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XX.—On the Theory of Statistical Regression. By M. S.
Bartlett, B.A., B.Sc. (Queens’ College, Cambridge). Commuuni-
cated by J. WISHART, M.A,, D.Sc.

(MS, received May 12, 1933, Read June 5, 1933.)

1. The product moment distribution in the general case of p normal
variates, obtained in 1928 (1), and again in 1933 (2), has been awaiting
further analysis. Some indication has already been given (Wishart,
1928) that new results might be expected from it; in the particular case

~ of two variates obtained previously by Fisher (3), it has been used to

deduce the distributions of the correlation coefficient (3), co-variance.(4),
and regression cocfficient (5). In the general case, it has been used by
Wilks (6) to furnish a proof of Fisher’s distribution of the multiple correla-
tion coefficient (7), and also in connection with his idea of a generalized
variance (8). Further analysis appears to be most fruitful in studying
statistical regression in general, It is shown in Part I of this paper that
the product moment distribution can be split up into a chain of independent
factors, Most of the known distributions related to regression or partial
correlation are simply obtained, in a manner which clearly indicates the
relations they bear to one another; the distribution of a partial regression
coefficient of any order is also readily derived.

In Part II it is pointed out that the assumption of a normal system is
not altogether necessary for some of the distributions to hold. A distri-
bution which may be regarded as a further generalization of the product

‘moment distribution, being the generalized partial product moment dis-
"tribution, is obtained @b ¢nitio, in order to show what are the minimum

assumptions about normality necessary for the various distributions
obtained in I.

A note should be made here on the notation used. This follows
Yule (9) with regard to the symbols for partial correlations, partial variates,
etc. Further, the convention that Greek and English letters are to be
used for true and estimated values respectively is employed as far as
possible not only for parameters but also for variates, Thus if ¢ denotes
the value of a variate measured from its true mean, the estimate of ¢
given by ¢ ~ 3¢/n (where X, unless otherwise specified, will always denote
summation over the # observations in a sample) will be denoted provi-
sionally by x (usually this has been called x - %). We may write further,
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for interdependent variates &;, &, §&; assuming the regressions to be

linear,
{ 52-1 *_*fz ‘ﬁmfn
53-21 = fs i [332-152 7 ﬁsmfu

where B, is the true simple regression cocfficient of &, on ¢, B4, the
true partial regression coefficient of &, on £, for constant &, etc.  Similarly
{ Ny = &y — Dy &y,
Xgagy =Xy — D1y = byy.920y,
where 6y, 0351, €tc., are the corresponding estimated regression coefficients

from the sample.
The product sums ¢,, obtained from the sample are defined by the

equation

Cun = 2(0u), y y . 5 (1)
and correspondingly we write

Yw=2(ub) . . ' ' (2)

As an extension of this notation, we write further

{‘Jw'l =2(xu080.1),
‘)/,ml = E(g.u'lfu-]), etc,

I. AN ANALYSIS OF THE PRODUCT MOMENT DISTRIBUTION.
2. The distribution of p normal variates will be written
n
U =n-1? | A [le-26 O 1] d¢, ; ; ()]
p=1

where A(¢, €) is the positive definite quadratic form of the ¢,, with matrix
A=(a,)=(34Au/0,0,4), A being the determinant of correlations p,,,
and A,, the co-factor of p,, in A, The determinant of A is |A |.
Similarly we write C=(c.), | C | =] ¢ |-

The distribution of product moments is more conveniently for the
present purpose regarded as a distribution of product sums ¢,,. It has
been shown to be independent of the distribution of the means, and the
complete distribution may be written

U()V p(uvy 22— 1), . . : . (4)
where 2, =%¢,/4/n, and
]J
A pon-v] ¢ nr-dexp (= 5 gy

Pk o - e (8

7 ‘ ;
P P-D 1T (n #) el bl
re=1

Volepy, 22=1) =
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We write the distribution (5) V,(¢., 72 —1) to show that one degree of
freedom has been lost by using the variates x, in place of &,, the distribu-
tion of y,, being given by V (v, 7).

The complete distribution (4), obtained originally (1) by geometrical
methods, has recently been obtained by another method (2), as the result
of a certain multiple integral. The fact that this integral was evaluated
(10) as a repeated integral has suggested that V,(c,,) can be split up into
a product of independent distributions. This analysis of (5) is carried
out in the case of two and three variates, and in the general case of p
variates,

3. Two Variates.—In the case of two variates, we have

saneial ("_11__2P|1L'11 ‘-‘_li_)

C [0=D 2RI\ 01y
Voleuw, 22— 1) : |
2\Cpvy

& )
w*[zclaa\/(t ~P1a) ]"'_IP%(H ~- )4 (2 —2)
Change the variates ¢yy, 13, €25 to new variates ¢yy, g1, %21, where

2
€oe:1 "—'2%.1 = 2(wg — dgyivy)? = l C l/"n;

deydeggdegy. ()

since
bgy = E(xzf‘?:)lle?,
and
. 3.1 =/ ¢11(0a1 = Par)-
/Then
. deyydegg Aty = deydeggdig [/ 61y,
and
(B St b A S fatit
2 2 i 2 F}
(1 “Pm) 11 210¢ . g 0 022(1 —Pw)
"’
€11, faoe1 , 21
=y ko B e s

b oMy Yay
/where 0y.; is the standard deviation of &,.,. Hence

i : " cﬁnﬂ!i)e_.gc“,ta]:dcu % "'Ci!(n——-ndm51-,;-1!0:2’-:(f¢-22-1:l["ewbng,]/ag.,d"?l
(B Pb= X ) e

22-1
(20O = 1) || (20] )P (n - 2) (2may,)t

=Vi(eryy 7 = 1) Vi(ean, 72~ '—’)Ul(”-a-I)-

J, @)

We thus obtain the following results.

