Estimation of the effective dimension reduction subspace Joint work with A. louditsky and V. Spokoiny

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Conclusion

Arnak DALALYAN LPMA, Université Paris 6

Nonparametric Regression with Additive Noise

• We observe $(x_1, Y_1, \ldots, x_n, Y_n)$ with

$$Y_i = f(x_i) + \varepsilon_i, \quad i = 1, \ldots, n,$$

- $x_i \in \mathbb{R}^d$ are called explanatory variables,
- $f : \mathbb{R}^d \to \mathbb{R}$ is the unknown regression function,
- ε_i are i.i.d. centered random variables with finite variance σ^2 .

In our theoretical results, we will assume that x_i are deterministic and that ε_i are gaussian.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Statistical problems

- Non-parametric inference : under no particular assumption on f,
 - predict the value of the response Y at a new point $x_0 \in \mathbb{R}^d$,
 - find a function f that fits well the values of f at the observed design points x_i.
- Semi-parametric inference : under some structural assumption on *f*, estimate the structural parameters. For example,
 - in the partial linear model $f(x) = \theta^T x^{(1)} + g(x^{(2)})$, $x = (x^{(1)}, x^{(2)}) \in \mathbb{R}^{d_1+d_2}$ the structural parameter is $\theta \in \mathbb{R}^{d_1}$,
 - in the single-index model f(x) = g(θ^Tx), θ ∈ S_{d-1}, the structural parameter is θ.

EDR estimation

A. Dalalyan

Setting NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Motivation : curse of dimensionality Local-linear smoothing

- A well-known method for estimating *f* non parametrically is based on local-linear smoothing.
- For a kernel K(·) and a bandwidth h > 0, the local-linear estimator is defined by

$$\begin{split} \begin{bmatrix} \hat{f}_n(x_i) \\ \widehat{\nabla f}_n(x_i) \end{bmatrix} &= \min_{(a,b) \in \mathbb{R}^{d+1}} \sum_{j=1}^n \{Y_j - a - b^T(x_j - x_i)\}^2 w_{ij} \\ &= \left\{ \sum_{j=1}^n \begin{bmatrix} 1 \\ x_{ij} \end{bmatrix} \begin{bmatrix} 1 \\ x_{ij} \end{bmatrix}^T w_{ij} \right\}^{-1} \sum_{j=1}^n Y_j \begin{bmatrix} 1 \\ x_{ij} \end{bmatrix} w_{ij} , \end{split}$$

where $x_{ij} = x_j - x_i$ and $w_{ij} = K(|x_{ij}/h|)$.

• If the design $\{x_i\}$ is "regular", it holds

$$\inf_{K,h} \sup_{f: \|\nabla^2 f\|_{\infty} \leq R} \mathbf{E}[\|\hat{f}_n - f\|_2^2] \underset{n \to \infty}{\asymp} n^{-4/(4+d)}.$$

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing

Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Curse of dimensionality

- The risk of the local-linear estimator with "ideal" kernel and bandwidth is of order $n^{-4/(4+d)}$.
- No estimator do better! The rate n^{-4/(4+d)} is minimax on the Sobolev ball Σ(2, R).

This rate is too slow when *d* is large.

- For functions *f* smoother than C², better rate can be attained using local-polynomial smoothing instead of local-linear one.
- The computation of the local-polynomial estimator of degree ℓ ≥ 2 may be highly time-consuming; since it requires the inversion of a d^ℓ × d^ℓ matrix.

EDR estimation

A. Dalalyan

Setting NP Regression

Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality

A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

One way of dealing with the curse of dimensionality

- Leave the fully non-parametric model in favor of a semiparametric model where the function *f* is assumed to have some "structure".
- This assumption is helpful, even if the structure is unknown, since rough estimates of the unknown function may lead to a good estimator of the "structure".
- Using the estimated structure, we can reduce the dimensionality and significantly improve the quality of estimators of the function *f*.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Effective dimension-reduction subspace (EDRS)

Let us introduce the following structural assumption:

 $f(x) = g(\Theta^T x), \qquad \forall x \in \mathbb{R}^d,$

- $g: \mathbb{R}^m \to \mathbb{R}$ for some $m \leq d$,
- Θ is a $d \times m$ matrix such that $\Theta^T \Theta = I_m$,
- furthermore, ⊖ is "the smallest" matrix satisfying (1): for every orthogonal matrix ⊖ of size *d* × *m*′ such that *f*(*x*) = *g*(⊖^T*x*), ∀*x* ∈ ℝ^d, it holds

 $Span(\Theta) \subset Span(\bar{\Theta}).$

EDR estimation

A. Dalalyan

Setting

(1)

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition

Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Statement of the problem

We postulate that the data $(x_1, Y_1, \ldots, x_n, Y_n)$ obeys the model

$$Y_i = f(x_i) + \varepsilon_i = g(\Theta^T x_i) + \varepsilon_i, \quad i = 1, ..., n$$
 (2)

where Θ is a $d \times m$ matrix with orthonormal columns.

