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Nonparametric regression model

Assume that we observe the pairs (X1,Y1), . . . , (Xn,Yn) ∈ Rd × R
where

Yi = f (Xi ) + ξi , i = 1, . . . , n.

Regression function f : Rd → R is unknown

Errors ξi are independent Gaussian N (0, σ2) random variables.

Xi ∈ Rd are arbitrary fixed (non-random) points.

We want to estimate f based on the data (X1,Y1), . . . , (Xn,Yn).
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Dictionary, linear approximation

Let f1, . . . , fM be a finite dictionary of functions, fj : Rd → R.
We approximate the regression function f by linear combination

fλ(x) =
M∑

j=1

λj fj(x) with weights λ = (λ1, . . . , λM).

We believe that

f (x) ≈
M∑

j=1

λj fj(x)

for some λ = (λ1, . . . , λM).

Possibly M � n
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Scenarios

(LinReg) Exact equality: there exists λ∗ ∈ RM such that
f = fλ∗ =

∑M
j=1 λ∗j fj

(linear regression, with possibly M � n parameters);

(NPReg) f1, . . . , fM are the first M functions of a basis (usually
orthonormal) and M ≤ n, there exists λ∗ such that f − fλ∗ is
small: nonparametric estimation of regression;

(Agg) aggregation of arbitrary estimators: in this case f1, . . . , fM
are preliminary estimators of f based on a training sample
independent of the observations (X1,Y1), . . . , (Xn,Yn);

(Weak) learning: f1, . . . , fM are “weak learners”, i.e., some rough
approximations to f ; M is extremely large.

Alexandre Tsybakov Sparse estimation in high-dimensional models



Introduction
Sparsity oracle inequalities(SOI)

BIC and LASSO
Sparse exponential weighting (SEW)

Model, dictionary, linear approximation
Sparsity and dimension reduction

Scenarios

(LinReg) Exact equality: there exists λ∗ ∈ RM such that
f = fλ∗ =

∑M
j=1 λ∗j fj

(linear regression, with possibly M � n parameters);

(NPReg) f1, . . . , fM are the first M functions of a basis (usually
orthonormal) and M ≤ n, there exists λ∗ such that f − fλ∗ is
small: nonparametric estimation of regression;

(Agg) aggregation of arbitrary estimators: in this case f1, . . . , fM
are preliminary estimators of f based on a training sample
independent of the observations (X1,Y1), . . . , (Xn,Yn);

(Weak) learning: f1, . . . , fM are “weak learners”, i.e., some rough
approximations to f ; M is extremely large.

Alexandre Tsybakov Sparse estimation in high-dimensional models



Introduction
Sparsity oracle inequalities(SOI)

BIC and LASSO
Sparse exponential weighting (SEW)

Model, dictionary, linear approximation
Sparsity and dimension reduction

Scenarios

(LinReg) Exact equality: there exists λ∗ ∈ RM such that
f = fλ∗ =

∑M
j=1 λ∗j fj

(linear regression, with possibly M � n parameters);

(NPReg) f1, . . . , fM are the first M functions of a basis (usually
orthonormal) and M ≤ n, there exists λ∗ such that f − fλ∗ is
small: nonparametric estimation of regression;

(Agg) aggregation of arbitrary estimators: in this case f1, . . . , fM
are preliminary estimators of f based on a training sample
independent of the observations (X1,Y1), . . . , (Xn,Yn);

(Weak) learning: f1, . . . , fM are “weak learners”, i.e., some rough
approximations to f ; M is extremely large.

Alexandre Tsybakov Sparse estimation in high-dimensional models



Introduction
Sparsity oracle inequalities(SOI)

BIC and LASSO
Sparse exponential weighting (SEW)

Model, dictionary, linear approximation
Sparsity and dimension reduction

Scenarios

(LinReg) Exact equality: there exists λ∗ ∈ RM such that
f = fλ∗ =

∑M
j=1 λ∗j fj

(linear regression, with possibly M � n parameters);

(NPReg) f1, . . . , fM are the first M functions of a basis (usually
orthonormal) and M ≤ n, there exists λ∗ such that f − fλ∗ is
small: nonparametric estimation of regression;

(Agg) aggregation of arbitrary estimators: in this case f1, . . . , fM
are preliminary estimators of f based on a training sample
independent of the observations (X1,Y1), . . . , (Xn,Yn);

(Weak) learning: f1, . . . , fM are “weak learners”, i.e., some rough
approximations to f ; M is extremely large.