(i) Vy(c) has been split up into three independent distributions,
The particular function #g.; = 4/¢y,(bgy — Bgy) is normally distributed with
standard deviation o,.;. Further, while ¢, is distributed like y,;, but with
one less degree of freedom (see, for example (2), p. 4), ¢a9. is distributed
like yg5.1, but with two less degrees of freedom, We may in fact consider

Vi(eay, 22 = 2)U,(5.1),
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write g0 + ”;-1 =9, ”:-1 =yz, say, and integrate for 2. We then have the
distribution of y = 2(x, — By2,)? given by
1 T'{(n-1)
Vl(ya 16 = I)jo ;{1'\%(” e 2)
showing that the only effect of the substitution of &y for By is that the
distribution loses one degree of freedom. Our estimate of 0y, is thus

(1 =)Mo= -ddz =V (y, n - 1),

5:.1 = Cogut/ (% = 2),
(if) If we consider
Ve, 2= 1)U (#3.1),

write 7y, =A4/¢y;, and integrate out for ¢yy, we have f(A)dA, say,

i [

0 (20,10 (27707, ) T4 (n - 1)

F%” Ty (I +A20'12‘)m§"dh, : : : (S)

TR = 1) 0y

\ (72_1 /
Vo ; 9 2 3
or writing A=dy — By, and o}, =0,%1 —p;,), we have finally for the

distribution of the simple regression coefficient 4y,

(I ‘szwmﬁnp’l‘” Ty
S (bg1)dbgy = w0 (% - 1) 6:;

o ol ~in
(1 R 2P125::&21+;;"2'&-§1) dby. (9

This distribution was first obtained independently by Romanovsky and

Pearson (5).
(iii) If instead we again consider

Vi(eggy, 7~ 2)U1(”2-1)a

this being likely to lead to a more useful result, since ¢55.1 and #,.; are both
related to the same variate £,.4, we have a normal variate #,., with standard
deviation 4.y, of which our independent estimate is §5.; = \/{cg9.1/(72 — 2)}.
It at once follows that the distribution of
! =1gafSo

is given by the well-known ‘£ distribution,” with 2 — 2 degrees of freedom,
This enables us to test the significance of an estimate &,, from any hypo-
thetical value By, This result should be compared with that obtained
by Fisher, who has shown (11) that exactly the same test is applicable
whatever the distribution of ¢, provided &, is normal for each ¢, and
we can suppose the set of values &; in the sample fixed from sample to
sample. Any function of & and £, provided it is a linear function of
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&, is then, of course, normally distributed—for example, the regression

cocfficient &, itself. In II the question of assumptions is reconsidered,

and these two apparently distinct problems are shown to be special cases,

the only condition necessary for the test to hold being the normality of &,.;.
If we consider the particular case when Sy or py is zero, we have

1= ?’12'\/(” = 2)/\/(1 i rf?)’

where 7y, is our estimate of p;,.  This explains why this particular func-
tion of 7y, is distributed in a ‘¢ distribution,” the test of significance of a
correlation from zero being more fundamentally the test of significance

of a regression from zero. :
4. Three Variates—We have in the case of three variates

CTTAYH

ya i
rge I c”|&(n 5) exp{ -;A--_u'i‘.‘;] R }a’cndcm A dcas.
mi(280,20,20,2 AU (0 = 1)} (0 - 2)[M (22 - 3)
First write
€221 =E~""§.1 = D(wy — by13)® = Cyyfeyy,
Cogep = B(Xgqi¥g) = X(Wg — b1 1) (%5 — b3109) = — Coslens
€3301 =Ex§.1 = 2(8g — by12y)? = Coofeyy,

(10)

and
v g1 =4/ e11(0a1 = Par)s 131 =/ e11(0a1 ~ Ban)
Then

d dclldflﬁ b df33 = Clldﬂz.ld”:}.1d€11d€22y1d¢23.1d€33.1,
an

§ a7 5 (A
S R S e | ‘112+ 3 ( “Az(ﬂ?};“ﬁplxl)(xv—ﬁ"lxl))

pyve=1 UHUUA 01" pu=270u0y

i 7 A

¢ .

=24 3 ( s +rzﬂ.12¢-u.1]>.
a1  maNGA

For this identity depends on the coefficients of ¢y, ¢y5, and ¢y; being
respectively equal on each side. For the first two we must have

Asp + p1aag + p1sige =0,

Ays+ p1sQss + prabas =0,
which (since py;=1) are obviously true. Multiply the first of these by
p1a, the second by pyg, and add; we get

2 2
A = Ay +ppQos +2p1ap1siay + prslaz =0,
which is the identity required for the coefficient of ¢;;, We have also *

| C|=en

€a2:1 €231
€231 (331

* Cf, Ingham (z0), p. 5.
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It readily follows that
Valeuws 22~ 1) =Vy(eyy, 2= D) Voloury 2=-2)Us(wp1), « |+ (11)
where p, v on the right-hand side can take the values 2 and 3.
Since = Agp/V/(Agalss) = pss.i—the correlation between &5y and &y,
or the partial correlation between §¢; and §y—and we have also
A=(1 = pl ) Anlg, we may write

ARl (E"_'n_huf_u_-:_ Ea_u)
| €t [H0=B)e ™ KT=pTdNTE ™ opavan ek

Vv vy e ) T =
2(Guvy 7 = 2) 77![_20’2'1‘73'1'\/ (x _p:Q_l)]""‘2P1}(H = 2)['4(% - 3)

If we compare this result with (6), we see that the quantities cyp.q,
Cag01y €331 are jointly distributed exactly like cg9, €25, ¢35, but with one less
degree of freedom. We may thus define partial variances and co-variance

by the equations

deygndeggndeggy. (12)

Ugoiq =s§_1 = Exz,l/(n - 2)
Ugg1 = 7321521931 = 2(¥5.1%0.9) /(% — 2)
lv33.1 =s:,1 mE:c:,l/(u - 2).
We thus have the further results that not only, as we saw in the case of
two variates, is #yp.; distributed in an ‘‘s? distribution” with »# — 2 degrees

of freedom, but also
(iv) the partial co-variance wvg., will be distributed in the Bessel

function distribution (4) and (12) obtained for wg, or vy, and the partial
correlation coefficient 74,4 will be distributed exactly like a simple correla-
tion coefficient 745 or 75, each, however, with one less degree of freedom.
Fisher has shown this for the important case of the partial correlation
coefficient by means of a geometrical argument (13).

