Press "Enter" to skip to content

11 search results for "julia"

Spectral radius from characteristic polynomial

Phase portrait of reciprocal of characteristic polynomial of a high dimensional Ginibre matrix
Phase portrait of reciprocal characteristic polynomial of a high dimensional Ginibre matrix – Julia code given below. The interior and exterior of the unit disc of the complex plane are swapped by the reciprocal transform. The spectrum lies essentially outside.

This post is about the work arXiv:2012.05602 in collaboration with Charles Bordenave and David García-Zelada on the spectral radius. Clearly this is my favorite work so far!

Consider a square random matrix with independent and identically distributed entries of mean zero and unit variance. We show that as the dimension tends to infinity, the spectral radius is equivalent to the square root of the dimension in probability. This result can also be seen as the convergence of the support in the circular law theorem under optimal moment conditions. In the proof we establish the convergence in law of the reciprocal characteristic polynomial to a random analytic function outside the unit disc, related to a hyperbolic Gaussian analytic function. The proof is short and differs from the usual approaches for the spectral radius. It relies on a tightness argument and a joint central limit phenomenon for traces of fixed powers.

Model. Let $\{a_{jk}\}_{j,k\geq1}$ be independent and identically distributed complex random variables with mean zero and unit variance, namely $$\mathbb{E}[a_{11}]=0\quad\text{and}\quad\mathbb E[|a_{11}|^2] = 1.$$ For all $n\geq1$, let us consider the Girko random matrix $$A_n={(a_{jk})}_{1 \leq j,k \leq n}.$$ When $a_{11}$ is Gaussian with independent and identically distributed real and imaginary parts then $A_n$ belongs to the complex Ginibre ensemble. We are interested in the matrix $$\frac{1}{\sqrt{n}}A_n.$$By the law of large numbers, almost surely, as $n\to\infty$, the rows (and the columns) have unit Euclidean norm and are orthogonal. Its characteristic polynomial at point $z\in\mathbb{C}$ is $$p_n(z)=\det\Bigr(z-\frac{A_n}{\sqrt{n}}\Bigr)$$ where $z$ stands for $z$ times identity matrix. The $n$ roots of $p_n$ in $\mathbb{C}$ are the eigenvalues of $\frac{1}{\sqrt{n}}A_n$. They form a multiset $\Lambda_n$ which is the spectrum of $\frac{1}{\sqrt{n}}A_n$. The spectral radius is $$\rho_n=\max_{\lambda\in\Lambda_n}|\lambda|.$$ Following Ginibre, Girko, Bai, …, and finally Tao and Vu, the circular law (of nature) states that the empirical measure of the elements of $\Lambda_n$ tends weakly as $n\to\infty$ to the uniform distribution on the closed unit disc: almost surely, for every nice Borel set $B\subset\mathbb{C}$, $$\lim_{n\to\infty}\frac{\mathrm{card}(B\cap\Lambda_n)}{n} =\frac{\mathrm{area}(B\cap\overline{\mathbb{D}})}{\pi},$$ where “$\mathrm{area}$” stands for the Lebesgue measure on $\mathbb C$, and where $\overline{\mathbb{D}}=\{z\in\mathbb{C}:|z|\leq1\}$ is the closed unit disc. The circular law, which involves weak convergence, does not provide the convergence of the spectral radius, it gives only $$\varliminf_{n\to\infty}\rho_n\geq1.$$

Our result on the spectral radius.  We have $\rho_n\overset{\mathbb{P}}{\underset{n\to\infty}{\longrightarrow}}1$, in the sense that for all $\varepsilon>0$, $$\lim_{n\to\infty}\mathbb{P}(|\rho_n-1|\geq\varepsilon)=0.$$ The moments assumptions of zero mean and unit variance are optimal. Moreover the $\frac{1}{\sqrt{n}}$ scaling is no longer adequate for entries of infinite variance.

We have $\rho_n\leq\sigma_n$ where $\sigma_n$ is the operator norm of $\frac{1}{\sqrt{n}}A_n$ (largest singular value). Bai and al have proved that the condition $\mathbb{E}[|a_{11}|^4]<\infty$ is necessary and sufficient for the convergence of $\sigma_n$ as $n\to\infty$ and that the limit is then $2$. A striking aspect of the spectral radius, in comparison with the operator norm, is that it converges without such an extra condition.

