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1 Empirical processes

Consider a sample 71, ..., Z, of independent random variables, in some space
Z, and let v : Z — R be a (measurable) function. We write the empirical
average as

1 n
_Pn’)’ = Z"Y(Zl)a
)

and the theoretical mean as
1 n
Pyi=—3 Ey(Z).
i=1

Let I be a collection of functions on Z. Empirical process theory is about the
study of quantities of the type

Z :=sup (P, — P)y/,
vyel’

in particular the study of probability and moment inequalities for Z. Of further
interest is the empirical process

vn = {va(7) i= VA(Py = P)y: v €T},

Here, asymptotic continuity (tightness) is a key concept. This is the following
property:

sup  |va(y —0)| =F 0,
o(y=0)<en

as n — oo, with {e,} a sequence of positive numbers decreasing to zero. More-
over,

o) = -3 var(1(Z0).
=1

In fact, we will examine the increments or modulus of continuity of the empirical
process, which is the behavior of, for instance, the moments

Y(e):=E sup |vn(y—0)l,
o(y—0)<e

as function of e.



2 Application to M-estimation

Suppose I' C T’y is a given collection of loss functions. The M-estimator is
4 = arg min P,"~.
vyel
It is to be understood as an estimator of the target
Yo = arg min Pry.
~v€lo

Note since I'g D T', the target vy may not be an element of the class I' over
which we perform empirical risk minimization. The best approximation within
I" of the target is defined as

~* := argmin P~.
~yel'

The excess risk is defined as

E(y):==P(y—0), yeT.

We moreover call £ := £(v*) the approximation error. The behavior of the

excess risk £ == & (%) of the estimator 4 will be our topic of interest. The
following simple inequality is our starting point.

Lemma 2.1 It holds that
£ < —um(y—v")/Vn+E"

Thus, the excess risk € is bounded by two terms. The second term is the
approximation error, and the first term can be thought of as the estimation
error. This first term can be handled using empirical process theory.

For example, suppose we can show that

v _ *
Vv, = sup 200 ’Y*)

ver Yoy V o*)
is a tight sequence of random variables (for example that moments exist and
do not explode as n — o0). Here, we define
oy :=0a(y =),

and o* := o+. Moreover, 1 is some (concave) strictly increasing function.

Lemma 2.2 Suppose that the margin condition
£(7) 2 Gloy), Vv el

holds. Here, G is some (convex) increasing function. Assume that Gy :=
G o1 is strictly convex. Let H be the convex conjugate of Gy. Then for all
0<d<1,

Vi,

ov/n

Thus, Lemma 2.2 gives a bound for the estimation error in terms of the modulus
of continuity 1 of the empirical process.

(1-5)59}1( >+(1+5)5*.



3 Modulus of continuity and entropy

Definition Let (A,d) be a subset of a metric space. The §-covering number
N(0,A,d) of A is the smallest value of N such that there exist {)\j};v:l with

min_d(\ \j) <9, VX e A
1<j<N

The entropy H(-,A,d) is then defined as

H(---,A,d) :=1log(1+ N(-,A,d)).

For a probability measure ) on Z, let || - || denote the La(Q)-norm. Suppose
the entropy condition

sup H('7A> ” : HQ) < H()v

probability measures @

where H is a continuous function for which the integral

P(-) =24 /0. \/H(u)du,

exists.
We will prove the following theorem.

Theorem 3.1 Assume that the functions v in I' are bounded in sup-norm by
some constant K :

sup|7(2)| < K, ¥y €T

z€Z

Let H be the convex conjugate of v — (=1 (v))2. Then for €2 > 2H (4K /\/n),
we have

E( ( sup  |vn(y — 70)!) < P(4e)

Y—70)<e

4 Further themes

The technical tools we shall use involve Hoeffding’s and Bernstein’s inequalities,
and contraction inequalities (Ledoux and Talagrand [1991]).

Note that Theorem 3.1 is a statement about the mean of the empirical process.
In the part on empirical process theory, we will also discuss concentration in-
equalities, which say that the empirical process is concentrated around its mean
with large probability (Bousquet [2002], Massart [2000]).

Lemma 2.2, shows that a good choice of the model class I" involves a trade-off
between estimation error and approximation error. We will discuss penalized
empirical risk minimization and the so-called oracle inequalities (del Barrio



et al. [2007]). In particular, we will look at high-dimensional (generalized) linear
models (van de Geer [2006], van de Geer [2007]),and ¢, penalties (0 < g < 1),
and at additive models involving many components.

For most of the results, we will provide a complete proof. And of course, we
will discuss many examples.
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