We should notice that 74,. is defined above as

-l -l 9 -l 2
Y391 = L(xs'lx?l)/'\/[z' (x‘.’-l) b (x3-1) ]’
but this may be written
2 2
79901 = (Vg3 ~ "317’21)/\/[ (1 = "31) (1 = "21)]-
To reduce (11) further, we now treat Vy(¢,,.1, 2 — 2) exactly as we did
Vy(euy, 7 —1) in the case of two variates, That is, write
2
Cag12 = (€g3:1609.1 — Cyg0) /a1 = | C | [Cyg
)
= Uy 1, = 2 (W — Dyg10y — Dy1.987)%
tg.01 =V ¢a9:1(833-1 = Pyz1).
We then have

Valeuwy 7 =1)=V(ey1, 7=1)Vi(cgpq, 72=2)Vi(Cag10) 7 ~3)
X Uy(tgey, #5.1)Uy(ttg.97). : ' ' o (13)
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Besides furnishing again all the results obtained for two variates, the
case of three variates now gives the following,

(v) The quantity ¢gy.;p is distributed like yg5.9, but with three less
degrees of freedom. We may thus write cgg5=(%~ 3)¥33.12) Where
Ugs.10 1 OUr estimate of the variance of §3.14, that is, of £; from the regres-
sion plane

€3 Pag1be — Borabr=o0.

Further, the quantities 7,.q, 73.1, #43.9; are normally distributed. Notice
that since the correlation between #,., and 3., is pss.q, We can write
Wy =gy — Pagrttar = V11631 = Bsa-1bz1 — Pares), Wa=1t3.5;, and obtain three
independent normal variates #,., w;, and w,; moreover, w; and w,
have the same standard deviation og.4;.

(vi) If we consider

Vi(eag1, #—2)Uy(#3.99),
we may obtain the distribution of the partial regression coefficient &4,
exactly as we found the distribution of the simple regression coefficient
by, by considering

Ve, 72— 1)Uy(t3.9).
The only point to notice is that one degree of freedom has been lost, so
that if we write #4.9; == Av/¢29.1, and integrate out for cge.4, we shall have

2\ ~{(n-1)
Pi(n-1) 054 Aa,, A\

I+
(- 2) 05,9 Ty

i % 5o G14)

SNdx=

analogously to (8), where here A=bdgq— fg2q. If we write Ug-u
=05,(1 = piyy), We have the result analogous to (9),

2 57 ~ ) (n—1)
; (I o Pag.]) b 2)1 %(” S I) Touq Toq 02.1 ]
f(‘baz-;'_)fmaz-l 5% w*l‘%(# ~2) ;;;‘1 T Z’Paz-lg‘;’fl‘bse-l T ;2—‘1’32.1 déazq (15)
j 31

Similarly we obtain the distribution of &4,., by interchanging the suffixes
1 and 2, but the two distributions will not, of course, be independent.

. (vii) Like the distribution of 4y, this distribution is of little value for
testing the significance of regression coefficients, since it contains unknowns
besides Bye.y It is therefore more useful to consider

Vi(eggae) 7= 3)Us(#g.01),
since now we have simply the normal variate 7.5, with standard deviation
03.01, Of which our independent estimate s3.5; is given by

2
$y

21 ="33'12/(” i 3)'
We may thus write
! =1t3.91/Sy.01)
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where # follows the ‘¢ distribution'’ with # — 3 degrees of freedom.  This
enables us to test the significance of &4y, from any hypothetical value
Baz.1, since Bgy.q is the only unknown that occurs.

When Bjg.q Or pgg.q is supposed zero, we have

t=ryay (- 3)/‘\/(1 = 7:2_1),

and we can test the significance of a partial correlation from zero,

(viii) We had not only 2w, =13.4;, but also w; =u;.; ~ B3s.12¢5., normally
and independently distributed with standard deviation oy.;, both being
further independent of the distribution of s;,. It follows that if we
write

25% = 10, + w,?
= (0310 = 2Ps1.0)13 + (Paa1 ~ 2Pan1)lse
"'fg:l.gfu""Qﬁaz-lﬁamfm"'ﬁ:g.lfzz, ' . . (16)

then #=4 log (s¥s2,,) is distributed in Fisher's “# distribution’’ with s,
having 7 — 3 degrees of freedom, and s? two degrees of freedom. This
enables us to make a single test for the significance of b3,.1 and &g;., from
hypothetical values f3,.1 and fB3;.5. It is clearly a problem in the analysis
of variance (see Fisher (14)).
If we suppose Bsz.; = Bs1.3 =0, we have simply
25% = byg.1 050+ b31.0631,

or since R? the estimated multiple correlation coefficient of &, with ¢,
and &, is given by

R = (by3.1650 + by1.631) €33,
we have

25%/(n — 3).;"3?,21 = R?/(1 - R?),

Thus, just as the test of significance of a partial regression coefficient
bap.y from zero becomes identical with the test of significance of the
corresponding partial correlation coefficient #3,.; from zero, so the joint
test of significance of &,., and &y;.5 from zero must become identical with
the test whether there is any significant multiple correlation.

5. The General Case of p Variates—To obtain the various distribu-
tions above in their general form, we consider finally

Volew; 7= 1),
Write
fcw.l = 2(a80%u1) = G~ Eardin /i

\ 1 =/ 213 (bur = Bu),

where the convention is adopted that u, v can take all values 1 to p except
those occurring explicitly—e.g. p cannot take the value 1 in ¢,,..
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Then : 3
[1de,y =131l deyyall dueya,
and
A B\ &
5 GeSm ALy 3 (SRS, - B (@~ Ba)
wv=1 0,08 0 s a\auaA
¢ Bi A
=4 3 ( fffz\[cFu.1+r¢,4-1ffu-1J)i
G]. pyu=2 Ouly

for similarly to the case of three variates, we have
ré prldg=0 (s#1),
and multiplying this equation by py,, and adding for all s#1, we have
A-Ay+ f' ég P1rP1ssr =0,

and these identities are the equations required for the coefficients of ¢y,

and ¢;;.  We have also
| C|=e11 | v |-
It follows that
Vo(euwy = 1) =Vilery, 2= D)V 1 (v, 2= 2)Uy1(42).
Similarly

Vp—l(‘pv-h 7 —=2) =Vi(agy %= 2)Vp_g(Cuvarey 7 = 3 U o(Wu1),

Valeuv1 oo ipgp 2 =2+ 2) = Vi{¢p_s, p-g1..1p-3s B=PF 2)V (vt s v ey B=P 1)
; X Uz(”wp-% ) 1)-
We may deduce from the distribution

Volbwa, op-my 2=p+1) . . ‘ i (1)

results corresponding to those obtained from (12) in the case of three
.variates, That is, we may write
Vvl v oo p2=Cuvr oo (=P + 1),

and obtain that

(ix) the distribution of the partial co-variance v, y.1.1... -2 is like
that of a simple co-variance, and the distribution of the partial correlation
coefficient #,, p-1.1. .. »-s like that of a simple correlation coefficient, each
distribution, however, with only » — p + 1 degrees of freedom.