Alexandre Tsybakov Sparse estimation in high-dimensional models



Introduction
Sparsity oracle inequalities(SOI)

BIC and LASSO
Sparse exponential weighting (SEW)

Model, dictionary, linear approximation
Sparsity and dimension reduction

Sparsity of a vector

The number of non-zero coordinates of λ:

M(λ) =
M∑

j=1

I{λj 6=0}

The value M(λ) characterizes the sparsity of vector λ ∈ RM : the
smaller M(λ), the “sparser” λ.
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Sparsity of the model

Intuitive formulation of sparsity assumption:

f (x) ≈
M∑

j=1

λj fj(x) (“f is well approximated by fλ”)

where the vector λ = (λ1, . . . , λM) is sparse:

M(λ) � M.
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Strong sparsity

Strong sparsity:

f admits an exact sparse representation

f = fλ∗

for some λ∗ ∈ RM , with

M(λ∗) � M

⇒ Scenario (LinReg)
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Sparsity and dimension reduction

The empirical norm:

‖f ‖n =

√√√√1

n

n∑
i=1

f 2(Xi ).

Let λ̂OLS be the ordinary least squares (OLS) estimator.
Elementary result:

E‖fbλOLS
− f ‖2n ≤ ‖f − fλ‖2n +

σ2M

n

for any λ ∈ RM .
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Sparsity and dimension reduction

For any λ ∈ RM the “oracular” OLS that acts only on the relevant
M(λ) coordinates satisfies

E‖foraclebλOLS
− f ‖2n ≤ ‖f − fλ‖2n +

σ2M(λ)

n
.

This is only an OLS oracle, not an estimator! The set of relevant
coordinates should be known.
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Do there exist estimators with similar behavior? Choose some
other data-driven weights λ̂ = (λ̂1, . . . , λ̂M) and estimate f by

f̂ (x) = fbλ(x) =
M∑

j=1

λ̂j fj(x).

Can we find λ̂ such that

E‖fbλ − f ‖2n . ‖f − fλ‖2n +
σ2M(λ)

n
, ∀λ?
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Realizable task: look for an estimator fbλ satisfying a sparsity
oracle inequality (SOI)

E‖fbλ − f ‖2n ≤ inf
λ∈RM

{
C‖f − fλ‖2n + C ′M(λ) log M

n

}
with some constants C ≥ 1, C ′ > 0 and an inevitable extra log M
in the variance term. C = 1 ⇒ sharp SOI.

“In probability” form of sparsity oracle inequalities:
with probability close to 1,

‖fbλ − f ‖2n ≤ inf
λ∈RM

{
C‖f − fλ‖2n + C ′M(λ) log M

n

}
.
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Implications of SOI: Scenario (LinReg)

Assume that we have found an estimator fbλ satisfying SOI. Some
consequences for different scenarios:

(LinReg) linear regression: f = fλ∗ for some λ∗. Using SOI:

E‖fbλ − f ‖2n ≤ C

{
‖f − fλ∗‖2n +

M(λ∗) log M

n

}
=

CM(λ∗) log M

n

(the desired result for Scenario (LinReg)).
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Implications of SOI: Scenario (NPReg)

(NPReg) nonparametric regression. If f belongs to standard
smoothness classes of functions, minλ∈Λm ‖f − fλ‖n ≤ Cm−β

for some β > 0 (Λm = the set of vectors with only first m
non-zero coefficients, m ≤ M). Using SOI:

E‖fbλ − f ‖2n ≤ C inf
m≥1

{
min
λ∈Λm

‖f − fλ‖2n +
m log M

n

}
≤ C inf

m≥1

{
1

m2β
+

m log M

n

}
= O

((
log n

n

)2β/(2β+1)
)

for M ≤ n

(optimal rate of convergence, up to logs, in Scenario
(NPReg)).
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Implications of SOI: Scenario (Agg)

(Agg) aggregation of arbitrary estimators: in this case f1, . . . , fM
are preliminary estimators of f based on a pilot (training)
sample independent of the observations (X1,Y1), ..., (Xn,Yn).
The training sample is considered as frozen. Assume that SOI
holds with leading constant 1. Then:

E‖fbλ − f ‖2n ≤ inf
λ∈RM

{
‖f − fλ‖2n +

CM(λ) log M

n

}
≤ min

1≤j≤M
‖f − fj‖2n +

C log M

n

=⇒ fbλ attains optimal rate of Model Selection type

aggregation log M
n (T., 2003).
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Implications of SOI: Scenario (Agg)

Similar conclusion holds for Convex aggregation. We restrict λ to
the simplex

ΛM = {λ ∈ RM : λj ≥ 0,
∑M

j=1 λj = 1}.

