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• Verzelen, Nicolas, Paris XI

• Villa-Vialaneix , Nathalie, Toulouse (IMT)

• Villers, Fanny, Jouy-en-Josas (INRA)

• Willer, Thomas, Aix-Marseille I (LATP)

• Yao, Anne-Françoise, Aix-Marseille II (LMGEM)

Accomodations

Please book directly your room. You may find hotels suggestions on the conference web site. It is convenient
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fully booked. Also, we recommend that you book your room as soon as possible (see conference website).

Access to the INSA

The INSA is near the Université Paul Sabatier Campus. This campus is located in the south west of the
city. You can take a look at the map of the Campus (more precisely, page 2, rows 1 and 2 and column B).
The campus is accessible by the Metro line B via two stations: Université Paul Sabatier and Faculté de
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• From the city center, the INSA is accessible by the Metro Line B (nearest station is Faculté de
Pharmacie)

• From the Toulouse-Blagnac airport (north east of the city), the INSA is accessible. . .

– by taxi (about 30mn, 25-35 Euros)
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• From the Matabiau train station, the INSA is accessible via Metro line A followed by Metro line B
(line switch at Jean Jaures station).
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Organizing committee
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Journées Statistiques du Sud 2008
INSA Toulouse, June, 16-18

SCHEDULE
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11h30-12h30 Identifying a Context Tree : BIC Estimator and Algorithm Context

(Aurélien Garivier)
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14h00-15h30 Sparse estimation in high-dimensional models I
(Alexandre Tsybakov)
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16h00-17h30 M-estimation and complexity regularization I (Sara Van de Geer)
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9h00-10h30 Sparse estimation in high-dimensional models II
(Alexandre Tsybakov)

10h30-11h00 Break

11h00-12h30 M-estimation and complexity regularization II (Sara Van de Geer)
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14h00-15h00 Estimation of the Effective Dimension Reduction Subspace
(Arnak Dalalyan)

15h00-16h00 Inferring gene regulation networks (Christophe Giraud)
16h00-16h30 Break

16h30-17h30 Selection of Gaussian graphical models (Jean-Michel Marin)

Social Dinner

WEDNESDAY, 18.06

9h00-10h30 Empirical log-optimal portofolio selection II (László Györfi)
10h30-11h00 Break

11h00-12h00 V-fold cross-validation improved : V-fold penalization
(Sylvain Arlot)

12h00-13h00 Trimming methods in model checking (Eustasio Del Barrio)

Lunch



Empirical log-optimal portfolio selections
Abstract
László Györ�Department of Computer Science and Information TheoryBudapest University of Technology and Economics,Magyar Tudósok körútja 2.,Budapest, Hungary, H-1117gyorfi@szit.bme.hu

Consider a market consisting of d assets. The evolution of the marketin time is represented by a sequence of price vectors s1; s2; : : : 2 Rd+, where
sn = (s(1)n ; : : : ; s(d)n )

such that the j-th component s(j)n of sn denotes the price of the j-th asseton the n-th trading period. In order to normalize, put s(j)0 = 1. fsng hasexponential trend: s(j)n = enW (j)n � enW (j) ;
with average growth rate (average yield)

W (j)n := 1n ln s(j)n
and with asymptotic average growth rate

W (j) := limn!1 1n ln s(j)n :
In order to apply the usual prediction techniques for time series analysisone has to transform the sequence price vectors fsng into a more or lessstationary sequence of return vectors fxng as follows:

xn = (x(1)n ; : : : ; x(d)n )
such that

x(j)n = s(j)ns(j)n�1 :
1



Thus, the j-th component x(j)n of the return vector xn denotes the amountobtained after investing a unit capital in the j-th asset on the n-th tradingperiod.
The static portfolio selection is a single period investment strategy. Aportfolio vector is denoted by b = (b(1); : : : b(d)). The j-th component b(j)of b denotes the proportion of the investor's capital invested in asset j. Weassume that the portfolio vector b has nonnegative components sum up to 1,that means that short selling is not permitted. The set of portfolio vectorsis denoted by

�d =
8<:b = (b(1); : : : ; b(d)); b(j) � 0; dX

j=1 b(j) = 1
9=; :

For static portfolio selection, at time n = 0 we distribute the initial capitalS0 according to a �x portfolio vector b, i.e., if Sn denotes the wealth at thetrading period n, then
Sn = S0 dX

j=1 b(j)s(j)n :
One can show that

W := limn!1 1n lnSn = limn!1maxj 1n ln s(j)n = maxj W (j):
Thus, any static portfolio selection achieves the maximal growth ratemaxj W (j).