- The function g as well as the matrix Θ are unknown.
- We are interested in the inference on ⊖.

We say that $S = Span(\Theta)$ is the **index space** or the **effective dimension-reduction subspace**.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Identifiability issues

 On the one hand, consistent estimation of ⊖ is impossible since ⊖ is not uniquely defined by *f* ! In fact, for every orthognal matrix *U* ∈ ℝ^m ⊗ ℝ^m, we have

$$f(x) = \tilde{g}(\tilde{\Theta}^T x)$$

with $\tilde{g}(\cdot) = g(U^T \cdot)$ and $\tilde{\Theta} = \Theta U^T$.

- On the other hand, the orthogonal projector $\Pi^* = \Theta \Theta^T$ onto S is uniquely defined by f and, consequently, can be consistently estimated.
- In what follows we assume that the structural dimension m = Tr(Π*) is known.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Sliced inverse regression of LI (JASA, 1991) Main idea

 Assume that (x_i, ε_i) are iid N_{d+1}(0, I_{d+1}), then for every set A, the conditional expectation E(x_i | Y_i ∈ A) lies in the EDRS S.

 $\mathbf{E}(x_i|Y_i) = \mathbf{E}(\Pi_{\mathcal{S}}x_i|Y_i) + \mathbf{E}(\Pi_{\mathcal{S}^{\perp}}x_i|Y_i)$ = $\underbrace{\Pi_{\mathcal{S}}\mathbf{E}(x_i|Y_i)}_{\in \mathcal{S}} + \mathbf{E}[\underbrace{\mathbf{E}(\Pi_{\mathcal{S}^{\perp}}x_i|\Theta^T x_i,\varepsilon_i)}_{= \mathbf{0}}|Y_i]$ = $\Pi_{\mathcal{S}}\mathbf{E}(x_i|Y_i).$

• If $x_i \sim \mathcal{N}_d(\mu, \Sigma)$ and $x_i \perp \varepsilon_i$, then

 $\Sigma^{-1}\mathbf{E}(x_i - \mu | Y_i) \in \mathcal{S}.$

This feature holds true for elliptically contoured distributions.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Sliced inverse regression The method

For a fixed h > 0,

1 $\forall k \in \mathbb{Z}$ estimate the vector $\mathbf{E}(x | Y \in [kh, (k+1)h])$ by

$$\hat{\boldsymbol{\beta}}_{k} = \sum_{i=1}^{n} \frac{x_{i}}{n_{k}} \mathbb{1}_{[kh,(k+1)h[}(Y_{i}), \quad n_{k} = \sum_{i=1}^{n} \mathbb{1}_{[kh,(k+1)h[}(Y_{i}).$$

2 conduct a PCA on {β̂_k}_{k∈ℤ}: compute the eigenvalues λ₁ ≥ ... ≥ λ_d and the eigenvectors v₁,..., v_d of the matrix

$$\mathcal{B}_n = \frac{1}{n} \sum_{k \in \mathbb{Z}} \hat{\boldsymbol{\beta}}_k \hat{\boldsymbol{\beta}}_k^T \boldsymbol{n}_k$$

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method

MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Slice inverse regression

Advantages :

- easy to implement, the algorithm is speedy even for large *d*,
- nice theoretical features obtained by simple arguments.

Limitations :

- strong probabilistic assumption on the design,
- no guarantee that all the directions of $\ensuremath{\mathcal{S}}$ are recovered.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method

SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

MAVE method of XIA ET AL. (JRSS, 2002)

• Idea : choose $\hat{\Theta}_n$ by minimizing

$$PL_{n}(\Theta) = \min_{\{a_{j}, b_{j}\}_{j}} \sum_{i=1}^{n} \sum_{j=1}^{n} \{Y_{i} - a_{j} - b_{j}^{T} \Theta^{T} (x_{i} - x_{j})\}^{2} w_{ij}$$

where the weights w_{ij} vanish when x_i is far from x_j .