We now write further
Voleuva oo vpegy 2=2+ 1) =V(¢p1,p100 00920 2=2+ D) Vi(pp1. 01 pury #-2)

X Ul(”m-zi—l. v l)l

and hence have

p—1
Vo (epvy 2= 1) =V1(eyy, 72~ I)r£11 {V‘l(‘:}lv'l vt B P D (e, D) (18)
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We may therefore deduce in the general case the following results.
(x) The quantity ¢ppa , ., -1 i8 distributed like y5p.q . -1, but with
p less degrees of freedom, We thus write

Upprl v o1 Cppe1ans 1/ (7 "‘]j)
as out estimate of the variance of ¢, from its regression ‘‘plane.”
Further, the quantities #,.,,,, ; are all normally distributed. We
may, moreover, write

Wy =pg — ﬁp2'13 e 9_1”2.1 ) o e —‘[33,, P11 44 2,__2“1,_,_1.1
Wy =”gw21—ﬁm3-124...g;—1”3-21- A ‘ﬁw, =114+ p—2¥p_1.01

.
H

Wy 1%y p1y0 00y
and obtain » — 1 independent normal variates each with the same standard
deviation. They may alternatively be written

@ =\/"11(5111 7 Bal, p=1'1+ . 1)—2&50—1, 1o r e e ™ Bm-z e 3}—1)

??2 =‘\/‘22'1(5a’2-1 “ﬁg;, p=1'14 4 31-22’%1, b1 SRR RCRC "Bm-la Ve w—x)

Wy ==\/%—1, p—1t1 .. 2)—2(&50, p—1le..p—2g~ :B:p, o v gy s . (19)
showing that they contain only the unknowns Buja...p-1, + « « v+
By vl vos peat

(xi) The distribution of the partial regression coefficient

b= &m p=1*1+ .+ p=-2
is obtained exactly as that of 4,4, 034.1, ctc. We consider

: Vl("f)—l, g=11 4+« p—=2y 7 “P + I)Ul(ﬂp'ﬂl—-l, v 1):
and obtain

2 —§(n-p42)
Myn—-p+2) oy - Ao, 11, p—s
A)dA = (et A IR e (B SUPEOGAL KRk X 20)
f( W%P%(”' 57 s 1) Op1eeep— 0?)‘1 sl : (
where

A=b- B'p,p—l'l v =)
or

(1= p)M=2HID (5 — p 4 2) a'( o' [a' ]z ~jn-pt2)
fO= S s (124 | %o ) i )

U e —— / —

‘\ hCI‘C P—'Pg;, 1;__1.1 e p__g, 0—07)'1 e P2 alld g —U:p—-]_;]_ AT ] g)ﬁ.gu
(xii) As before, if we consider instead
. Vl("m;-l coep-1y % —p)Ul(”ﬂ-ﬂul, e 1)’
we may write
; = Wprp=1y4 e 1]311-31-1) T )

h 2
Whete  Shusty v o i B Uopinady s ol B0t i o got/@= )y (8O Wpvpst; vt
(=w,_,) is given in (19).
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This is therefore the test in the general case for the significance of
the partial regression coefficient 4 from any hypothetical value f.  When
we put f=0, we have

L=ry/(n=p)[/ (1 =79,
where 7 is the estimated partial correlation coefficient between ¢, and
¢,4 when & . ., §,, are eliminated, and we have therefore a test of
significance of # from zero.

(xiil) If we write

g
(p-Dsf=wl+w?+ , .. wp
p—-1
= El (] v pp iy v = 2)8pr-1 T = G170 o p—1)épr
re=

p—1
+ X lﬁpr-l PR, oty e B p-—];B-m'I P B, PR P T | 21 (22)

7y §e2
then z=1% log (s¥/sp1... 1) is distributed in Fisher's #z distribution
with s;f.l ...y having n-p degrees of freedom, and s* p—1 degrees
of freedom., This gives, therefore, a single test for the significance of

Buits v patav v vy Oy wetine o pag:fYOM Hypothetical valies Pyvg . amni v @ v

ﬁp) P=1'1 .. . p=2°
If we suppose these values all zero, we have simply

p=1
2‘.__ -l
(jb 5 I)S T 3_‘1 ém'-l e =1y rly 000 p=16pr

R?,

=Cpp
where R? is the estimated multiple correlation coefficient of ¢, with
B, i+ et AN
(=) -5y ... pa =RY(1 ~RY =,
say.
‘ The distribution of v=7,5,2/1,5:% where s;% and s,* are independent
estimates of a variance o2, with 7, and 7, degrees of freedom respectively,
has been shown by Fisher to be

D@y +ny) vl
= s
RO v e e O

from which the z distribution is derived.
Write n,=p -1, ny=n-p, and v=R?*/(1~-R*?), and we obtain the
well-known distribution (I5) of R? when there is no real multiple

correlation,

SRDURY = s AL ROV -RE--04RS, . ()
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The joint test of significance of the coefficients du1.0.. .91+ « o
by p11... g from zero thus becomes identical with the test of the

multiple correlation being significant.

II., ON THE ASSUMPTION OF NORMALITY.