One can achieve even higher growth rate for long run investments, ifthe tuning of the portfolio is allowed dynamically trading period after trad-ing period. The dynamic portfolio selection is a multi-period investmentstrategy, where at the beginning of each trading period we rearrange thewealth among the assets. A representative example of the dynamic portfo-lio selection is the constantly rebalanced portfolio (CRP), where we �x aportfolio vector b 2 �d, i.e., we are concerned with a hypothetical investorwho neither consumes nor deposits new cash into his portfolio, but reinvesthis portfolio each trading period. Note that in this case the investor has torebalance his portfolio after each trading day to �corrigate� the daily priceshifts of the invested stocks.Let S0 denote the investor's initial capital. Then at the beginning of the�rst trading period S0b(j) is invested into asset j, and it results in return
2



S0b(j)x(j)1 , therefore at the end of the �rst trading period the investor'swealth becomes
S1 = S0 dX

j=1 b(j)x(j)1 = S0 hb ; x1i ;
where h� ; �i denotes inner product. For the second trading period, S1 is thenew initial capital

S2 = S1 � hb ; x2i = S0 � hb ; x1i � hb ; x2i :
By induction, for the trading period n the initial capital is Sn�1, therefore

Sn = Sn�1 hb ; xni = S0 nY
i=1 hb ; xii :

The asymptotic average growth rate of this portfolio selection is
limn!1 1n lnSn = limn!1

 1n lnS0 + 1n
nX
i=1 ln hb ; xii

!

= limn!1 1n
nX
i=1 ln hb ; xii ;

therefore without loss of generality one can assume in the sequel that theinitial capital S0 = 1.If the market process fXig is memoryless, i.e., it is a sequence of in-dependent and identically distributed (i.i.d.) random return vectors thenwe show that the best constantly rebalanced portfolio (BCRP) is the log-optimal portfolio:
b� := argmax

b2�d Efln hb ; X1ig:
This optimality means that if S�n = Sn(b�) denotes the capital after dayn achieved by a log-optimum portfolio strategy b�, then for any portfoliostrategy b with �nite Ef(ln hb ; X1i)2g and with capital Sn = Sn(b) andfor any memoryless market process fXng1�1,

limn!1 1n lnSn � limn!1 1n lnS�n almost surely
and maximal asymptotic average growth rate is

limn!1 1n lnS�n = W � := Efln hb� ; X1ig almost surely.
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We show several examples for constantly rebalanced portfolio.
In order to decrease the computational complexity of log-optimal port-folio we introduce the semi-log-optimal portfolio, where the function ln zis replaced by its second order Taylor expansion.
For a general dynamic portfolio selection, the portfolio vector maydepend on the past data. Let b = b1 be the portfolio vector for the �rsttrading period. For initial capital S0, we get that

S1 = S0 � hb1 ; x1i :
For the second trading period, S1 is new initial capital, the portfolio vectoris b2 = b(x1), and

S2 = S0 � hb1 ; x1i � hb(x1) ; x2i :
For the nth trading period, a portfolio vector is bn = b(x1; : : : ;xn�1) =
b(xn�11 ) and

Sn = S0 nY
i=1
D
b(xi�11 ) ; xiE = S0enWn(B)

with the average growth rate
Wn(B) = 1n

nX
i=1 ln

D
b(xi�11 ) ; xiE :

The fundamental limits reveal that the so-called log-optimum portfolio

B� = fb�(�)g is the best possible choice. More precisely, on trading periodn let b�(�) be such that
En lnDb�(Xn�11 ) ; XnE���Xn�11 o = max

b(�) E
n lnDb(Xn�11 ) ; XnE���Xn�11 o :