- Iterative method : $\{w_{ij}^{(0)}\} \rightsquigarrow \hat{\Theta}^{(1)} \rightarrowtail \{w_{ij}^{(1)}\} \rightsquigarrow \dots \rightsquigarrow \hat{\Theta}^{(K)}$
- Advantage: good empirical performance.
- Limitations :
 - theoretical properties are poorly studied,
 - non-convex optimization,
 - does not classify the directions.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

SA-PCA method of HRISTACHE ET AL. (AoS 2001) Heuristic ideas

- S coincides with $Span\{\nabla f(x_1), \ldots, \nabla f(x_n)\}$.
- Let $\{ \boldsymbol{\psi}_{\ell}, \ell \leq L \} \subset \mathbb{R}^n$ be such that

$$\left\{egin{array}{l} rac{1}{n}\sum_{i=1}^n \psi_\ell(x_i)^2 = 1\ {
m Rank}\{\psi_\ell,\ell\leq L\} = n \end{array}
ight.$$

then

$$S = Span\{(\beta_{\ell})_{\ell \leq L}\}$$
 where $\beta_{\ell} = \frac{1}{n} \sum_{i=1}^{n} \nabla f(x_i) \psi_{\ell}(x_i).$

- estimation of β_{ℓ} is easier than that of $\nabla f(x_i)$.
- few ψ_{ℓ} suffice for capturing the structure.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

SA-PCA method Heuristic ideas

- Thus, on the one hand, a "good" estimator of *∇f* may be very helpful for recovering the structure.
- On the other hand, the knowledge of the structure leads to a significant improvement in the estimation of ∇*f*. In fact, if an "oracle" gives us S, we may consider

$$\begin{bmatrix} \hat{f}(x_i) \\ \widehat{\nabla f}(x_i) \end{bmatrix} = \left\{ \sum_{j=1}^n \begin{bmatrix} 1 \\ x_{ij} \end{bmatrix} \begin{bmatrix} 1 \\ x_{ij} \end{bmatrix}^T w_{ij}^* \right\}^{-1} \sum_{j=1}^n Y_j \begin{bmatrix} 1 \\ x_{ij} \end{bmatrix} w_{ij}^* ,$$

with the "ideal" weights $w_{ij}^* = K(|\Pi^* x_{ij}|/h)$, where

- Π^* stands for the orthogonal projector onto \mathcal{S} ,
- h > 0 is a bandwidth,

- *K* is a function $\in C^2$, > 0, vanishing outside [-1, 1].

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

SA-PCA method

<u>The algorithm</u>: First of all, choose $\{\psi_{\ell}, \ell \leq L\}$ and standardize the design.

1 Set k = 1, $\rho_1 = 1$, $\hat{\Pi}_1 = I$ and choose h_1 conveniently.

2 Estimate $\nabla f(x_i)$ for every *i* by local linear smoothing with

$$\mathbf{w}_{ij}^{(k)} = \mathcal{K}\Big(\frac{|\hat{\Pi}_k \mathbf{x}_{ij}|}{\rho_k h_k} + \frac{|(I - \hat{\Pi}_k)\mathbf{x}_{ij}|}{h_k}\Big).$$

- **3** Compute $\hat{\boldsymbol{\beta}}_{\ell,k} = \boldsymbol{n}^{-1} \sum_{i} \widehat{\nabla f_k}(\boldsymbol{x}_i) \boldsymbol{\psi}_{\ell}(\boldsymbol{x}_i)$.
- 4 Determine $\hat{\Pi}_{k+1}$ by a PCA on $\hat{\beta}_{\ell,k}$,
- **5** Set $\rho_{k+1} = a_{\rho}\rho_k$, $h_{k+1} = a_hh_k$ and increment *k*.
- 6 Terminate if $\rho_k < n^{-1/(3 \vee m)}$, otherwise return to step 2.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

Assumptions Risk bound Simulations

Structural adaptation via maximum minimization

<u>The idea:</u> in the algorithm SA-PCA, modify the way of extracting the structural information from $(\hat{\beta}_{\ell})_{\ell < L}$.

The reason: the risk of SA-PCA is proportional to *L*.