Proof. It does not involve any Hermitization or norms of powers in the spirit of Gelfand’s spectral radius formula. The idea is to show that on $\mathbb{C}\cup\{\infty\}\setminus\overline{\mathbb{D}}$, the function $$z\mapsto z^{-n}p_n(z)$$ tends as $n\to\infty$ to a random analytic function which does not vanish. The first step for mathematical convenience is to convert $\mathbb{C}\cup\{\infty\}\setminus\overline{\mathbb{D}}$ into $\mathbb D=\{z\in\mathbb{C}:|z|<1\}$ by noting that $p_n(z)=z^nq_n(1/z)$, $z\not\in\overline{\mathbb{D}}$, where for all $z\in\mathbb{D}$,
\[
q_n(z) = \det\left(1- z\frac{A_n}{\sqrt n}\right)
\]is the reciprocal polynomial of the characteristic polynomial $p_n$. Let $\mathrm{H}(\mathbb{D})$ be the set of holomorphic or complex analytic functions on $\mathbb{D}$, equipped with the topology of uniform convergence on compact subsets, the compact-open topology, studied by Shirai. This allows to see $q_n$ as a random variable on $\mathrm{H}(\mathbb{D})$ and gives a meaning to convergence in law of $q_n$ as $n\to\infty$, namely, $q_n$ converges in law to some random element $q$ of $\mathrm{H}(\mathbb{D})$ if for every bounded real continuous function $f$ on $\mathrm{H}(\mathbb{D})$, $$\mathbb E[f(q_n)] \to \mathbb E[f(q)].$$ Namely, we prove that $$q_n
\xrightarrow[n \to \infty]{\mathrm{law}}\kappa \mathrm{e}^{-F},$$ where $F$ is the random holomorphic function on $\mathbb D$ defined by $$F(z)=\sum_{k=1}^\infty X_k \frac{z^k}{\sqrt k}$$ where $\{X_k\}_{k\geq1}$ are independent complex Gaussian random variables such that
$$\mathbb E\big[X_k\big]=0,\quad\mathbb E\left[|X_k|^2\right] = 1\quad\text{and}\quad \mathbb E\left[X_k^2 \right] = \mathbb E \left[a_{11}^2 \right]^k,$$ and where $\kappa: \mathbb D \to \mathbb C$ is the holomorphic function defined for all $z\in\mathbb{D}$ by $$\kappa(z) = \sqrt{1-z^2 \mathbb E \left[a_{11}^2 \right]}.$$ The square root defining $\kappa$ is the one such that $\kappa(0)=1$. Notice that it is a well-defined holomorphic function on the simply connected domain $\mathbb{D}$ since the function $z\mapsto1-z^2\mathbb{E}[a_{11}^2]$ does not vanish on $\mathbb{D}$, indeed $|\mathbb{E}[a_{11}^2]|\leq\mathbb{E}[|a_{11}|^2]=1$.

The proof of the convergence of $q_n$ is partially inspired by a work due to Basak and Zeitouni and relies crucially on a joint combinatorial central limit theorem for traces of fixed powers inspired from a work by Janson and Nowicki. Unlike previous arguments used in the literature for the analysis of Girko matrices, the approach does not rely on Girko Hermitization, Gelfand spectral radius formula, high order traces, resolvent method or Cauchy-Stieltjes transform. The first step consists in showing the tightness of ${(q_n)}_{n\geq1}$, by using a decomposition of the determinant into orthogonal elements related to determinants of submatrices, as in the work of Basak and Zeitouni:$$\det\Bigr(1-z\frac{A_n}{\sqrt{n}}\Bigl)=1+\sum_{k=1}^n(-z)^n\sum_{\substack{I\subset\{1,\ldots,n\}\\|I|=k}}\frac{\det((A_n)_{I,I})}{\sqrt{n}^k}.$$Knowing this tightness, the problem is reduced to show the convergence in law of these elements. A reduction step, inspired by the work of Janson and Nowicki, consists in truncating the entries, reducing the analysis to the case of bounded entries. The next step consists in a central limit theorem for product of traces of powers of fixed order$$\det\Bigr(1-z\frac{A_n}{\sqrt{n}}\Bigr)=\exp\Bigr(-\sum_{k=1}^\infty\frac{\mathrm{Trace}(A_n^k)}{\sqrt{n}^k}\frac{z^k}{k}\Bigr).$$It is important to note that we truncate with a fixed threshold with respect to $n$, and the order of the powers in the traces are fixed with respect to $n$. This is in sharp contrast with the usual Füredi-Komlós truncation-trace approach related to the Gelfand spectral radius formula used in all the previous approaches for the spectral radius.

