

= 1

2
E(W 2

1 )E(E
2
k−1)+ 1

2
E 2
∅.

Donc si E(W 2
1 ) < 2, alors ρ := 1

2E(W 2
1 ) < 1, et la martingale (E k )k≥1 est bornée dans L2.

Elle converge donc p.s. et dans L2 vers une v.a. E∞ de carré intégrable, de moyenne E(E 1) = E∅.

6. Supposons que E(W 2
1 ) < 2 et que de plus P(W1 > 0) = 1 (est utilisé ci-dessous pour

∗=). Nous avons

E∞ = W1

2
A+ W2

2
B

où A et B sont indépendantes, de même loi que E∞, et indépendantes de W1 et W2, d’où

P(E∞ = 0) =P(W1 A = 0 et W2B = 0) =P(W1 A = 0)2 ∗=P(A = 0)2 =P(E∞ = 0)2

Donc P(E∞ = 0) ∈ {0,1}. Or comme E∞ est une v.a. positive de moyenne E∅ > 0, il vient que P(E∞ = 0) = 0.

Éléments de solution du problème 1.

1. (a) D’après le cours, une chaîne irréductible qui admet une loi invariante est forcément récurrente positive, et
de plus, il s’agit forcément de l’unique loi invariante.

(b) D’après le cours, une chaîne irréductible récurrente nulle admet des mesures invariantes, toutes propor-
tionnelles, mais pas de loi invariante. Un exemple familier est celui de la marche aléatoire simple sur Z,
dont les mesures invariantes sont les multiples de la mesure de comptage (elles sont de plus réversibles).

(c) Le processus de Derman, vu en cours, est irréductible mais n’admet pas de mesure invariante. Il est donné
par E =N, P(x, x +1) = px , P(x,0) = 1−px , x ≥ 1, et P(0,1) = 1, avec 0 < px < 1 et

∏∞
x=1 px > 0.

2. (a) Soit Ti = inf{n ≥ 1 : card{Z1, . . . , Zn} = i }, pour tout 1 ≤ i ≤ d . Alors (jeu de pile ou face) T1 = 1 ∼ GeoN∗(d/d),
T2 −T1 ∼ GeoN∗((d −1)/d), . . ., Td −Td−1 ∼ GeoN∗(1/d).

(b) Soit c > 0. Soit Ai :=∩1≤k≤⌈d logd+cd⌉{Zk ̸= i }, pour tout 1 ≤ i ≤ d . Nous avons

P(T > ⌈d logd + cd⌉) =P(∪d
i=1 Ai ) ≤

d∑
i=1

P(Ai ).

Comme P(Zk ̸= i ) = 1−1/d et comme les événements {Zk ̸= i } sont indépendants, nous avons

d∑
i=1

P(Ai ) =
d∑

i=1

(
1− 1

d

)⌈d logd+cd⌉ ≤ d exp
(
−d logd + cd

d

)
= e−c .

3. (a) Il s’agit bien d’une CM car suite récurrente aléatoire de la forme Xn+1 = f (Xn ,εn+1), n ∈N, avec εn+1 =
(In+1,Bn+1) et (εn)n∈N∗ suite de v.a. i.i.d. indépendante de X0. Son noyau de transition est

P(x, y) =


1

2d si |x − y | = 1
1
2 si x = y

0 sinon

.
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On reconnaît la marche aléatoire paresseuse sur l’hypercube (Z/2Z)d = {0,1}d = E .
Ce noyau est symétrique sur E fini, donc la loi uniforme est réversible donc invariante.
L’apériodicité est garantie par le fait que la marche est paresseuse (la diagonale du noyau est non nulle).

(b) La v.a. T est un temps d’arrêt pour Fn =σ(X0, I1, . . . , In ,B1, . . . ,Bn). De plus XT a des coordonnées i.i.d. de
loi de Bernoulli µ symétrique sur {0,1}, donc suit la loi µ⊗d , qui se trouve être la loi uniforme sur E = {0,1}d .
Enfin, la loi de XT ne dépend pas de (In)n∈N∗ , tandis que T ne dépend que de (In)n∈N∗ , d’où l’indépendance.

