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(1) Université de Nice, (2) INRA Jouy-en-Josas, (3) Université Paris Sud
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From genomics to postgenomics

Genomics: genome sequencing of various
organisms (human genome ∼ 04)

Postgenomics: try to understand how it
works!

Massive ”omics” data sets

Involves biology, physics, computer
sciences, maths. . .
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Size of genomes

Genome of a bacteria:

1 to 5 millions of base pairs

1 to 5 thousands genes

a few millions of possible gene-gene interactions

Human genome:

around 3.4 billions of base pairs

around 25 000 genes

more than 100 millions of possible gene-gene interactions
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Gene - gene regulation network of E. coli
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Protein - protein network of S. cerevisiae

1458 proteins (vertices) and their 1948 known interactions (edges)
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Metabolic pathway of U. urealyticum

Christophe GIRAUD Statistical Inference in Gaussian Graphical Models



Biological networks
Gaussian graphical models

Towards system biology
Inferring gene regulation networks

Why focusing on regulation networks?

Traditional biology studies the specific functions of
individual genes, proteins or cells.

System biology tries to understand how the whole system
works by investigating the interaction network between genes,
proteins, metabolites, etc.

−→ emergent properties
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Inferring gene regulation networks

Data: massive transcriptomic data sets produced by microarrays.

Differential analysis of data obtained in
different conditions: with or without deletion
of a gene, with or without stress, etc.

Analysis of the conditional dependences
in the data (exploits the whole data set).
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A few statistical tools

Descriptive tools:

Kernel methods (supervised learning)

Model based tools:

Bayesian Networks

Gaussian Graphical Models
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Gaussian Graphical Models
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Gaussian Graphical Models

Statistical model: The transcription levels (X (1), . . . ,X (p)) of the
p genes are modeled by a Gaussian law in Rp.

Graph of the conditional dependences: graph g with

an edge i
g∼ j between the genes i and j

iff

X (i) and X (j) are not independent given
{
X (k), k 6= i , j

}

regulation network ←→ graph g
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The task of the statistician

Goal: estimate g from a sample X1, . . . ,Xn.

Main difficulty: n� p

p ≈ a few 100 to a few 1000 genes

n ≈ a few tens
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Some new algorithms

New algorithms: based on thresholding or regularization

Multiple testing Convex minimization
- Drton & Perlman (2004) - Meinshausen & Bühlmann (2006)
- Schäfer & Strimmer (2005) - Huang et al. (2006)
- Wille & Bühlmann (2006) - Yuan & Lin (2007)
- Verzelen & Villers (2007) - Banerjee et al. (2007)
- Bühlmann & Kalisch (2008) - Friedman et al. (2007)
· · · · · ·

−→ quite disappointing numerical performances (Villers et al.
2008)

−→ no theoretical results or in an asymptotic framework (with
strong hypotheses on the covariance)
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Penalized empirical risk estimation
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Partial correlations

Hypothesis: (X (1), . . . ,X (p)) ∼ N (0,C ) in Rp, with C positive
definite.

Notation: We write θ =
(
θ
(j)
k

)
for the p × p matrix such that

θ
(j)
j = 0 and E

(
X (j) | X (k), k 6= j

)
=
∑

k 6=j θ
(j)
k X (k).

Skeleton of θ: we have θ
(j)
i =

Cov(X (i),X (j)|X (k), k 6=i ,j)
Var(X (j)|X (k), k 6=j)

so

θ
(j)
i 6= 0 ⇐⇒ i

g∼ j
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Estimation strategy

Goal: Estimate θ from a sample X1, . . . ,Xn with quality criterion

MSEP(θ̂) = E
[
‖C 1/2(θ̂ − θ)‖2p×p

]
= E

[
‖XT

new (θ̂ − θ)‖21×p

]

Estimation strategy:
1 Choose a collection G of candidate graphs.