Moment assumptions. The universality for the first order global asymptotics stated by the circular law depends only on the trace $\mathbb{E}[|a_{11}|^2]$ of the covariance matrix of $\Re a_{11}$ and $\Im a_{11}$. The universality stated by the convergence of $q_n$, just like for the central limit theorem, depends on the whole covariance matrix. Since
$$\mathbb{E}[a_{11}^2]=\mathbb{E}[(\Re a_{11})^2]-\mathbb{E}[(\Im a_{11})^2]+2\mathrm{i}\mathbb{E}[\Re a_{11}\Im a_{11}],$$ we can see that $\mathbb{E}[a_{11}^2]=0$ if and only if $$\mathbb{E}[(\Re a_{11})^2]=\mathbb{E}[(\Im a_{11})^2]\quad\text{and}\quad\mathbb{E}[\Re a_{11}\Im a_{11}]=0.$$  Moreover, we cannot in general get rid of $\mathbb{E}[a_{11}^2]$ by simply multiplying $A_n$ by a phase.

Hyperbolic Gaussian analytic function. When $\mathbb E\left[a_{11}^2\right]=0$ then $\kappa=1$ while the random analytic function $F$ which appears in the limit is a degenerate case of the well-known hyperbolic Gaussian Analytic Functions (GAFs). It can also be obtained as the antiderivative of the $L=2$ hyperbolic GAF which is $0$ at $z=0$. This $L=2$ hyperbolic GAF is related to the Bergman kernel and could be called the Bergman GAF. These GAFs appear also at various places in mathematics and physics and, in particular, in the asymptotic analysis of Haar unitary matrices.

Cauchy-Stieltjes transform. If $\mathbb{E}[a_{11}^2]=0$ then by returning to $p_n$, taking the logarithm and the derivative with respect to $z$ in the convergence of $q_n$, we obtain the convergence in law of the Cauchy-Stieltjes transform (complex conjugate of the electric field) minus $n/z$ towards $z \mapsto F'(1/z)/z^2$ which is a Gaussian analytic function on $\mathbb C \setminus \overline{\mathbb D}$ with covariance given by a Bergman kernel.

Central Limit Theorem. The convergence of $q_n$ can be seen as a central limit theorem for the log-determinant (global second order analysis). Namely for all $z\in\mathbb{D}$, we have $$|q_n(1/z)| = \exp\left[-n \left(U_n(z)-U(z)\right)\right]$$ where $$U_n(z)=-\frac{1}{n}\log|p_n(z)|\quad\text{and}\quad U(z)=-\log|z|$$ are the logarithmic potential at the point $z$ of the empirical spectral distribution of $\frac{1}{\sqrt n} A_n$ and of the uniform distribution on the unit disc $\mathbb{D}$.

Moreover, it is possible to extract from the convergence of $q_n$ a CLT for linear spectral statistics with respect to analytic functions in a neighborhood of $\overline{\mathbb{D}}$. This can be done by using the Cauchy formula for an analytic function $f$,
\[
\begin{align*}\int f(\lambda) \mathrm \mu(\mathrm d \lambda)
&= \frac{1}{2\pi\mathrm{i}}
\int \left(\oint \frac{f(z)}{z – \lambda} \mathrm d z\right) \mu(\mathrm d
\lambda)\\
&= \frac{1}{2\pi\mathrm{i}} \oint f(z) \left(\int \frac{\mu(\mathrm d\lambda)} {z – \lambda} \right)\mathrm d z\\
&= \frac{1}{2\pi\mathrm{i}} \oint f(z)(\log \det \left(z – A \right))’ \mathrm d z
\end{align*}\]where $\mu$ is the counting measure of the eigenvalues of $A$, where the contour integral is around a centered circle of radius strictly larger than $1$, and where we have taken any branch of the logarithm. The approach is purely complex analytic. In particular, it is different from the usual approach with the logarithmic potential of $\mu$ based on the real function given by $z \mapsto \int\log|z-\lambda|\mu(\mathrm{d}\lambda) = \log|\det(z-A)|$.