6. So far the notation has been used that ¢ denotes the deviation of a
variate from its true mean, and x the deviation from its estimated mean.
This was convenient, since it allowed the estimate of &,.; to be written
Xy €L,

[t may now be remarked, however, that if x is given its usual inter-
pretation as the value of an observation, e.g.

wy =&y +my,
where 72, is the true mean of x;, the notation can be made quite complete
by defining a quantity xy=1, and writing now ., as our estimate of
&1 (€1.0=6,, since §; is already measured from its true mean), For we had
previously the relations
By =0 L(’L,{L o) (20,2

Cupry Ef,u,u fuv vy
-l”;r.‘u BN fuu( 1y “ﬁ;w),
and analogously we now have
XNpg =% — Xy [n=0, - T
| 110 =61y — (Bay) /”—L(‘\*l ~ &y)*
trio =v/Ey =),

since
E(":.""l‘x(]) T Exl = ?l.'.i::l, E{.\‘.‘Oz =71,

We may now write ¢,5.9; instead of ¢g,.4, etc., and in these expressions
we shall now have the number of digits referring to variates eliminated
giving the number of degrees of freedom lost. The joint distribution
~ of the means and the product sums given by equation (4) will now be

written
W, 0 = Ugp(#.:0)V p(curo, 2= 1). : : « (ad)

7. In the first part of this paper, the distributions arising out of the
problem of regression were conveniently derived from the distribution
W, o, which holds only on the assumption that the system of variates
¢, is normal, We have seen, however (using now the complete distribu-
tion W, o given by (24), which includes the distribution of the means),
that in the case of two variates we may write

We, 0= {Vilerrg 72— 1) Us(ot3.0H Vi(eoneor, 22— 2)Uy(t5.0 - ﬁm”ro)Ul(”z-lo)}; (25)
where the variance of 74,4 is 0,? estimated by ¢;1.4/(% — 1), and the variance

. 2 .
of #g.q = Partty.o OF .19 18 0y, estimated by cg9.4,/(22 — 2).
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The original normal distribution Uy(é,) can of course be written
Uz(fu) et Ul(f1)U1(§2 il )'32151):

and equation (25) suggests that W, o, which depends on the normality
of &, and §&,, can also be split up into two factors which depend respectively
on the normality of ¢, and &,.,. If we assume for the moment this to be
true, we may observe that any distribution or test derived from both
factors, such as the distribution of the regression coefficient, of the correla-
tion coefficient, or of the co-variance, will therefore depend on the nor-
mality of & and &,.q, 7.e. of é; and &;,.  On the other hand, any distribution
or test derived from the second factor alone, such as the distribution of the
partial variance, or the test of significance of the regression coefficient, will
depend simply on the normality of the partial or residual variate £,..

For three variates we may write

Wa, 0= {Vilerror 7 = DU 010 HValcuvo1s # = 2) Un(#0 = Burtt1)) Ug(ttu10)},  (26)
where we may expect the first factor to depend on & being normal, the
second on €;.4, &1 being normal, and then for the second factor we may
write further
{Vileapony 7= 2)Ur(tg.0 = Basttr.0) Us(#g.1)}

% {Vi(eg-012) 7 = 3 Us(g.0 = Bareattro = Pazatra0) Un(ttgi0 = Baraano) Us(giaro)}, (27)
where in this expression we may expect the last complete factor to depend
simply on £g.5, being normal.

In order to give a formal proof of these results, which makes no
assumptions that are not necessary, it is proposed to establish @b #nitio
a general distribution which is an extension of the distribution W, ¢
obtained by Wishart, being the corresponding partial distribution when
i« of the variates are eliminated. It will be written

W%

The method is to find the moment-generating function of the quantities
whose distribution we wish to find. This method was used in a recent
paper (2) to obtain the distribution W, o, and it is there more fully
explained. The work below gives perhaps the most general result
obtainable in this way.

8. First, however, it is necessary to give a very brief discussion of
moment-generating functions and their properties. The most fundamental
definition of the moment-generating function of a quantity ¢, which is some
function of the p» observations in a sample in p variates ¢,, is perhaps

MOREE e e e B

where It denotes mathematical expectation—that is, ¢* is to be averaged
j g

Py K
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for all possible values of ¢. Thus the moment of the »th order, which
may be written E(¢"), is the coefficient of (¢2)7/»! in the expansion of
M(#). We write 7¢ so that M(¢) is finite for all real #.

If $=x,+x, where x; and x, are any two independent quantities,

we have
E(L,l'!(.-r,-;-a:,)) i E(eir:r, : g-i!.r,)
=T(e itx J)E(e"”‘?)
or
M_@-l-i-:rg = l\:/I;rl ' NII‘E'

For » independent quantities x; . . . a4, we have similarly
My, =IIM,. . . ; ; o (30)

In particular, if x;. . .2, are observations referring to the same

variate x, we have
M = M a:ﬂ'
These results hold whether ;. . .x, are continuous variates or not,
and the definition (28) thus renders obvious in all cases the property of
moment-generating functions given in (29), which, since this may be
written
Ksr=log My, =2K,,

is sometimes called the additive property of semi-invariants.
If $=x, one of the observations, and « is a continuous variate with

distribution f(x), we have

E(eit) = jm eltef(x)dw,

—n

and similarly we have in general, when ¢ is continuous,

TP d;

M(t) = T(e"%) = r

this equation is important for determining I'(¢), the distribution of ¢,
when we know M(#). In order to find M(#), we must, however, average
¢ in terms of the original observations, since its value is clearly the
same whether we average for values of ¢ or for values of the observations
of which ¢ is a function, and while we do not yet know the chance of a
particular ¢ arising, given by F(¢)d¢$, we do know the chance of particular
values of the observations arising.
Notice, if ¢ =d(xy, %), say,
E(e"t) = B, E, (¢"),

or symbolically
E=E$1E3'g’ '

P.R.S.E.—VOL. LIII, 193233, PART III, 18
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where E,, denotes averaging with respect to x,, etc,, and if in particular
E,(e") were independent of xy, we should have simply

L (e"$) = B, (e'),
‘The above discussion deals only with the moment-generating function
of a single quantity ¢. For the present purpose we require the joint

moment-generating function of ¢ quantities ¢,, but this may be defined
in exactly the same way by

I\fi(t,.)r;E(cxl) ) z't,gb,.), A ; ; o o))
re=1

and all the corresponding properties hold.