Our proposal:

· PCA is equivalent to the optimization problem

minimize
$$\sum_{\ell} \hat{\boldsymbol{eta}}_{\ell,k}^{\mathsf{T}} (I - \mathsf{\Pi}) \hat{\boldsymbol{eta}}_{\ell,k}$$

over the set of all projectors □ of rank ≤ m.
We replace this optimization by:

minimize
$$\max_{\ell} \hat{\boldsymbol{\beta}}_{\ell,k}^{\mathsf{T}} (\boldsymbol{I} - \boldsymbol{\Pi}) \hat{\boldsymbol{\beta}}_{\ell,k}$$

over the set of all symmetric matrices Π such that $0 \le \Pi \le I$ and $tr(\Pi) \le m$.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM

Assumptions Risk bound Simulations

Assumptions

(A1) There exists $C_g > 0$ such that $|\nabla g(x)| \le C_g$ and $|g(x) - g(x') - (x - x')^T \nabla g(x)| \le C_g |x - x'|^2$ for all $x, x' \in \mathbb{R}^m$. (A2) Let $\mathcal{B}^* = \{\bar{\beta} = \sum_{\ell=1}^L c_\ell \beta_\ell : \sum_{\ell=1}^L |c_\ell| \le 1\}$. There exist $\bar{\beta}_1, \dots, \bar{\beta}_m \in \mathcal{B}^*$ and $\mu_1, \dots, \mu_m \in \mathbb{R}_+$ such that $\Pi^* \le \sum_{k=1}^m \mu_k \bar{\beta}_k \bar{\beta}_k^T$.

(A3) Technical assumption on the design.(A4) The errors are gaussian.

The vectors (functions) ψ_{ℓ} satisfy $\max_{i \in \ell} |\psi_{\ell}(x_i)| \leq \overline{\psi}$.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Main result

If assumptions (A1)-(A4) are satisfied, then there exists a constant C > 0 such that $\forall z \in]0, 2\sqrt{\log(nL)}]$ and for *n* large enough, it holds

$$\boldsymbol{P}\left(\|\widehat{\boldsymbol{\Pi}}_n - \boldsymbol{\Pi}^*\|_2 > \frac{C\log(nL)}{n^{\frac{2}{3\sqrt{m}}}} + \frac{Cz\sigma}{\sqrt{n}}\right) \le Lze^{-\frac{z^2-1}{2}} + \frac{6\log n}{n}$$

- For $m \le 4$, we get the optimal rate $1/\sqrt{n}$.
- For m > 4, the rate is probably sub-optimal. It can be improved by using local polynomial smoothing of degree > 1 with stronger smoothness assumptions on g.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions

Risk bound

Simulations

Example 1 : "single-index model"

We set

$$d = 5,$$

$$f(x) = g(\theta^{T}x),$$

$$g(t) = 4|t|^{1/2}\sin^{2}(\pi t),$$

$$\theta = (a, 2a, 0, 0, 0).$$

Further, we choose $x_i^{(j)}$ i.i.d. uniformly distributed on [-1, 1] and ε_i i.i.d. $0.5\mathcal{N}(0, 1)$ independent of x.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound

Simulations

Example 1 : "single-index model"

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Example 2 : "double-index model"

We set

$$n = 300,$$

$$g(x) = (x_1 - x_2^3)(x_1^3 + x_2),$$

$$\theta_1 = (1, 0, \dots, 0),$$

$$\theta_2 = (0, 1, \dots, 0),$$

$$x_i^{(j)} \stackrel{iid}{\sim} \mathcal{U}([-40, 40]),$$

$$\varepsilon_i \stackrel{iid}{\sim} 0.1 \mathcal{N}(0, 1).$$

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Example 2 : "double-index model"

EDR estimation

A. Dalalyan

Setting NP Regression

Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations

Conclusion and outlook

- The SAMM method provides a consistent estimator of S under very mild identifiability assumptions.
- In almost all simulations we did, SAMM is much better than SIR.
- SAMM is comparable to MAVE, but
 - SAMM seems to deal better with the bias than MAVE,
 - SAMM has the advantage of classifying the directions.
- Extension of SAMM to the case of unknown *m* is a challenging problem.
- Consistent estimation of *m* under realistic assumptions is an interesting open problem.

EDR estimation

A. Dalalyan

Setting

NP Regression Statistical problems

Motivation

Local-linear smoothing Curse of dimensionality A remedy

EDR subspace

Definition Statement of the problem Identifiability

Existing results

SIR method MAVE method SA-PCA method

Our results

SAMM Assumptions Risk bound Simulations