Wigner case and elliptic interpolation. The finite second moment assumption is optimal. We could explore its relation with the finite fourth moment assumption for the convergence of the spectral edge of Wigner random matrices, which is also optimal. Heuristic arguments tell us that the interpolating condition on the matrix entries is $$\mathbb{E}[|a_{jk}|^2|a_{kj}|^2]<\infty,\quad j\neq k,$$ which is a finite second moment condition for Girko matrices and a finite fourth moment condition for Wigner matrices. This is work in progress.

Coupling and almost sure convergence. For simplicity, we define our random matrix $A_n$ for all $n\geq1$ by truncating from the upper left corner the infinite random matrix $\{a_{jk}\}_{j,k\geq1}$. This imposes a coupling for the matrices $\{A_n\}_{n\geq1}$. However, since our result of the spectral radius involves a convergence in probability, it remains valid for an arbitrary coupling, in the spirit of the triangular arrays assumptions used for classical CLTs. In another direction, one could ask about the upgrade to almost sure convergence. This is an open problem.

Heavy tails. An analogue of the circular law in the heavy-tailed case $\mathbb{E}[|a_{11}|^2]=\infty$ is already available but requires another scaling than $\frac{1}{\sqrt{n}}$. The spectral radius of this model tends to infinity as $n\to\infty$ but it could be possible to analyze the limiting point process at the edge as $n\to\infty$ and its universality. This is an open problem.

Julia code. Here is a Julia code illustrating the high dimensional phenomenon.

using LinearAlgebra, Plots # for eigvals(), scatter(), heatmap()

function phaseportrait(n)
 M = (randn(n,n)+im*randn(n,n))/sqrt(2*n)
 Spec = eigvals(M)
 scatter(real(Spec),imag(Spec),aspect_ratio=:equal,legend=false)
 r = 1000
 c = max.(abs.(Spec))
 c = c + c/2
 M = zeros(r,r)
 for i in 1:r
  for j in 1:r
   z = (-c + 2*c*i/r) + im * (-c + 2*c*j/r)
   M[i,j] = angle(prod(z.*Spec.-1)) # reciprocal charpoly phase
  end
 end
 heatmap(M,aspect_ratio=:equal,legend=false,background_color=:transparent,c=:hsv) 
end # function
 
phaseportrait(250)

Discrete analogue. The method can be adapted to sparse Boolean matrices, replacing the Gaussian limiting regime by a Poisson limiting regime, in relation to important aspects of the high dimensional analysis of random graphs. This was done by Simon Coste.

Further reading.

Phase portrait of reciprocal characteristic polynomial of a high dimensional real Gaussian matrix
Phase portrait of reciprocal characteristic polynomial of a high dimensional real (hence the spectrum symmetry) Gaussian matrix.
Leave a Comment

Sinkhorn and circular law

Circular law for sinkhorn
Sinkhorn spectrum for initial matrix with iid exponential entries

The Sinkhorn factorization of a square matrix $A$ with positive entries takes the form $$A = D_1 S D_2$$ where $D_1$ and $D_2$ are diagonal matrices with positive diagonal entries and where $S$ is a doubly stochastic matrix meaning that it has entries in $[0,1]$ and each row and column sums up to one. It is named after Richard Dennis Sinkhorn (1934 – 1995) who worked on the subject in the 1960s. A natural algorithm for the numerical approximation of this factorization consists in iteratively normalize each row and each column, and this is referred to as the Sinkhorn-Knopp algorithm. Its convergence is fast. Actually this is a special case of the iterative proportional fitting (IPF) algorithm, classic in probability and statistics, which goes back at least to the analysis of the contingency tables in the 1920s, and which was reinvented many times, see for instance the article by Friedrich Pukelsheim and references therein. It is in particular well known that $S$ is the projection of $A$, with respect to the Kullback-Leibler divergence, on the set of doubly stochastic matrices (Birkhoff polytope). The Sinkhorn factorization and its algorithm became fashionable in the domain of computational optimal transportation due to a relation with entropic regularization. It is also considered in the domain of quantum information theory.