From SOI with leading constant 1 + “Maurey argument”:

E‖fbλ − f ‖2n ≤ inf
λ∈RM

{
‖f − fλ‖2n +

CM(λ) log M

n

}
≤ inf

λ∈ΛM
‖f − fλ‖2n + C ′

√
log M

n
.

=⇒ fbλ attains optimal rate of Convex aggregation
√

log M
n

[Nemirovski (2000), Juditsky and Nemirovski (2000)].
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Conclusion: all these nice properties are simultaneously satisfied for
one and the same procedure, whenever it obeys a SOI.

Ultimate target:

no assumptions on the dictionary f1, . . . , fM

SOI with leading constant 1

computational feasibility
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Definition of the BIC method

First idea: penalize least squares directly by M(λ) (BIC criterion,
Schwarz (1978), Foster and George (1994)).

λ̂BIC = arg min
λ∈RM

{
‖y − fλ‖2n + γ

M(λ) log M

n

}
,

where γ > 0 and

‖y − fλ‖2n , 1
n

∑n
i=1

(
Yi − fλ(Xi )

)2
, y = (Y1, . . . ,Yn).

Remarks:

If the matrix X = (fj(Xi ))i ,j has orthnormal columns, BIC is
equivalent to hard thresholding of the components of XTy/n
at the level

√
γ(log M)/n.

In general: non-convex, discontinuous minimization problem!
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Sparsity oracle inequality for BIC

Theorem. [Bunea/ T/ Wegkamp (2004)]: if γ > K0σ
2 for an

absolute constant K0, and with no assumption on the dictionary
f1, . . . , fM , the BIC estimator satisfies, with probability close to 1,

‖fbλBIC−f ‖2n ≤ (1+ε) inf
λ∈RM

{
‖f − fλ‖2n + C (ε)

M(λ) log M

n

}
, ∀ε > 0.

Remarks:

the BIC is realizable only for small M (say, M ≤ 20),

the leading constant is not 1.
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LASSO

Second popular idea: LASSO [Frank and Friedman (1993,
”Bridge” regression), name: Tibshirani (1996), Chen and Donoho
(1998, basis pursuit), etc.]: instead of penalizing the residual sum
of squares by M(λ), as in the BIC, penalize by the `1 norm of λ:

λ̂L = arg min
λ∈RM

{
‖y − fλ‖2n + 2r |λ|1

}
,

where |λ|1 =
∑M

j=1 |λj |, r > 0 a tuning constant. A sensible choice:

r = A

√
log M

n
for A > 0 large enough.

If the matrix X = (fj(Xi ))i ,j has orthonormal columns, LASSO
is equivalent to soft thresholding of the components of
XTy/n at the level r .
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Relaxed positive definiteness

For a vector ∆ = (aj)j=1,...,M and a subset of indices
J ⊆ {1, . . . ,M} write

∆J = (aj1{aj ∈ J})j=1,...,M .

The Gram matrix:

ΨM =
(
〈fj , fj ′〉n

)
1≤j ,j ′≤M

.

Assumption RE(s, c0). (Bickel/Ritov/T, 2007)

For an integer 1 ≤ s ≤ M and c0 > 0 there exists κ = κ(s, c0):

∆TΨM∆ ≥ κ|∆J |22

for all J ⊆ {1, . . . ,M} such that |J| ≤ s and |∆Jc |1 ≤ c0|∆J |1.
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More specific assumptions

Assumption RE is more general than other assumptions on the
Gram matrix in the LASSO/Dantzig literature:

“Uniform uncertainty principle” (Candes/Tao),

Mutual coherence assumption (Bunea/T/Wegkamp),

Incoherent design assumption (Meinshausen/Yu,
Zhang/Huang).