If S�n = Sn(B�) denotes the capital achieved by a log-optimum portfoliostrategy B�, after n trading periods, then for any other investment strategy
B with capital Sn = Sn(B) and with

supn En(lnDbn(Xn�11 ) ; XnE)2o <1;
and for any stationary and ergodic process fXng1�1,

lim supn!1 1n ln SnS�n � 0 almost surely
4



and limn!1 1n lnS�n = W � almost surely,
where W � := E(max

b(�) E
n lnDb(X�1�1) ; X0E���X�1�1o

)
is the maximal possible growth rate of any investment strategy.

An empirical (data driven) portfolio strategy B is called universallyconsistent with respect to a class C of stationary and ergodic processesfXng1�1, if for each process in the class,
limn!1 1n lnSn(B) = W � almost surely.

For a �xed integer k > 0 large enough, let's apply the following approx-imation:
EflnDb(Xn�11 ) ; XnE j Xn�11 g � EflnDb(Xn�1n�k) ; XnE j Xn�1n�kg

and
b�(Xn�11 ) � bk(Xn�1n�k) = argmax

b(�) EflnDb(Xn�1n�k) ; XnE j Xn�1n�kg:
Because of stationarity

bk(xk1) = argmax
b

Efln hb ; Xk+1i j Xk1 = xk1g;
which is the maximization of the regression function

mb(xk1) = Efln hb ; Xk+1i j Xk1 = xk1g:
Thus, a possible way for asymptotically optimal empirical portfolio selectionis that, based on the past data, sequentially estimate the regression functionmb(xk1), and choose the portfolio vector, which maximizes the regressionfunction estimate.

Next brie�y summarize the basics of nonparametric regression func-tion estimation.
Introduce the kernel-based portfolio selection strategies. De�ne an in-�nite array of portfolio selections B(k;`) = fb(k;`)(�)g, where k; ` are positive
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integers. For �xed positive integers k; `, choose the radius rk;` > 0 such thatfor any �xed k, lim`!1 rk;` = 0:
Then, for n > k + 1, de�ne the expert b(k;`) by

b(k;`)(xn�11 ) = argmax
b2�d

X
fk<i<n:kxi�1i�k�xn�1n�kk�rk;`g ln hb ; xii ;

if the sum is non-void, and b0 = (1=d; : : : ; 1=d) otherwise.
The good, data dependent choice of k and ` is doable borrowing currenttechniques from machine learning. In machine learning setup k and ` areconsidered as parameters of the estimates, called experts. The basic ideaof machine learning is the combination of the experts, where an experthas large weight if its past performance is good. Combine the elementaryportfolio strategies B(k;`) = fb(k;`)n g as follows: let fqk;`g be a probabilitydistribution on the set of all pairs (k; `) such that for all k; `, qk;` > 0.The combined strategy B arises from weighting the elementary portfoliostrategies B(k;`) = fb(k;`)n g such that the investor's capital becomes

Sn(B) =X
k;` qk;`Sn(B(k;`)):

We prove that the portfolio scheme B is universally consistent withrespect to the class of all ergodic processes such that Efj lnX(j)jg <1, forj = 1; 2; : : : d.
We present some numerical results obtained by applying the kernelbased log-optimal algorithm to a NYSE data set fromwww.szit.bme.hu/�oti/portfolio .
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Sparse estimation in high-dimensional models

Alexandre Tsybakov

CREST and University of Paris 6

The aim of this short course is to give an introduction to statistical es-
timation in high-dimensional models (where the dimension p of the vector
of unknown parameters is larger than the sample size n) under sparsity sce-
nario. The model is called sparse if the number of non-zero coordinates of
the vector of unknown parameters is much smaller than p. The quality of
sparse estimation is usually assessed in terms of model selection consistency
(i.e., recovering of the set of non-zero coordinates) and sparsity oracle in-
equalities (SOI) for the prediction risk. One of the most important issues
is to build methods that attain optimal performances with respect to these
two criteria under minimal assumptions on the dictionary (for example, in
linear regression, this requirement is translated as minimal assumptions on
the design matrix X). Sparse statistical estimation is closely related to
the problem of compressive sensing in approximation theory, but is more
complex because the noise is added. It is also related to the problem of
aggregation of estimators since, using sparse estimation methods obeying
the SOI, we can construct aggregates that are simultaneously optimal for
convex, linear and model selection type aggregation.