Here is a simple implementation using the Julia programming language.

using LinearAlgebra # for Diagonal
#
function sinkhorn(A, tol = 1E-6, maxiter = 1E6)
 # Sinkhorn factorization A = D1 S D2 where D1 and D2 are diagonal and S doubly 
 # stochastic using Sinkhorn-Knopp algorithm which consists in iterative rows 
 # and columns sums normalizations. This code is not optimized.
 m , n = size(A,1), size(A,2) 
 D1, D2 = ones(1,n), ones(1,n)
 S = A
 iter, err = 0, +Inf
 while ((err > tol) && (iter < maxiter))
   RS = vec(sum(S, dims = 2)) # column vector of rows sums
   D1 = D1 .* RS
   S = Diagonal(1 ./ RS) * S 
   CS = vec(sum(S, dims = 1)) # row vector of columns sums
   D2 = CS .* D2
   S = S * Diagonal(1 ./ CS)
   iter += 1
   err = norm(RS .- 1) + norm(CS .- 1)
 end
 return S, Diagonal(D1), Diagonal(D2), iter
end # function

Circular law. Suppose now that $A$ is a random matrix, $n\times n$, with independent and identically distributed positive entries of mean $m$ and variance $\sigma^2$, for instance following the uniform or the exponential distribution. Let $S$ be the random doubly stochastic matrix provided by the Sinkhorn factorization. It is tempting to conjecture that the empirical spectral distribution of $$\frac{m\sqrt{n}}{\sigma}S$$ converges weakly as $n\to\infty$ to the uniform distribution on the unit disc of the complex plane, with a single outlier equal to $\frac{m\sqrt{n}}{\sigma}$. The circular law for $S$ is inherited from the circular law for $A$ and the law of large numbers. This can be easily guessed from the first iteration of the Sinkhorn-Knopp algorithm, that reminds the circular law analysis of random Markov matrices inspired from the Dirichlet Markov Ensemble and its decomposition. The circular law for $A$ is a universal high dimensional phenomenon that holds as soon as the variance of the entries is finite. One can also explore the case of heavy tails, and wonder if the circular law for $S$ still remains true!

The following Julia code produces the graphics at the top and the bottom of this post.

using Printf # for @printf
using Plots # for scatter and plot
using LinearAlgebra # for LinRange

function sinkhornplot(A,m,sigma,filename)
    S, D1, D2, iter = sinkhorn(A)
    @printf("%s\n",filename)
    @printf(" ‖A-D1 S D2‖ = %s\n",norm(A-D1*S*D2))
    @printf(" ‖RowsSums(S)-1‖ = %s\n",norm(sum(S,dims=2).-1))
    @printf(" ‖ColsSums(S)-1‖ = %s\n",norm(sum(S,dims=1).-1))
    @printf(" SK iterations = %d\n",iter)
    spec = eigvals(S) * m * sqrt(size(S,1)) / sigma
    maxval, maxloc = findmax(abs.(spec))
    deleteat!(spec, maxloc)
    scatter(real(spec),imag(spec),aspect_ratio=:equal,legend=false)
    x = LinRange(-1,1,100)
    plot!(x,sqrt.(1 .- x.^2),linewidth=2,linecolor=:steelblue)
    plot!(x,-sqrt.(1 .- x.^2),linewidth=2,linecolor=:steelblue)
    savefig(filename)    
end #function

sinkhornplot(rand(500,500),1/2,1/sqrt(12),"sinkhorn-unif.png")
sinkhornplot(-log.(rand(500,500)),1,1,"sinkhorn-expo.png")
sinkhornplot(abs.(randn(500,500)./randn(500,500)),1,1,"sinkhorn-heavy.png")
Sinkhorn spectrum for initial matrix with iid heavy tailed entries

Example of program output.

sinkhorn-unif.png
 ‖A-D1 S D2‖ = 6.704194265149758e-14
 ‖RowsSums(S)-1‖ = 8.209123420903459e-11
 ‖ColsSums(S)-1‖ = 3.326966272203901e-15
 SK iterations = 4
sinkhorn-expo.png
 ‖A-D1 S D2‖ = 1.9956579227110527e-13
 ‖RowsSums(S)-1‖ = 5.155302149020719e-11
 ‖ColsSums(S)-1‖ = 3.3454392974351074e-15
 SK iterations = 5
sinkhorn-heavy.png
 ‖A-D1 S D2‖ = 8.423054036449791e-10
 ‖RowsSums(S)-1‖ = 4.5152766460217607e-7
 ‖ColsSums(S)-1‖ = 3.8778423131653425e-15
 SK iterations = 126

Further reading.