0. We suppose we have two sets of variates & . . . & Mgl + + « Doy
where the variates g (p=x+1. . .p) are independent of the variates
én(m=1 . . .«), and constitute a normal system

Uyu) =n~i? | A [te=Alh) 1 o4 I ; v )

k-1
The sample contains » sets of values of the p variates &, 7, The »
sets of values of 7, are of course assumed independent. No assumption
is made, however, about the variates &,
The estimated variates xy.,, ctc, correspondmg to &y; etc,, .are as
before. We consider the quantities

Wy = 2 My
Ny s {5‘0/\/:’-‘% y (i —0)

om0 v m— 1/\/ w? M0 v 0 e me—ly (m=1...K);

where

and
PINIRTD Y Fo R (TR TE_Y 0 6 SN )
The quantity xy we may subsequently put equal to unity.,
The joint moment-generating function of w,, ,, 2,, will be evaluated
by averaging first with respect to the 5, and then with respect to the é.
Since the quantities w,, ., 2,, are each sums of » quantities A,,,
7,1, independent with respect to the 9, we may write

M(224,my Zuv) = I‘gll]u,,(e\p{zz Z 1',47],‘{*11(17,11)}) i (38

p=d
where Il denotes a product of 2 factors corresponding to the 7 sets of
observations in the sample, T =(¢,,), and

E Am’ y M

m==0

Now we have from (31), ,
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r
E,,(exp {22' % Tt T(, 7-’)}>

pe=xf-1l
' P P
=I ey j 7| A |t exp {23’ 2 Tne—(A-2T)(y, n)} ﬁ any.
— p=x-+1 pekef1

Integrating * this expression, we therefore have from (32)
M=EII({| A |/ | A=7T [He~Bnn),

where B =(4,,) is the reciprocal of (A =#T); that is,
M={| A |/| A=iT [}inEy(e—38n 1),

Now, since
}chm-u co s m=1%n0 40 01 O

if 2w,
E-:f\m/\u =20
1 n#m,

and also obviously from the definition of A,
E’\m2 =1;
hence we have
P
2B, )= 2 by
1

[ty V=K

i ﬁ", &w( 3 ta, mzu,,,,zhmf\ﬂ)

=K1 m, nesl

== lEOB(fm: fm)' '

Me=

Now this expression is independent of the §; hence averaging with
respect to ¢ does not affect the result, and we have finally

M={A|/]|A=-¢T |}ir exp{ - Z'K“JOB(Z,,,, t,,,)}. % s Gan)

Now since, if F(w,, m, 2,,) represents the joint distribution of w,, ,
2, We may write

i P K P :
M=j.. ; j exp {zz’ DI Y T T I S l#,,E,w}l*‘dwdE,

- pe=xhl m=0 By u=k-}-1
where
2? ] ul ] wl
dw= 11 Il dw, n, di = 11 I
pe=xf1 =0 k1l pgvLyp

we have by a generalized form of Fouriet’s Integral Theorem (see (2)),

& i P ]
1'1‘ = (217-)“(P-K’Wﬁl(il—ﬂ)(p'}'x+],J' P 'j CXI){ = 22‘ 2.} }J /y_‘ 7;;20#, m 7 E f,u.ULpu}

p==k+1 m=0 yv=x-41

—0

K
x M 11 d¢,,d¢,

me=0

¥ Cf. Wishart and Bartlett (2), p. 2, equation (5).
t See Yule (9), p. 183. _
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where

jt_J
Al 11 fﬂp,m, dt = I1 (f/m,
p=x+1 khlgp<vgp
and M is given by (33). Integrate * successively with respect to the
tm(m=0, 1, . .. k), and we have :

P [
w0 I A [!"CXP { -7 X f.uuzw 1% EOB—I("Wm: wm)}

) U"“h"]‘] ==

'J_m (2m)- PR b0(0=x) | A =T [In [ B I at,

or since
B, 2w,,) = Ay, W) = {1 (20, W),
and
| B [~#=| A-¢T ¥,
we have

py vkl
"'w(21?‘)”’”")715(p_"’(”"""”l AT I](fthwl)

P i
% v | A [“"""—l)cxp{ - X Z,WEW'}
P IT fr=d@=n] A [be=Am wn} j i j

m=0
where

dt,

K
ST t| S
L;zu :Zﬂu"’ L 2, mWy, me
mes0

The integral remaining is exactly similar to the integral obtained in
the paper quoted (2) to obtain V,(¢,.0, 2~ 1), but with # -4 -1 instead
of #—-1. It has been evaluated by Ingham (10), and using his result,
changing the variates from w, ., 2, to w, ., X,/, and inserting the
differentials, we have

Fdwd2' = IKI {Up—(y, m}Vp— B’y 2—1~-1).

m=0
To interpret this result, we simply write

7714"“6#‘1 ey
so that in a sct of variates & . . . €, we have assumed only that the p ~«
partial variates EP.I,__K are normal,

The quantities w,,,, are readily expressible in terms of the observa-
tions #y . « « ¥y They are in fact analogous to the wy . . . Wyj; of
equation (19), except for w, ¢, which are functions of the means—which
were not considered in I. They may be written

Wy, o= A/ BBy =1 = Buwt s e[ B v~ B el B = )
Wo 1= eilr= Bt vt 06t v v =B 0
7“3};.:,23'\/622-01(&5;2'1_351&‘1...x-—l&x?'l (B )

i

fyp,xz’\/fxx‘(l...x-—-](&nx'l...x-—l."' ﬁ,u:‘l ...x—-l) . . ’ ' 5 (34)

* Cf. Wishart and Bartlett, Joc. cit.
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Just as 2,0, 641, etc. refer to the variates &, . . &, let x4/, 4,1, ete
refer to the variates & . . . €1y M+ + + Mp. Then we have

X K
-l 1 ! i -l
Znuiy— X Owﬂ. mWy, m = Lo By’ = Ll Wy, mWy,

x
1 f
£ L(xpo' e 5;;1'&‘1.0)(%-0' ~ byl -'»"*'1-0) = EE?UJ’L, m®y, m
=

K
=2xp01'Wp0’) = X Wy, nty, n
m=2

o ’ '
=Lx,u.'01 coe k0l L, ke
But
i Lo ar : & :
Xpp oo ok =XFprg 0 vk ﬁ.uxq. PPV 1411727 R S ﬁmtz. cex¥10. .k
=X 40 xl
since by definition x,9,,.,, ¢tc.=0. Hence
; I
Epw LTI N T

Thus we may write the distribution finally
\pr, K = ”}—ID{UQFK(MP, )Y pak(Cuvp oo v Bk =D . (35)

It is suggested that the set of distributions represented by W, , is the
more fundamental, at any rate for the study of regression or partial
correlation, for though we saw in I that it may be deduced from Wishart's
distribution, it is now seen to be true under more general conditions—
namely, that the p -« variates €,1,,,. are normal—and Wishart’s
distribution may alternatively be obtained from (35) by writing x=o.
For the present purpose, the most important cases are given by k=p -2,

and p-1.
10. Thus, for p=2, k=0 gives Fisher's distribution for two variates.