4. (a) L’ensemble de transpositions T = {(d ,d −1), . . . , (2,1)}∪ {(d ,1)} engendre Σd . D’autre part (2,1) et (d , . . . ,1)
engendrent T . Ainsi l’ensemble des cycles {(k, . . . ,1) : 2 ≤ k ≤ d} engendre Σd , et X est bien irréductible.
Comme E =Σd est fini, elle est donc récurrente positive. Comme (Uk , . . . ,1) = id si Uk = 1, il vient que la
chaîne peut rester sur place avec probabilité non nulle, elle est donc apériodique.

(b) Comme Σd est un groupe, il y a exactement d états qui conduisent à chaque état, donc les colonnes de la
matrice de transition ont exactement d coefficients non nuls, tous égaux à 1/d , donc sa transposée est une
matrice de transition (la matrice est doublement stochastique), donc la loi uniforme est invariante.

(c) Soit Tk = inf{n ∈N : Xn(d) = k} le premier temps au bout duquel la carte initialement en position d est
en position k. Par définition, Td−1 = inf{n ∈N : Xn(d) = d −1} est aussi le premier temps au bout du quel
une carte est insérée pour la première fois en position d , ce qui fait remonter d’une position la carte
initialement en position d . Ce temps suit la loi GeoN∗(1/d). De même, Td−2 = inf{n ∈N : Xn(d) = d −2} est
le premier temps au bout duquel une carte est ensuite insérée pour la première fois en position d −1 ou d ,
ce qui fait remonter à nouveau d’une position la carte initialement en position d . L’écart Td−2 −Td−1 est
indépendant de Td−1 et suit la loi GeoN∗(2/d). Ce procédé se poursuit jusqu’à T1 = inf{n ∈N : Xn(d) = 1}.
Ainsi, T1 =G1 +·· ·+Gd−1 où Gi = Td−i −Td−(i−1), Td = 0, G1, . . . ,Gd−1 indépendantes, et Gi ∼ GeoN∗(i /d).

(d) Pour tout 1 ≤ k ≤ d −1, conditionnellement à Tk = inf{n ∈N : Xn(d) = k}, les d −k cartes qui se trouvent
en positions d ,d −1, . . . ,d −k +1 ont un ordre invariant par permutation. Ainsi, au temps T = T1 +1, les d
cartes du paquet ont un ordre invariant par permutation, ce qui signifie que XT suit la loi uniforme sur Σd .
De plus P(XT =σ,T = k) ne dépend pas de σ. Il vient alors que 1

d !P(T = k) =P(XT =σ,T = k), et donc T et
XT sont indépendantes.

5. (a) Nous avons, en utilisant successivement le fait que T est un temps d’arrêt, le fait que X est une CM(E ,P),
l’indépendance de T et XT , le fait que XT ∼µ, et l’invariance de µ,

P(T ≤ n, Xn = x) =
n∑

k=0

∑
y∈E

P(T = k, Xn = x, Xk = y)

=
n∑

k=0

∑
y∈E

Pn−k (y, x)P(T = k, Xk = y)

=
n∑

k=0

∑
y∈E

Pn−k (y, x)µ(y)P(T = k) =µ(x)P(T ≤ n).

(b) Fixons x ∈ E . Pour tous y ∈ E et n ∈N,

1− Pn(x, y)

µ(y)
= 1− Px (Xn = y)

µ(y)
≤ 1− Px (Xn = y,T ≤ n)

µ(y)
.

Comme T est un TFS pour X0 ∼ δx , la question précédente donne

1− P(Xn = y,T ≤ n | X0 = x)

µ(y)
= 1− µ(y)P(T ≤ n)

µ(y)
=Px (T > n).

(c) Comme ν1 et ν2 sont de même masse, (ν1 −ν2)(A) = (ν2 −ν1)(Ac ). Ainsi, avec A = {y : ν1(y) < ν2(y)},

dVT(ν1,ν2) = 1

2

∑
y∈A

(ν2(y)−ν1(y))+ 1

2

∑
y∈Ac

(ν1(y)−ν2(y)) = 2
1

2

∑
y∈A

(ν2(y)−ν1(y)).

(d) Pour tous x ∈ E et n ∈N, en posant Ax,n := {y ∈ E : Pn(x, y) <µ(y)},

dVT(Pn(x, ·),µ) = ∑
y∈Ax,n

(µ(y)−Pn(x, y)) = ∑
y∈Ax,n

µ(y)
(
1− Pn(x, y)

µ(y)

)
≤ sup

y∈E

(
1− Pn(x, y)

µ(y)

)
= sx (n).
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