Leave a Comment

Enseigner

MatrixTrois idées basiques pour enseigner différemment :

  • Demander au département d’installer un serveur JupyterHub pour faire du Julia/Python/R
  • Utiliser le Google colaboratory ou rstudio.cloud pour faire du Python ou du R en ligne (1)
  • Demander aux étudiants de rendre leur projet sur github pour apprendre à s’en servir (2)

(1) signalé par mon collègue Jamal Atif. L’analogue chez Microsoft est Azure Notebooks.

(2) signalé par mon collègue Robin Ryder.

Leave a Comment

Petites pensées de rentrée

Doisneau - Écolier
Écoliers – Robert Doisneau.

Vice-présidence. La rentrée est aussi celle des vice-présidents en charge du numérique… La mienne fut, comme d’habitude, sans costume ni cravate, et sans compte Twitter, malgré une pression de conformité parfois marquée sur ces aspects à Dauphine ! À ce propos, je n’ai décidément aucun regret d’avoir fermé mes comptes Twitter et Facebook vers 2010. Le temps gagné permet de se consacrer à des tâches plus intéressantes, et parfois beaucoup plus numériques, comme par exemple l’apprentissage du langage de programmation Julia. Du reste, déserter ces deux réseaux sociaux constitue actuellement, semble-t-il, une disruption socio-numérique naturelle. En ce qui concerne la cravate et le costume, je fais preuve d’un grand conformisme disciplinaire, car les mathématiciens et les informaticiens sont en général vêtus de manière peu formelle, et cela a même très bien diffusé dans l’industrie du numérique !

Référentiels. L’informatique des organisations n’échappe pas aux analyses polarisées et aux discours simplificateurs. Il en va ainsi par exemple du sujet des référentiels. Dans un système d’information, un référentiel est une base de données qui fait référence. Idéalement, tout système d’information devrait comporter des référentiels (personnes, entreprises, …), auxquels sont connectées toutes les briques logicielles. Dans la réalité, les systèmes d’information sont bien souvent loin de cet idéal, et sont le fruit d’une accumulation historique de sous-systèmes désordonnés et mal connectés. Comme toute organisation, les systèmes d’information sont semblables aux organismes biologiques, fruit du hasard et de la nécessité. Les tenants du tout-référentiel s’épuisent souvent à construire des connecteurs complexes lors de l’insertion de référentiels, tandis que les anti-référentiels prennent le risque de faire perdurer les saisies multiples et les incohérences. Une approche sans doute plus pragmatique consiste à mettre en place un référentiel quand le rapport coût/bénéfice est favorable, et consiste aussi à décider que certains sous-systèmes peuvent constituer, par leur base de données interne, des référentiels naturels de fait. La situation est évidement différente lorsque le système d’information n’existe pas et qu’il faut tout mettre en place. Cela ressemble en somme à de l’architecture urbaine, et les théoriciens de l’informatique des organisations l’ont bien compris depuis longtemps, même s’ils ont engendré des religieux structuralistes ou anti-structuralistes. Comme souvent, tout est dans la nuance, la dose, la capacité à penser une chose et son contraire, bref la dynamique et la dialectique… Mais ce paragraphe n’est-il pas lui-même polarisé et simplificateur ?

Probabilités. J’ai échangé avec des collègues sur l’enseignement des probabilités, notamment en licence. Voici, pêle-mêle, quelques aspects qui comptent à mes yeux :