Most of the LASSO/Dantzig papers focus on the linear regression
scenario (LinReg).
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Sparsity oracle inequality for the LASSO

Theorem [Bickel, Ritov and T., 2007]

Let ‖fj‖n = 1, j = 1, . . . ,M. Fix some ε > 0. Let Assumption
RE(s, c0) be satisfied with c0 = 3 + 4/ε. Consider the LASSO
estimator fbλL with the tuning constant

r = Aσ

√
log M

n

for some A > 2
√

2. Then, for all M ≥ 3, n ≥ 1 with probability at
least 1−M1−A2/8 we have: ∀ λ ∈ RM : M(λ) = s,

‖fbλL − f ‖2n ≤ (1 + ε)‖fλ − f ‖2n + C (ε)

(
M(λ) log M

κ n

)
.
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Disadvantages of the LASSO:

SOI for the LASSO holds under very restrictive assumptions
on the dictionary involving κ. Moreover, the assumptions
depend on the (unknown) number s of non-zero components
of the oracle vector, or eventually on the upper bound on this
number. Such assumptions are unavoidable: Candes and Plan
(2008).

Bad behavior when κ is small.

The leading constant in SOI is not 1.

Same problems with the Dantzig selector: the properties of
Dantzig selector are essentially the same as for LASSO, cf. Bickel,
Ritov and T. (2007).
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Sparse exponential weighting

Choose λ̂EW according to:

λ̂EW
j =

∫
RM

λjSn(dλ), j = 1, . . . ,M,

where the probability measure Sn is given by

Sn(dλ) =
exp

{
− n‖y − fλ‖2n/β

}
π(dλ)∫

RM exp
{
− n‖y − fw‖2n/β

}
π(dw)

with some β > 0 and some prior measure π.

Bayesian estimator if β = 2σ2, but we need a larger β.

Non-discrete π: is the fast computation possible?
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A PAC-Bayesian bound

Lemma [Dalalyan and T., 2007]

The estimator with exponential weights fbλEW defined with β ≥ 4σ2

and any prior π satisfies:

E‖fbλEW − f ‖2n ≤ inf
P

{∫
‖fλ − f ‖2n P(dλ) +

βK(P, π)

n

}
where the infimum is taken over all probability measures P on RM

and K(P, π) denotes the Kullback-Leibler divergence between P
and π.
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Sparsity prior

Choose a specific prior measure π with Lebesgue density q defined
by

q(λ) =
M∏

j=1

τ−1 q0

(
λj/τ

)
, ∀λ ∈ RM ,

where q0 is the Student t3 density,

q0(t) ∼ |t|−4, for large |t|

and τ ∼ (Mn)−1/2. We will call this prior the sparsity prior. The
resulting estimator fbλEW is called the Sparse Exponential
Weighting (SEW) estimator.
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SOI for the SEW estimator

Theorem [Dalalyan and T., 2007]

Let max1≤j≤M ‖fj‖n ≤ c0 < ∞. Then the exponential weighted
estimator fbλEW defined with β ≥ 4σ2 and with the sparsity prior π
satisfies:

E‖fbλEW − f ‖2n ≤ inf
λ∈RM

{
‖fλ − f ‖2n +

CM(λ)

n
log

(
1 +

|λ|1
√

Mn

M(λ)

)}

where |λ|1 is the `1-norm of λ.

No assumption on the dictionary.
Leading constant 1.
`1-norm of λ, but under the log.
Fast computation for at least M ∼ 103.
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SEW estimator: discussion

λ̂EW
j =

∫
RM

λjSn(dλ) =

∫
RM

λjθn(λ)dλ, j = 1, . . . ,M,

with posterior density θn(λ) = Sn(dλ)/dλ:

θn(λ) � exp
{
− n‖y − fλ‖2n/β + log q(λ)

}
� exp

{
− n‖y − fλ‖2n/β − C

M∑
j=1

log(1 + |λj |/τ)
}

Maximizer of this density (the MAP estimator):

λ̂ = arg min
λ∈RM

{
‖y − fλ‖2n +

γ

n

M∑
j=1

log(1 + |λj |/τ)
}

.
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Exponential weights: models with i.i.d. data

An i.i.d. sample Z1, . . . ,Zn from the distribution of an
abstract random variable Z ∈ Z.

Q(Z , fλ) a given real-valued loss (prediction loss).

Define the probability measure Sn on RM by

Sn(dλ) =
exp

{
−
∑n

i=1 Q(Zi , fλ)/β
}
π(dλ)∫

RM exp
{
−
∑n

i=1 Q(Zi , fw )/β
}
π(dw)

with some β > 0 and some prior measure π. Generalization of the
previous definition: we replace

n‖y − fλ‖2n  
n∑

i=1

Q(Zi , fλ).
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Mirror averaging

Cumulative exponential weights (mirror averaging):

λ̂MA
j =

∫
RM

λjS(dλ), j = 1, . . . ,M, with S =
1

n

n∑
i=1

Si

cf. Juditsky/Rigollet/T (2005) [even more general method:
Juditsky/Nazin/T/Vayatis (2005)]. In a particular case we get the
“progressive mixture method” of Catoni and Yang.
Choose a prior measure π supported on a convex compact Λ ⊂ RM

(e.g., on an `1 ball).
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Assumption JRT (2005).

