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Nonparametric Regression with Additive Noise

• We observe (x1,Y1, . . . , xn,Yn) with

Yi = f (xi) + εi , i = 1, . . . ,n,

• xi ∈ Rd are called explanatory variables,
• f : Rd → R is the unknown regression function,
• εi are i.i.d. centered random variables

with finite variance σ2.

In our theoretical results, we will assume that xi are
deterministic and that εi are gaussian.
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Statistical problems

• Non-parametric inference : under no particular
assumption on f ,

• predict the value of the response Y at a new point
x0 ∈ Rd ,

• find a function f̂ that fits well the values of f at the
observed design points xi .

• Semi-parametric inference : under some structural
assumption on f , estimate the structural parameters.
For example,

• in the partial linear model f (x) = θT x (1) + g(x (2)),
x = (x (1), x (2)) ∈ Rd1+d2 the structural parameter is
θ ∈ Rd1 ,

• in the single-index model f (x) = g(θT x), θ ∈ Sd−1,
the structural parameter is θ.
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Motivation : curse of dimensionality
Local-linear smoothing

• A well-known method for estimating f non parametrically
is based on local-linear smoothing.

• For a kernel K (·) and a bandwidth h > 0, the local-linear
estimator is defined by[

f̂n(xi )

∇̂f n(xi )

]
= min

(a,b)∈Rd+1

n∑
j=1

{Yj − a− bT (xj − xi )}2wij

=

{ n∑
j=1

[
1
xij

][
1
xij

]T

wij

}−1 n∑
j=1

Yj

[
1
xij

]
wij ,

where xij = xj − xi and wij = K (|xij/h|).

• If the design {xi} is “regular”, it holds

inf
K ,h

sup
f :‖∇2f‖∞≤R

E[‖f̂n − f‖2
2] �

n→∞
n−4/(4+d).
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Curse of dimensionality

• The risk of the local-linear estimator with “ideal” kernel
and bandwidth is of order n−4/(4+d).

• No estimator do better! The rate n−4/(4+d) is minimax
on the Sobolev ball Σ(2,R).

This rate is too slow when d is large.

• For functions f smoother than C2, better rate can be
attained using local-polynomial smoothing instead of
local-linear one.

• The computation of the local-polynomial estimator of
degree ` ≥ 2 may be highly time-consuming; since it
requires the inversion of a d` × d` matrix.
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One way of dealing with the curse of dimensionality

• Leave the fully non-parametric model in favor of
a semiparametric model where the function f is
assumed to have some “structure”.

• This assumption is helpful, even if the structure is
unknown, since rough estimates of the unknown
function may lead to a good estimator of the
“structure”.

• Using the estimated structure, we can reduce the
dimensionality and significantly improve the quality
of estimators of the function f .
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Effective dimension-reduction subspace (EDRS)

Let us introduce the following structural assumption:

f (x) = g(ΘT x), ∀x ∈ Rd , (1)

• g : Rm → R for some m ≤ d ,
• Θ is a d ×m matrix such that ΘT Θ = Im,
• furthermore, Θ is “the smallest” matrix satisfying (1):

for every orthogonal matrix Θ̄ of size d ×m′ such
that f (x) = g(Θ̄T x), ∀ x ∈ Rd , it holds

Span(Θ) ⊂ Span(Θ̄).
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Statement of the problem

We postulate that the data (x1,Y1, . . . , xn,Yn) obeys the
model

Yi = f (xi) + εi = g(ΘT xi) + εi , i = 1, . . . ,n (2)

where Θ is a d ×m matrix with orthonormal columns.

• The function g as well as the matrix Θ are unknown.

• We are interested in the inference on Θ.

We say that S = Span(Θ) is the index space or
the effective dimension-reduction subspace.
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Identifiability issues

• On the one hand, consistent estimation of Θ is
impossible since Θ is not uniquely defined by f !
In fact, for every orthognal matrix U ∈ Rm ⊗ Rm, we
have

f (x) = g̃(Θ̃T x)

with g̃(·) = g(UT ·) and Θ̃ = ΘUT .

• On the other hand, the orthogonal projector
Π∗ = ΘΘT onto S is uniquely defined by f and,
consequently, can be consistently estimated.