First, an overview of the most popular methods of sparse statistical esti-
mation will be given. They are mainly of the two types. Some of them, like
the BIC, enjoy nice theoretical properties without any assumption on the
dictionary but are computationally infeasible starting from relatively mod-
est dimensions p. Others, like the Lasso or the Dantzig selector, are easily
realizable for very large p but their theoretical performance is conditioned
by severe restrictions on the dictionary. We will discuss and compare vari-
ous types of such restrictions emphasizing that the Lasso and the Dantzig
selector can be studied by similar methods and exhibit similar behavior.

We will then focus on Sparse Exponential Weighting, a new method
of sparse recovery in regression, density and classification models realizing
a compromise between theoretical properties and computational efficiency.
The theoretical performance of the method is comparable with that of the
BIC in terms of SOI for the prediction risk. No assumption on the dictionary
is required, except for the standard normalization. At the same time, the
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method is computationally feasible for relatively large dimensions p. It is
constructed using the exponential weighting with suitably chosen priors, and
its analysis is based on the PAC-Bayesian ideas in statistical learning. We
will develop a general technique to derive sparsity oracle inequalities from
the PAC-Bayesian bounds.

Bibiliography
Bickel, P.J., Ritov, Y. and Tsybakov, A.B. (2008) Simultaneous analysis of Lasso

and Dantzig selector. Annals of Statistics, to appear:
http://www.imstat.org/aos/future papers.html

Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007a) Aggregation for Gaus-
sian regression. Annals of Statistics, v.35, 1674-1697.

Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007b) Sparsity oracle inequal-
ities for the Lasso. Electronic Journal of Statistics, v.1, 169-194.

Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007c) Sparse density estima-
tion with `1 penalties. COLT-2007, 530-543.

Dalalyan, A. and Tsybakov, A.B. (2008) Aggregation by exponential weighting,
sharp PAC-Bayesian bounds and sparsity. Machine Learning, published on-line:
http://dx.doi.org/10.1007/s10994-008-5051-0

Juditsky, A., Rigollet, P. and Tsybakov, A.B. (2008) Learning by mirror averag-
ing. Annals of Statistics, to appear: http://www.imstat.org/aos/future papers.html.
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M-estimation and complexity regularization

Sara van de Geer
Seminar für Statistik, ETH Zürich

1 Empirical processes

Consider a sample Z1, . . . , Zn of independent random variables, in some space
Z, and let γ : Z → R be a (measurable) function. We write the empirical
average as

Pnγ :=
1
n

n∑
i=1

γ(Zi),

and the theoretical mean as

Pγ :=
1
n

n∑
i=1

Eγ(Zi).

Let Γ be a collection of functions on Z. Empirical process theory is about the
study of quantities of the type

Z := sup
γ∈Γ

|(Pn − P )γ|,

in particular the study of probability and moment inequalities for Z. Of further
interest is the empirical process

νn := {νn(γ) :=
√
n(Pn − P )γ : γ ∈ Γ}.

Here, asymptotic continuity (tightness) is a key concept. This is the following
property:

sup
σ(γ−γ0)≤εn

|νn(γ − γ0)| →P 0,

as n→∞, with {εn} a sequence of positive numbers decreasing to zero. More-
over,

σ2(γ) :=
1
n

n∑
i=1

var(γ(Zi)).

In fact, we will examine the increments or modulus of continuity of the empirical
process, which is the behavior of, for instance, the moments

ψ(ε) := E sup
σ(γ−γ0)≤ε

|νn(γ − γ0)|,

as function of ε.
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2 Application to M-estimation

Suppose Γ ⊂ Γ0 is a given collection of loss functions. The M-estimator is

γ̂ := arg min
γ∈Γ

Pnγ.

It is to be understood as an estimator of the target

γ0 := arg min
γ∈Γ0

Pγ.