When k=1, we have

Wy, 1= Uy(wg) Us(w1) Vi(cap.01, 7~ 2), . . ¥ 130)
where !

{wo =1y, o=/ (&g ~ Mg — Par[Fy ~ m1y])

wy =1y, 1=/ 0110061 ~ Par):
This requires only that €., exists and is normal (this condition implies
that the regression of &, on ¢, is linear, and that the variance of ¢, for
each ¢, is constant).

Thus the quantity e, is normally distributed whatever the distribution
of &, whether the observations &; can be regarded as fixed from sample
to sample or not, or whether they are specially selected. The reason for
this is that w,, regarded as a function of &,.;, is so weighted that the
variance is independent of &,. Since the infinite population of £
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and &, can be split up into an infinite number of sub-populations for
which the ¢, are fixed while &,.; vary (for &, and ¢ are assumed inde-
pendent), the distribution of w; will be the sum of an infinite number of
distributions each of which is normal, with the same variance and mean,
Conscqucntly, the distribution of 7, will be similarly distributed, however

¥

&, varies,
In the case where &, is fixed from sample to sample the problem is

simplified, since it is not so essential to consider the particular function
wy.  Any linear function of ¢, will then be normal, but for any other
function the variance will of course depend on ¢;. There is no doubt
that the condition that the set ¢ may be supposed fixed is commonly
met with in practice, and this case was the one considered by Fisher (11),
although he scems to suggest in conclusion that his test holds under
somewhat wider conditions than he assumed.

It is important to notice that the test of significance of the mean #,
obtainable from W, ; is on/y valid when the set ¢, is fixed, for then
Fy=my, and 1w, becomes +/n(&;-—m,). Otherwise, as for a random
sample in two normal variates, we should have to consider W, , for the
variate &, given by U (4/n[%, = m2,])V (€220, 7 = 1), with the corresponding
assumption that ¢, is normal. The ‘¢ test” of significance of &, from
B, is, however, valid, with no restrictions on §. Moreover, the special
case of this, the test of significance of &y, or 7y from zero, is clearly to be
regarded as a special case of the test of regression, not of correlation, for
fewer assumptions are involved in the test of regression than in the test
of correlation. Thus if we regarded the distribution of the correlation
coefficient 7,; when py, is zero as a special case of the general distribution
when py; #0, we might have supposed that &, € must both be normal.

The simplest way to consider this distribution is to use Fisher's geo-
metrical methods (3), and consider the chance of the two radii vectores
representing in 2 dimensions the sample of ¢ and ¢, making an angle
6 with each other when they are independent of each other—since
7oy =cos 0. Clearly, however restricted the radius vector of ¢, say, is,
if any direction of the radius vector of &, is equally likely, then the angle
6 will be perfectly random, and the distribution of 7y when py; is zero
follows. The condition that any direction of the radius vector is equally
likely is the condition of the normal law (compare Maxwell's proof of the
normal Jaw in the dynamical theory of gases). IHence the only condition
for the distribution to hold is seen to be that &,, say, is a normal variate
(and the # observations &, of course, independent of each other).

In the case of three variates, put p =3, k=1, and we have

Wa, 1= Us(wy, 0) Up(@y, )Vo(Cpvors % 2). . ‘ . (37
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From Ve, 7 —2) is obtained the distribution of the partial correlation
coefficient 7455, and this therefore depends only on &, and &,.; being
normal, as has been pointed out by Fisher ((14), p. 163).

If instead we put k=2, we have
Wi, o= U, (o) Uy (20) Uy (205) V(e300 % = 3), ‘ (38)

where
Wy =10, o=\ 1(Ty ~ My~ Baga [Ty = 1] = Bayal @y — 211])

wy =wy, 1 =4/ ¢11.0(051 ~ Byo1bar — Por-o)
Wy =y, 5 =/ ¢a9.01(0g1 = Paa1),
provided only that &;.5; exists and is normal,

The test of the partial regression coefficient g5, from fgs.; thus
depends only on this condition, Similarly for that of &s., from fy...
This applies also to the joint test of regression using the "'z distribution,”’
and to the special case of this latter test when By,.5 and B3, are put equal
to zero, when it coincides with the test of a significant multiple correlation.

The condition that £;.5, exists implies that the partial regressions with
&, and ¢ are linear, since

£3ea1 =fa “‘332-152 _331-2‘51,

but since we have seen that the distributions of & and £, are immaterial,
we may suppose them to be any required functions of the original observa-
tions, or what is'more usual in practice if we have no prior knowledge
of these functions, may consider the partial regressions with &, &% etc.
We may, for example, by putting £,=¢,? interpret the above equation as
representing the parabolic regression of a variate & on ¢,. Thus curvi-
linear regression and curvilinear partial regression provide no further
theoretical difficulties. When a curved regression line is being fitted,
it is often convenient to consider the partial regressions not with &,
€4 . . ., but with some orthogonal set such as .4, €301 - - .» Where
&,=¢,% ete.; the regression line may then be fitted term by term, This
procedure is practically most important when the values of ¢, are separated
by equidistant intervals.

11. The test of significance of &, — 2, has been extended by Iisher
to include the significance of a difference &, — #,', where #; and #,’ are
the means from two independent samples S and S’.  We may now regard

the variate

‘ 2wy, o=/ 1(&y —my)

as a special case of the variates w;, o, w,, 1, etc.; one, moreover, which is
especially simple, as it is a function of x; and x,, where the variate x, is
not only fixed from sample to sample, but can take only the value unity.
Thus since x, is fixed, it is not necessary to eliminate it to eliminate »z,
and we can not only consider
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Wy, 0~ Wy, =/ 0@ - &) . . ' .+ (39)

when the samples are equal in size, but
wy, of\/ 7~ Wy, o v/ = (& - &), . . . (40)
say, if they are unequal.
In the general case of the significance of any w~w’, the condition that
the “independent variates’’ should be fixed from sample to sample for

the test to be strictly applicable immediately becomes apparent.
Thus in the case of two variates, we only have

=y, 1~ W1 =V ¢11.0(s1 —~ bar') : ¢ + (41)
rovided that 4/¢;1.o" =4/¢11.0, that is, the samples are equal in size, and
P 11:0 = V€110 P q

the same set of ¢, is contained in each sample. We may then consider the
normal variate in (41), with its corresponding estimated variance