2 Associate to each graph g ∈ G an estimator θ̂g of θ.

3 Select one of them by minimizing a penalized empirical risk.
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1- Collection of candidate graphs

Choice of a collection G of candidate graphs

Examples

Set of all the graphs with p vertices and degree ≤ D,

Set of all the graph with p vertices and degree ≤ D
containing a known subgraph go .

Model associated to g ∈ G to estimate θ:

g y Θg =
{

θ ∈ Rp×p : i
g� j ⇒ θ

(j)
i = 0

}
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2- Estimator θ̂g associated to g

Characterization: θ = argminA∈Θ ‖C 1/2(I − A)‖2p×p

where Θ = set of matrices with null diagonal.

Empirical version: C 1/2 ↔ X =

 XT
1
...

XT
n

 =
[
X (1), . . . ,X (p)

]
Estimator associated to g :

θ̂g = argmin
A∈Θg

‖X (I − A)‖2n×p
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3- Which estimator should be chosen among {θ̂g , g ∈ G}?

Ideal: choose θ̂g∗ minimizing

MSEP(θ̂g ) = E
(
‖C 1/2(θ − θ̂g )‖2

)
≈ ‖C 1/2(θ−θg )‖2+

p∑
j=1

deg(j)

nC−1
jj

Selection criterion: set θ̂ = θ̂ĝ where ĝ minimizes over G

crit(g) = ‖X (I − θ̂g )‖2︸ ︷︷ ︸
empirical MSEP

× (1 + pen(g))
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which penalty pen?
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The penalty

Notation: let EDkhi(d ,N, x) be the inverse of

x 7→ P
(

Fd+2,N ≥
x

d + 2

)
− x

d
P
(

Fd,N+2 ≥
N + 2

Nd
x

)
where Fd ,N is a Fisher(d ,N).

Penality: For K > 1 we set

pen(d) = K
n − d

n − d − 1
EDkhi

[
d + 1, n − d − 1,

(
C d

p−1(d + 1)2
)−1
]

. K
(
1 + eρ

√
2 log p

)2

(d + 1) when d ≤ ρ
n

2 log p
.
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Theorem: risk bound.
When deg(G) = max {deg(g), g ∈ G} fulfills

deg(G) ≤ ρ
n

2
(
1.1 +

√
log p

)2 , for some ρ < 1,

then the MSEP of θ̂ is bounded by

MSEP(θ̂) ≤ cK ,ρ log(p) inf
g∈G

{
MSEP(θ̂g ) ∨ ‖C

1/2(I − θ)‖2

n

}
+ Rn

where Rn = O
(
Tr(C )e−κρn

)
.
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Optimality?

1 Where does the condition on the degree come from?

2 Can we choose a smaller penalty?
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Theory

Condition on the degree
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Which size of graph can we hope to estimate?

Prediction error:
MSEP(θ̂) = E(‖C 1/2(θ−θ̂)‖2) = E(‖C 1/2(I−θ̂)‖2)−‖C 1/2(I−θ)‖2

To control the MSEP, we would like to have with large probability

(1−δ)‖C 1/2(I−θ̂)‖p×p ≤
1√
n
‖X (I−θ̂)‖n×p ≤ (1+δ)‖C 1/2(I−θ̂)‖p×p

for all matrices θ̂ ∈
⋃

g∈G Θg .
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Proposition: From empirical to population MSEP
When deg(G) = max {deg(g), g ∈ G} fulfills

deg(G) ≤ ρ
n

2
(
1.1 +

√
log p

)2 , for some ρ < 1,

then for δ >
√

ρ,

we have with probability ≥ 1− 2 exp
(
−n(δ −√ρ)2/2

)
(1− δ)‖C 1/2(I − A)‖ ≤ 1√

n
‖X (I − A)‖ ≤ (1 + δ)‖C 1/2(I − A)‖

for all matrices A ∈
⋃

g∈G Θg .
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Lemma: Restricted Infimum of Random Matrices
Consider a n × p matrix Z with n ≤ p and i.i.d. Zi ,j ∼ N (0, 1).
Consider also a collection V1, . . . ,VN of subspaces of Rp with di-
mension d < n.