Note since Γ0 ⊃ Γ, the target γ0 may not be an element of the class Γ over
which we perform empirical risk minimization. The best approximation within
Γ of the target is defined as

γ∗ := arg min
γ∈Γ

Pγ.

The excess risk is defined as

E(γ) := P (γ − γ0), γ ∈ Γ.

We moreover call E∗ := E(γ∗) the approximation error. The behavior of the
excess risk Ê := E(γ̂) of the estimator γ̂ will be our topic of interest. The
following simple inequality is our starting point.

Lemma 2.1 It holds that

Ê ≤ −νn(γ̂ − γ∗)/
√
n+ E∗.

Thus, the excess risk Ê is bounded by two terms. The second term is the
approximation error, and the first term can be thought of as the estimation
error. This first term can be handled using empirical process theory.

For example, suppose we can show that

Vn := sup
γ∈Γ

|νn(γ − γ∗)
ψ(σγ ∨ σ∗)

is a tight sequence of random variables (for example that moments exist and
do not explode as n→∞). Here, we define

σγ := σ(γ − γ0),

and σ∗ := σγ∗ . Moreover, ψ is some (concave) strictly increasing function.

Lemma 2.2 Suppose that the margin condition

E(γ) ≥ G(σγ),∀ γ ∈ Γ

holds. Here, G is some (convex) increasing function. Assume that Gψ :=
G ◦ ψ−1 is strictly convex. Let H be the convex conjugate of Gψ. Then for all
0 < δ < 1,

(1− δ)Ê ≤ δH

(
Vn

δ
√
n

)
+ (1 + δ)E∗.

Thus, Lemma 2.2 gives a bound for the estimation error in terms of the modulus
of continuity ψ of the empirical process.
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3 Modulus of continuity and entropy

Definition Let (Λ, d) be a subset of a metric space. The δ-covering number
N(δ,Λ, d) of Λ is the smallest value of N such that there exist {λj}Nj=1 with

min
1≤j≤N

d(λ, λj) ≤ δ, ∀ λ ∈ Λ.

The entropy H(·,Λ, d) is then defined as

H(· · · ,Λ, d) := log(1 +N(·,Λ, d)).

For a probability measure Q on Z, let ‖ · ‖Q denote the L2(Q)-norm. Suppose
the entropy condition

sup
probability measures Q

H(·,Λ, ‖ · ‖Q) ≤ H(·),

where H is a continuous function for which the integral

ψ(·) := 24
∫ ·

0

√
H(u)du,

exists.

We will prove the following theorem.

Theorem 3.1 Assume that the functions γ in Γ are bounded in sup-norm by
some constant K:

sup
z∈Z

|γ(z)| ≤ K, ∀ γ ∈ Γ.

Let H be the convex conjugate of v 7→ (ψ−1(v))2. Then for ε2 ≥ 2H(4K/
√
n),

we have

E

(
sup

σ(γ−γ0)≤ε
|νn(γ − γ0)|

)
≤ ψ(4ε)

4 Further themes

The technical tools we shall use involve Hoeffding’s and Bernstein’s inequalities,
and contraction inequalities (Ledoux and Talagrand [1991]).

Note that Theorem 3.1 is a statement about the mean of the empirical process.
In the part on empirical process theory, we will also discuss concentration in-
equalities, which say that the empirical process is concentrated around its mean
with large probability (Bousquet [2002], Massart [2000]).

Lemma 2.2, shows that a good choice of the model class Γ involves a trade-off
between estimation error and approximation error. We will discuss penalized
empirical risk minimization and the so-called oracle inequalities (del Barrio
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et al. [2007]). In particular, we will look at high-dimensional (generalized) linear
models (van de Geer [2006], van de Geer [2007]),and `q penalties (0 ≤ q ≤ 1),
and at additive models involving many components.

For most of the results, we will provide a complete proof. And of course, we
will discuss many examples.
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We investigate the efficiency of V-fold cross-validation (VFCV) for model
selection from the non-asymptotic viewpoint, and suggest an improvement on
it, which we call “V-fold penalization”.