0= (cyp01 + (Canor)?) [2(2 — 2),

and test the significance of the difference between 4y, and &y;" by means of
t=u/+/v, which will follow the ‘‘# distribution” with 2(» —2) degrees of

freedom.
If the samples are unequal in size, but the & are fixed, we can weight

w,, 1 and w, ' in order to eliminate B, similarly to (40).
For three variates, when ¢; and §; are supposed fixed from sample to
sample, we have similarly to (41) for two equal samples,

Lty ! !
iy Sy, o~ Ws, 5 =4/ Ca0.01(0a21 —b3941)). ‘ . (42)
Further, under the same conditions,
= ! '
%y Zt0g, 1 — Wy, 1 =V e11.0(bs1 ~ b3y), . . . (43)

and we have not only from (42) a normal variate by which we can test

irthe significance of the difference between &y5.q and &gy.1', but from (43) a
more sensitive test of significance between &y and éy," if ¢, appreciably
affects & and ¢;. Again, since

20 =10°% 4 11y? = (Ca0.0 — €390 ) (Dag1 — Oa2.1") + (¢31:0 = 3100 (3100 = b31.9"), (44)

we may test the joint significance between bgy.4, b31.9, and by,.,’, b4.5" respec-
tively, by means of the ““# distribution.”

Analogous tests hold for three variates if the samples are unequal,
provided ¢; and &, are still fixed for each sample; similarly for any number

of variates, ‘
12. To sum up the results of II, the following distributions depend

simply on the existence and normality of the two partial or residual :

Varlates gi"l v p=2) ff)"l'l e 23"'2:



On the Theory of Statistical Regression. 281

(a) The distribution of the partial correlation coefficient #,, p_1.1.. . p-g
(6) The distribution of the partial co-variance v,, p_1.1... p-s
(¢) The distribution of the partial regression coefficient &, , 1.1, .. p-a

On the other hand, the following distributions and tests of regres-
sion depend only on the existence and normality of the one residual,

f:p'l el

(d) The distribution of the partial variance v,,.1.,. . p-1.

(¢) The distribution of the normal and independent variates (defined
in (34)), wp, 0+ + + Wy, p1.

(/) The test of significance of b, poye1, .. p-a~ By, p-1:1... p—g—including
the particular case when p,, ;,_4.1... 5~z assumed zero.

(g) Lhe: jomit: test of - significante. of 0uqy sty $91a00 bel
By v il ril s a1 @EL s v A= D—ineluding the particular case
when no real multiple correlation is assumed.

(%) In the problem of two samples, provided we can regard the set of

variates &, . . . €, as fixed, the test of significance of &, ,.3.1... p-2

Bty inegy OF the joint test of significancs. of Gy s ora1; ¢t 21
/

Nban"l v v Py FEL a:~1(7’:1‘ v I)-

Regression is scen to be a wider concept than correlation; for fewer
assumptions are involved in the more important distributions and tests,
which are moreover simpler.

Though all correlation tests—when we are concerned only with finding
whether there is any correlation at all—reduce to regression tests, a dis-
tinction should obviously be made between problems of regression in
general, and those where the idea of correlation may be usefully employed.
In the case of two variates, for example, since the distribution of the
correlation coefficient when py; is not zero requires a random sample of
two normal variates &, and §;, a correlation coefficient has most meaning
in a sample of this kind.

No mention has so far been made of the test of goodness of fit of
regression lines (see Fisher (16)), since this depends on our having an
array of values of &, for cach value of &. The test is, however, simply
another application of the analysis of variance, the ‘2 distribution” being
used to test, say, whether we have satisfactorily obtained a normal variate
€. by assuming &, =&, — f,:€; and fitting a straight line. The variation
within arrays is compared with the variation of the means of the arrays
from the fitted regression line. The test is thus strictly possible only
when several values of &, correspond to each §;, but in practice when this
condition is not fulfilled we can sometimes group the values of ¢, provided
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the grouping is sufficiently fine, Alternatively, we could fit the regression
line first, and, afterwards group the deviations from this line; we should
then, however, as an approximation have to neglect the number of degrees
of freedom lost in fitting, and assume the fitted regression line to be the
true (linear) regression line.

An exact theoretical test for the goodness of fit of a straight line would
be to fit the regression line, and then group coarsely, making ah estimate
of o0&, by finding ¢gg.01 for each group. That is, if there were a groups,
finding

a
(n ~ 2a)v; = 21 (Cap-0)rs
==

a
2(@ = 1)vy = y9.01 = El (co00)rs
r=

and comparing the independent estimates of oy, given by v, and v,
Lven if we were testing the fit of a curved regression line, it would probably
be sufficient to assume the regression in any group to be linear. But the
awkwardness of the above test makes its practical importance limited;
especially as the test of goodness of fit is supplementary to the specific
tests of significance of regression coefficients—tests which are usually
more sensitive,

Thus it might happen that a regression coefficient &y, is significant,
although the goodness of fit seemed adequate when Bz was assumed
zero; this is because in the test of significance of by the variance due
to the linear regression is isolated as a single square, This particular
criticism of the test of goodness of fit is general, of course, and applies
also to the case where there are arrays of values of €, for each &,

In conclusion, we may perhaps recall that the calculation of all regres-

” sion coefficients is a problem in the theory of least squares, and conse-

quently their accuracy depends only on the assumptions necessary for this
theory. We had, for example, the normal variate

Wy, 1= e11.0(ba1 ~ Por) = P RIBY
where

2
Al “3‘1.0/'\/2.‘51,0,
whether the values of £, are fixed or not, provided §,., is normal. It is
clear, however, that w, , is approximately normal whatever the distribu-
tion of &;.5, provided no values of &, (or A;) are abnormal, since a linear
function of # variates goes to normality as 7 becomes large.
Hence it is likely that
Ve | by = Bar | <205y,

and for a reasonably sized sample, so that 4/¢;., is reasonably large, we
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may conclude that the discrepancy between &4y and f is likely to be
small. But the exact test of significance of &y — By must, for any finite
sample, involve the assumption that &;.; is normal.

I should like to express my. thanks to Dr J, Wishart, to whom I owe
the suggestion that a more systematic and complete derivation might be
possible of the various distributions and tests associated with regression
than has perhaps hitherto been given. [ am also indebted to Dr Wishart
for advice and criticism while this paper was being prepared.
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