Then for any x > 0

P

[
inf

v∈V1∪...∪VN

1√
n
‖Zv‖
‖v‖

≤ 1−
√

d +
√

2 log N + δN + x√
n

]
≤ e−x2/2

where δN = 1
N
√

8 log N
.
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Lemma: Restricted Supremum of Random Matrices
Consider a n × p matrix Z with n ≤ p and i.i.d. Zi ,j ∼ N (0, 1).
Consider also a collection V1, . . . ,VN of subspaces of Rp with di-
mension d < n.

Then for any x > 0

P

[
sup

v∈V1∪...∪VN

1√
n
‖Zv‖
‖v‖

≤ 1 +

√
d +
√

2 log N + δN + x√
n

]
≤ e−x2/2

where δN = 1
N
√

8 log N
.
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A geometrical constraint

When C = I , there exists some constant c(δ) > 0 such that for
any n, p,G fulfilling

deg(G) ≥ c(δ)
n

1 + log (p/n)
,

there exists no n × p matrix X fulfilling

(1− δ)‖C 1/2(I − A)‖ ≤ 1√
n
‖X (I − A)‖ ≤ (1 + δ)‖C 1/2(I − A)‖

for all matrices A ∈
⋃

g∈G Θg .
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Theory

Minimal penalty
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Minimal size of pen(d)?

In the simple case where g = ∅ we would like to select a ”small” ĝ

Minimal penalty

=⇒ ”pen(d) ≥ 2d log(p)”
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Proposition: Over-fitting

For some D < n < p and p ≥ e2/(1−γ) + 1, assume that:

pen(d) = 2(1− γ)d log(p − 1) with γ ∈ (0, 1),

{graphs with at most D edges} ⊂ G,
g = ∅.

Then,

P

(
deg(ĝ) ≥ c(γ) min(n, pγ/4)

(log p)3/2
∧ bγD/8c

)
≥ 1− 3

p − 1
−2e−γ2n/83

where c(γ) > 0 is an (explicit) constant depending on γ only.
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deg(ĝ) ≥ c(γ) min(n, pγ/4)

(log p)3/2
∧ bγD/8c

)
≥ 1− 3

p − 1
−2e−γ2n/83

where c(γ) > 0 is an (explicit) constant depending on γ only.

Christophe GIRAUD Statistical Inference in Gaussian Graphical Models



Biological networks
Gaussian graphical models

Gaussian graphs
Penalized empirical risk

In practice

Numerical performance
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Numerical performance

Comparison to Meinshausen & Buhlmann’s procedure.

Setting:

random ”Erdos-Reny” graphs & and random covariance
matrices

n = 15 observations

Focus on two settings:

when the density of the graph increases

when the number p of covariables increases
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n = 15, p = 10, edges= 10%, 30% & 33%

edges = 10%

KGGM MB

risk/oracle 2.5 3.3

Puissance 81% 81%

FDR 4.4% 3.7%

edges = 30% edges = 33%

KGGM MB

risk/oracle 4.9 6.9

Puissance 20% 14%

FDR 5.4% 2.9%

KGGM MB

risk/oracle 4.9 6.4

Puissance 10% 3.5%

FDR 4.1% 1.1%
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When p increases (n = 15, fixed sparsity)
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Conclusion

Some nice features:

good theoretical properties: non-asymptotic control of the
MSEP with no condition on the covariance matrix C

good numerical performances: even when n� p

BUT

very high numerical complexity:
typically n × pdeg(G)+1

=⇒ cannot be used in practice when p > 50 . . .
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Practical implementation

Ongoing work: with S. Huet and N. Verzelen

Reduction of the collection of graphs, with the aim to find a
balance between

computational efficiency

estimation accuracy
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