First, considering a particular (though simple) regression problem, we will
show that VFCV with a bounded V is suboptimal for model selection. The
main reason for this is that VFCV “overpenalizes” all the more that V is large.
Hence, asymptotic optimality requires V to go to infinity. However, when the
signal-to-noise ratio is low, it appears that overpenalizing is necessary, so that
the optimal V is not always the larger one, despite of the variability issue. This
is confirmed by some simulated data.

In order to improve on the prediction performance of VFCV, we propose
a new model selection procedure, called “V-fold penalization” (penVF). It is
a V-fold subsampling version of Efron’s bootstrap penalties, so that it has the
same computational cost as VFCV, while being more flexible. In a heteroscedas-
tic regression framework, assuming the models to have a particular structure,
penVF is proven to satisfy a non-asymptotic oracle inequality with a leading
constant almost one. In particular, this implies adaptivity to the smoothness of
the regression function, even with a highly heteroscedastic noise. Moreover, it
is easy to overpenalize with penVF, independently from the V parameter. As
shown by a simulation study, this results in a significant improvement on VFCV
in several non-asymptotic situations.

1



Estimation of the Effective

Dimension Reduction Subspace

Arnak Dalalyan

Laboratoire de Probabilités et Modèles Aléatoires
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The aim of this talk is to introduce a new procedure providing an estimator of
the effective dimension reduction (EDR) subspace in the multi-index regression
model with deterministic design and additive noise. More specifically, the prob-
lem of estimating the projection matrix Π∗ = ΘΘ> based on the observations
(x1, Y1), . . . , (xn, Yn) coming from the model

Yi = f(xi) + εi = g(Θ>xi) + εi, i = 1, . . . , n,

is addressed. In the general setup we are interested in, the covariates xi ∈ R
d,

Θ is a d×m∗ orthogonal matrix (Θ>Θ = Im∗) and g : R
m∗ → R is an unknown

function. To be able to estimate Π∗ consistently, we assume that S∗ = Im(Θ)
is the smallest subspace satisfying f(xi) = f(ΠSxi), ∀i = 1, . . . , n, where ΠS

stands for the orthogonal projector in R
d onto the subspace S. We will focus

our attention on the case where m∗ is known.
Many methods dealing with the estimation of the EDR subspace perform

principal component analysis on a family of vectors, say β̂1, . . . , β̂L, nearly lying
in the EDR subspace. This is in particular the case for the structure-adaptive
approach proposed by Hristache, Juditsky, Polzehl and Spokoiny (Ann. Statist.

2001). In contrast with this approach, we propose to estimate the projector
onto the EDR subspace by the solution to the optimization problem

minimize max
`=1,...,L

β̂>

` (I − A)β̂` subject to A ∈ Am∗ ,

where Am∗ is the set of all symmetric matrices with eigenvalues in [0, 1] and
trace less than or equal to m∗, with m∗ being the true structural dimension.
Under mild assumptions,

√
n-consistency of the proposed procedure is proved

(up to a logarithmic factor) in the case when the structural dimension is not
larger than 4. Moreover, the stochastic error of the estimator of the projector
onto the EDR subspace is shown to depend on L logarithmically. This enables
us to use a large number of vectors β̂` for estimating the EDR subspace. The
empirical behavior of the algorithm is studied through numerical simulations.
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This talk introduces an analysis of similarity of distributions based on mea-
suring some distance between trimmed distributions. Our main innovation is the
use of the impartial trimming methodology, already considered in robust statis-
tics, which we adapt to the setup of model checking. By considering trimmed
probability measures we introduce a way to test whether the core of the random
generator underlying the data fits a given pattern. Instead of simply removing
mass at non-central zones for providing some robustness to the similarity analy-
sis, we develop a data-driven trimming method aimed at maximizing similarity
between distributions. Dissimilarity is then measured in terms of the distance
between the optimally trimmed distributions. Our main choice for appplications
is the Wasserstein metric, but other distances might be of interest for different
applications. We provide illustrative examples showing the improvements over
previous approaches and give the relevant asymptotic results to justify the use
of this methodology in applications.
Keywords. Trimmed distributions, similarity, transportation cost, asymp-
totics.
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[1] Álvarez-Esteban, P.C., del Barrio, E., Cuesta-Albertos, J.A. and Matrán, C.
(2008). Trimmed comparison of distributions. To appear in J. Amer. Stat.