• In what follows we assume that the structural
dimension m = Tr(Π∗) is known.
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Sliced inverse regression of LI (JASA, 1991)
Main idea

• Assume that (xi , εi) are iid Nd+1(0, Id+1), then for
every set A, the conditional expectation E(xi |Yi ∈ A)
lies in the EDRS S.

E(xi |Yi) = E(ΠSxi |Yi) + E(ΠS⊥xi |Yi)

= ΠSE(xi |Yi)︸ ︷︷ ︸+E[E(ΠS⊥xi |ΘT xi , εi)︸ ︷︷ ︸ |Yi ]

∈ S = 0
= ΠSE(xi |Yi).

• If xi ∼ Nd (µ,Σ) and xi ⊥⊥ εi , then

Σ−1E(xi − µ|Yi) ∈ S.

This feature holds true for elliptically contoured
distributions.
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Sliced inverse regression
The method

For a fixed h > 0,

1 ∀k ∈ Z estimate the vector E(x |Y ∈ [kh, (k + 1)h[) by

β̂k =
n∑

i=1

xi

nk
1l[kh,(k+1)h[(Yi ), nk =

n∑
i=1

1l[kh,(k+1)h[(Yi ).

2 conduct a PCA on {β̂k}k∈Z: compute the eigenvalues
λ1 ≥ . . . ≥ λd and the eigenvectors v1, . . . , vd of the matrix

Bn =
1
n

∑
k∈Z

β̂k β̂
T
k nk .

3 Then set Ŝ = Span{v1, . . . , vm}.



EDR estimation

A. Dalalyan

Setting
NP Regression

Statistical problems

Motivation
Local-linear smoothing

Curse of dimensionality

A remedy

EDR subspace
Definition

Statement of the problem

Identifiability

Existing results
SIR method

MAVE method

SA-PCA method

Our results
SAMM

Assumptions

Risk bound

Simulations

Conclusion

12

Slice inverse regression

I Advantages :
- easy to implement, the algorithm is speedy even for

large d ,
- nice theoretical features obtained by simple

arguments.

I Limitations :
- strong probabilistic assumption on the design,
- no guarantee that all the directions of S are

recovered.
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MAVE method of XIA ET AL. (JRSS, 2002)

• Idea : choose Θ̂n by minimizing

PLn(Θ) = min
{aj ,bj}j

n∑
i=1

n∑
j=1

{Yi − aj − bT
j ΘT (xi − xj)}2wij

where the weights wij vanish when xi is far from xj .
• Iterative method :
{w (0)

ij } Θ̂(1)�{w (1)
ij } . . . Θ̂(K )

• Advantage: good empirical performance.
• Limitations :

• theoretical properties are poorly studied,
• non-convex optimization,
• does not classify the directions.
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SA-PCA method of HRISTACHE ET AL. (AoS 2001)
Heuristic ideas

• S coincides with Span{∇f (x1), . . . ,∇f (xn)}.
• Let {ψ`, ` ≤ L} ⊂ Rn be such that{

1
n
∑n

i=1ψ`(xi)
2 = 1

Rank{ψ`, ` ≤ L} = n
then

S = Span{(β`)`≤L} where β` =
1
n

n∑
i=1

∇f (xi)ψ`(xi).

• estimation of β` is easier than that of ∇f (xi).
• few ψ` suffice for capturing the structure.
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SA-PCA method
Heuristic ideas

• Thus, on the one hand, a “good” estimator of ∇f may be
very helpful for recovering the structure.

• On the other hand, the knowledge of the structure leads to
a significant improvement in the estimation of ∇f . In fact, if
an “oracle” gives us S, we may consider[

f̂ (xi )

∇̂f (xi )

]
=

{ n∑
j=1

[
1
xij

][
1
xij

]T

w∗ij

}−1 n∑
j=1

Yj

[
1
xij

]
w∗ij ,

with the “ideal” weights w∗ij = K (|Π∗xij |/h), where

- Π∗ stands for the orthogonal projector onto S,
- h > 0 is a bandwidth,
- K is a function ∈ C2, > 0, vanishing outside [−1,1].
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SA-PCA method

The algorithm: First of all, choose {ψ`, ` ≤ L} and standardize
the design.