The mapping λ 7→ Q(Z , fλ) is convex for all Z and there exists
β > 0 such that the function

λ 7→ E exp

(
Q(Z , fλ′)− Q(Z , fλ)

β

)
is concave on a convex compact set Λ ⊂ RM for all λ′ ∈ Λ.
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PAC-Bayesian bound for mirror averaging

Define the average risk: A(λ) = EQ(Z , fλ).

Lemma (PAC-Bayesian bound).

Let fbλMA be a mirror averaging estimator defined with β satisfying
Assumption JRT and any prior π supported on a convex compact
set Λ. Then

E A(λ̂MA) ≤ inf
P

{∫
A(λ) P(dλ) +

βK(P, π)

n + 1

}
where the infimum is taken over all probability measures P on Λ
and K(P, π) is the Kullback-Leibler divergence between P and π.

Proof follows the scheme of Juditsky, Rigollet and T. (2005), cf.
Rigollet and Zhao (2006), Audibert (2006), Lounici (2007).
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SOI for Mirror Averaging

Theorem [Dalalyan, Rigollet and T., 2007]

Assume that sup|λ|1≤2R Spec{∇2A(λ)} < ∞ for some R > 0. Let
fbλMA be a mirror averaging estimator satisfying assumptions of the
PAC lemma, with the sparsity prior π truncated to
{λ : |λ|1 ≤ 2R} and τ ∼ 1/

√
M(n ∨M). Then

E A(λ̂MA) ≤ inf
|λ|1≤R

{
A(λ) +

CR2M(λ)

n
log

(
C ′R

√
M(n ∨M)

M(λ)

)}
.

No restrictive assumption on the dictionary.

Leading constant 1.
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Comparison with SOI for the LASSO

The LASSO type estimators

λ̂ = arg min
λ∈RM

1

n

n∑
i=1

Q(Zi , fλ) + r
M∑

j=1

|λj |p
 , 1 ≤ p ≤ 1+

1

log M
,

van de Geer (2006) [p=1, ΨM > 0] and Koltchinskii (2007):

E A(λ̂) ≤ inf
|λ|1≤R

 3 A(λ) +
CR2M(λ) log M

κ(λ) n


where κ(λ) is a quantity analogous to κ in Assumption RE. To get
the correct rate, we need to consider only λ such that κ(λ) ≥ c ,
which is equivalent to RE.
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Example: Gaussian regression, squared loss

Gaussian regression with random design :
Z = (X ,Y ), X ∈ Rd , Y ∈ R such that

Y = f (X ) + ξ,

ξ|X ∼ N (0, σ2), X ∼ PX , ‖f ‖∞ ≤ L.

Assumption on the dictionary: ‖fj‖∞ ≤ L, j = 1, . . . ,M.

The loss function
Q(Z , fλ) =

(
Y − fλ(X )

)2
where fλ =

∑M
j=1 λj fj .

Then A(λ) = E Q(Z , fλ) = ‖fλ − f ‖2X + σ2, ‖f ‖2X ,
∫

f 2dPX .
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SOI for regression with squared loss

Corollary

Under the conditions of this example, for all β ≥ 2σ2 + 8L2,

E ‖fbλMA−f ‖2X ≤ inf
λ∈ΛM

{
‖fλ − f ‖2X +

CM(λ)

n
log

(
C ′√M(n ∨M)

M(λ)

)}
.

Here ΛM is the simplex:

ΛM = {λ ∈ RM : λj ≥ 0,

M∑
j=1

λj = 1}.
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Example: density estimation with L2 loss

Z = X ∈ Rd with density f , such that ‖f ‖∞ ≤ L .
Assumption on the dictionary: f1, . . . , fM are probability
densities such that ‖fj‖∞ ≤ L.

The loss function:

Q(X , fλ) = ‖fλ‖2 − 2fλ(X ) where ‖f ‖2 =

∫
f 2(x)dx .