  • émailler son propos d’anecdotes concrètes et de mise en perspective avec l’actualité et les autres domaines, en évoquant le fil de l’histoire et la lente élaboration des concepts, éviter de faire croire que l’édifice optimisé que l’on présente est arrivé tel quel, faire comprendre qu’il est le fruit d’une lente digestion collective, mais aussi humaniser les héros, oser montrer leurs errances, faiblesses, erreurs, exigences, et audaces;
  • mettre en avant les réflexes probabilistes, le comptage et la sommation, le principe des tiroirs, le passage au complémentaire, la sous-additivité et borne de l’union, diviser pour régner comme dans la preuve probabiliste du théorème de Weierstrass, la probabilité comme espérance d’indicateur, l’usage élémentaire de l’indépendance et du conditionnement;
  • illustrer les concepts, conceptualiser les exemples, jongler entre abstraction et intuition, mettre en avant la structure, l’ossature, l’analogie, se servir de l’esthétique pour séduire;
  • mettre en avant le concept de loi uniforme et l’algorithmique associée, lié à la combinatoire, ce qui conduit au problème général de la simulation, mais aussi aux suites récurrentes aléatoires, aux chaînes de Markov, et aux phénomènes de renforcement;
  • mettre en avant les modèles aléatoires de base, leur ubiquité, leur richesse, et les méthodes qu’ils suscitent naturellement : tirages aléatoires, jeu de pile ou face, jeu de dés, coupons, branchement, marches aléatoires, etc. Le jeu de pile ou face et son extension aux dés par exemple fait apparaître naturellement la plupart des lois discrètes classiques, puis le processus de Poisson, tandis que les tirages aléatoires font la jonction entre l’uniformité discrète et le jeu de pile ou face via les lois hypergéométriques;
  • connecter les probabilités à la physique, à l’informatique, et à la statistique dès le départ, mais aussi à la géométrie, à l’analyse, et à la combinatoire, au travers d’exemples, d’exercices, de problèmes;
  • mettre en avant l’idée qu’un phénomène aléatoire est au fond décrit par un objet assez rapidement de dimension infinie, et qu’il est alors naturel de tester cet objet contre des familles à la fois riches et structurées de fonctions tests, adaptées à la structure du modèle. C’est ainsi qu’on conçoit de manière unifiée les fonctions génératrices, la transformée de Laplace, la transformée de Fourier, la transformée de Cauchy-Stieltjes, etc. Cette idée remonte à la physique mathématique de la première moitié du vingtième siècle, et a été bien mathématisée par la théorie des distributions de Laurent Schwartz. Passer sous silence cet aspect des choses serait une perte de sens et de temps pour les élèves, mais y réduire les probabilités serait tout aussi regrettable. Dire explicitement que la puissance ou l’exponentielle permettent d’exploiter l’indépendance en transformant les sommes en produit sous l’espérance;

Absolu. Mes collègues mathématiciens et sociologues ont des points communs fréquents dans leur façon d’aborder certains thèmes notamment les sujets de société liés à l’université. Mais tandis que chez les sociologues, c’est la posture de la sociologie sport de combat déconstructrice des dominations qui est répandue, chez les mathématiciens, c’est plutôt le rapport à l’absolu disciplinaire qui rend éventuellement difficiles les compromissions avec les imperfections du réel.

Éternité. Nicolas Bourbaki voulait refonder les mathématiques pour l’éternité, et n’a finalement produit qu’une œuvre éphémère marquée par le structuralisme de l’époque. Ce contraste entre l’ambition d’éternité et l’éphémère du résultat est saisissant. C’était donc bien et avant tout une œuvre humaine, alors même qu’elle chassait l’humain de son expression, tenait à distance l’intuition et toute la magie alchimique des mathématiques vivantes.

Cariatide. L’insignifiance de la production scientifique individuelle peut entraîner un fort sentiment d’absurdité. Malgré tout, c’est précisément cette multitude d’activités individuelles insignifiantes qui maintient le savoir humain au plus haut niveau, dans une sorte de grande victoire collective de l’énergie sur l’entropie, et permet de ce fait l’éclosion régulière des grandes découvertes. Nous sommes tous les cariatides du savoir, et nous le sommes avec passion !

Vélo. Je me suis rendu compte que j’utilise mon vélo quotidiennement comme un fixie car je ne change presque pas de vitesse ! Ma préférée est celle obtenue avec le petit plateau avant et le petit pignon arrière. Ceci permet au grand plateau avant de rester bien propre et de ne plus salir mes pantalons. Je vais moins vite sur le plat, mais je force moins sur mes articulations lors des redémarrages. Je n’ai plus à anticiper les rétrogradages avant arrêt. Ceci ne m’empêche pas d’utiliser ce vélo autrement en dehors du quotidien, en randonnée par exemple.

Leave a Comment

Can't find what you're looking for? Try refining your search:

Syntax · Style · .