1 Set k = 1, ρ1 = 1, Π̂1 = I and choose h1 conveniently.

2 Estimate ∇f (xi ) for every i by local linear smoothing with

w (k)
ij = K

( |Π̂k xij |
ρk hk

+
|(I − Π̂k )xij |

hk

)
.

3 Compute β̂`,k = n−1∑
i ∇̂fk (xi )ψ`(xi ).

4 Determine Π̂k+1 by a PCA on β̂`,k ,

5 Set ρk+1 = aρρk , hk+1 = ahhk and increment k .

6 Terminate if ρk < n−1/(3∨m), otherwise return to step 2.
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Structural adaptation via maximum minimization

The idea: in the algorithm SA-PCA, modify the way of
extracting the structural information from (β̂`)`≤L.

The reason: the risk of SA-PCA is proportional to L.

Our proposal:

• PCA is equivalent to the optimization problem

minimize
∑
`

β̂
T
`,k (I − Π)β̂`,k

over the set of all projectors Π of rank ≤ m.
• We replace this optimization by:

minimize max
`
β̂

T
`,k (I − Π)β̂`,k

over the set of all symmetric matrices Π such that
0 ≤ Π ≤ I and tr(Π) ≤ m.
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Assumptions

(A1) There exists Cg > 0 such that |∇g(x)| ≤ Cg and

|g(x)− g(x ′)− (x − x ′)T∇g(x)| ≤ Cg |x − x ′|2

for all x , x ′ ∈ Rm.

(A2) Let B∗ =
{
β̄ =

∑L
`=1 c`β` :

∑L
`=1 |c`| ≤ 1

}
. There exist

β̄1, . . . , β̄m ∈ B∗ and µ1, . . . , µm ∈ R+ such that

Π∗ ≤
m∗∑
k=1

µk β̄k β̄
T
k .

(A3) Technical assumption on the design.

(A4) The errors are gaussian.

The vectors (functions) ψ` satisfy max
i,`
|ψ`(xi )| ≤ ψ̄.
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Main result

If assumptions (A1)-(A4) are satisfied, then there exists a
constant C > 0 such that ∀z ∈]0,2

√
log(nL)] and for n large

enough, it holds

P
(
‖Π̂n − Π∗‖2 >

C log(nL)

n
2

3∨m
+

Czσ√
n

)
≤ Lze−

z2−1
2 +

6 log n
n

.

• For m ≤ 4, we get the optimal rate 1/
√

n.
• For m > 4, the rate is probably sub-optimal. It can be

improved by using local polynomial smoothing of
degree > 1 with stronger smoothness assumptions
on g.
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Example 1 : “single-index model”

We set

d = 5,
f (x) = g(θT x),

g(t) = 4|t |1/2 sin2(πt),
θ = (a,2a,0,0,0).

Further, we choose x (j)
i i.i.d. uniformly distributed on

[−1,1] and εi i.i.d. 0.5N (0,1) independent of x .



EDR estimation

A. Dalalyan

Setting
NP Regression

Statistical problems

Motivation
Local-linear smoothing

Curse of dimensionality

A remedy

EDR subspace
Definition

Statement of the problem

Identifiability

Existing results
SIR method

MAVE method

SA-PCA method

Our results
SAMM

Assumptions

Risk bound

Simulations

Conclusion

21

Example 1 : “single-index model”
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Example 2 : “double-index model”

We set

n = 300,
g(x) = (x1 − x3

2 )(x3
1 + x2),

θ1 = (1,0, . . . ,0),

θ2 = (0,1, . . . ,0),

x (j)
i

iid∼ U([−40,40]),

εi
iid∼ 0.1N (0,1).
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Example 2 : “double-index model”
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Conclusion and outlook

• The SAMM method provides a consistent estimator
of S under very mild identifiability assumptions.

• In almost all simulations we did, SAMM is much
better than SIR.

• SAMM is comparable to MAVE, but
• SAMM seems to deal better with the bias than

MAVE,
• SAMM has the advantage of classifying the

directions.

• Extension of SAMM to the case of unknown m is a
challenging problem.

• Consistent estimation of m under realistic
assumptions is an interesting open problem.
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