The associated risk:

A(λ) = E Q(X , fλ) = ‖f − fλ‖2 − ‖f ‖2.
Assumption JRT holds: if β > 12L the mapping

λ 7→ E exp

(
Q(X , fλ′)− Q(X , fλ)

β

)
is concave on the simplex ΛM for all λ′ ∈ ΛM [JRT (2005)].
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SOI for density estimation with L2 loss

Corollary

Under the conditions of this example, for all β > 12L,

E ‖fbλMA−f ‖2 ≤ inf
λ∈ΛM

{
‖fλ − f ‖2 +

CM(λ)

n
log

(
C ′√M(n ∨M)

M(λ)

)}
.
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ΛM = {λ ∈ RM : λj ≥ 0,

M∑
j=1

λj = 1}.

Alexandre Tsybakov Sparse estimation in high-dimensional models



Introduction
Sparsity oracle inequalities(SOI)

BIC and LASSO
Sparse exponential weighting (SEW)

A PAC-Bayesian bound
Sparsity prior
SOI for the SEW estimator
PAC-Bayesian bound for mirror averaging
SOI for Mirror Averaging
Computation of SEW estimators

Computation of SEW estimators

Consider the linear regression scenario:

y = Xλ + W .

X is a n ×M deterministic design matrix, λ ∈ RM is an unknown
vector and W ∈ RM is a Gaussian vector with i.i.d. components,
with variances σ2. The SEW estimator

λ̂SEW ,
∫

RM

u g(u) du

where the posterior density

g(u) ∝ exp(−V (u))

V (u) = β−1‖y − Xu‖2 + 2
M∑

j=1

log(τ2 + u2
j ).
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Langevin Monte Carlo

Remark: the posterior density g(·) is the invariant density of the
Langevin diffusion

Lt = −∇V (Lt) dt +
√

2 dWt , L0 = 0, t > 0.

Here Wt is a M-dimensional Brownian motion.

Let now η1, η2, . . . be i.i.d. standard normal random vectors. Set

L0 = 0, Lk+1 = Lk − h∇V (Lk) +
√

2h ηk , k = 0, 1, . . . .

Then

1

[Th−1]

[Th−1]∑
k=1

Lk ≈
1

T

∫ T

0
Lt dt

a.s.−−−−→
T→∞

∫
RM

ug(u) du = λ̂SEW .
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Simulations

Example 1: model selection properties when the coherence is low

The entries of X are i.i.d. Rademacher random variables
independent of the noise W .

λj = I (j ≤ S) and σ2 =
S

9n
.

We apply the SEW estimator using Langevin Monte-Carlo with

τ = 4σ/
√

M, β = 4σ2, h = 0.0001.
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Simulations
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Figure: Typical result for Example 1 with n = 200, M = 500, S = 10,
h = 10−4, T = 5. The estimates of first 50 coefficients are plotted. In this
example, we have 1

n
‖X (λ̂ − λ)‖2 = 0.0021. The time of computation of the

estimator was about 30 seconds.
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Simulations

Example 2: Comparison with the LASSO/LARS

Choose X1, . . . ,Xn i.i.d. uniformly distributed in [0, 1]2 and set

fj(t) = I{[0, j1/k]×[0, j2/k]}(t), j = (j1, j2) ∈ {1, . . . , k}2, t ∈ [0, 1]2.

We get a matrix X which has k2 columns some of which are nearly
collinear. The number of covariates is M = k2. Set σ = 1, k = 15,
n = 100, λ∗j = 0 for every j ∈ {1, . . . , k} \ {87, 110, 200} and
λ∗j = 1 for j ∈ {87, 110, 200}.
Applying SEW estimator with Langevin Monte-Carlo and

τ =
4σ√∑
j ,i f

2
j (Xi )

, β = 4σ2, h = 0.0005.
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Figure: Typical result for Example 2 with n = 100, M = 225, M(λ∗) = 3,
h = 5 · 10−4, T = 2. In this example, we have 1

n
‖X (λ̂ − λ∗)‖2 = 0.28 for our

estimator and 1
n
‖X (λ̂ − λ∗)‖2 = 1.72 for the LASSO. The time of computation

of the SEW estimator was about 5 seconds.
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Simulations
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Figure: Typical result for Example 2 with n = 100, M = 225, M(λ∗) = 3,
h = 5 · 10−4, T = 2. In this example, we have 1

n
‖X (λ̂ − λ∗)‖2 = 0.28 for our

estimator and 1
n
‖X (λ̂ − λ∗)‖2 = 1.72 for the LASSO. The time of computation

of the SEW estimator was about 5 seconds.
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