Assoc.

1



Identifying a Context Tree: BIC Estimator and

Algorithm Context.
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Stochastic chains with memory of variable length constitute a class of pro-
cesses including Markov Chains, but potentially much more parsimonious. The
idea behind the notion of variable memory models is that the probabilistic def-
inition of each symbol only depends on a finite part of the past and the length
of this relevant portion is a function of the past called ”context”. The set of all
contexts satisfies the suffix property which means that no context is a proper
suffix of another context. This property allows to represent the set of all con-
texts as a rooted labeled tree. With this representation the process is described
by the tree of all contexts and a associated family of probability measures on
the alphabet, indexed by the tree of contexts. Given a context, its associated
probability measure gives the probability of the next symbol for any past hav-
ing this context as a suffix. The pair composed by the context tree and the
associated family of probability measures is called a probabilistic context tree.
Originally also called finite memory source by Rissanen, this class of models
recently became popular in the statistics literature under the name of Variable
Length Markov Chains (VLMC) after an article by Buhlmann and Wyner. In
1983, Rissanen not only introduced the notion of variable memory models but he
also proposed the algorithm Context to estimate the probabilistic context tree.
The way the algorithm Context works can be summarized as follows. Given a
sample produced by a chain with variable memory, we start with a maximal tree
of candidate contexts for the sample. The branches of this first tree are then
pruned until we obtain a minimal tree of contexts well adapted to the sample.
We associate to each context an estimated probability transition defined as the
proportion of time the context appears in the sample followed by each one of the
symbols in the alphabet. Several variants of the algorithm Context have been
presented in the literature: in all the variants the decision to prune a branch is
taken by considering a gain function. A branch is pruned if the gain function
assumes a value smaller than a given threshold. The estimated context tree is
the smallest tree satisfying this condition. The estimated family of probability
transitions is the one associated to the minimal tree of contexts. In his seminal
paper Rissanen proved the weak consistency of the algorithm Context in the
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case where the contexts have a bounded length, i. e. where the tree of contexts
is finite. Buhlmann proved the weak consistency of the algorithm also in the
finite case without assuming a prior known bound on the maximal length of the
memory but using a bound allowed to grow with the size of the sample. In both
papers the gain function is defined using the log likelihood ratio test to compare
to candidate trees. On the other hand, Csiszar and Talata introduced a different
approach for the estimation of the probabilistic context tree using the Bayesian
Information Criterion (BIC). The BIC context tree estimator belongs to the
family of penalized likelihood methods, which appear to be computationally
efficient thanks to an elegant greedy procedure, the context tree maximizing
algorithm. They proved strong consistency, but provided no finite-time con-
trol on the probability of over- or under-estimation. In this talk I will present
non-asymptotic upper-bounds on the probability of error for the BIC estima-
tor and for the Context algorithm. These bounds improve preceeding results
by Galves and Maume, and require no hypotheses on the probability measures
associated with each context. Their proof is made possible by the derivation
of refined deviation inequalities for self-normalized martingales, which I shall
briefly present.
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Abstract

A current challenge in system biology is to infer the regulation network of a family of p
genes from a n-sample of microarrays, with n (much) smaller than p. Gaussian graphical
models are simple models to describe these regulation networks. We propose a procedure
that performs Gaussian graph estimation by model selection. We introduce a collection of
candidate graphs and then select one of them by minimizing a penalized empirical risk. We
pay a special attention to the maximum degree of the graphs that we can handle and asses the
performance of the procedure in a non-asymptotic setting. The good theoretical properties
of the procedure are confirmed on numerical examples.

Keywords. Gene Regulation Networks, Gaussian Graphs, Model Selection, Sparsity.

Biological systems involve complex networks of interactions between entities such as genes or
proteins. These networks can be conveniently represented by a graph. Each vertices of the graph
corresponds to a protein or a gene, and an edge between two vertices represents a direct interaction.
For example, Figure 1 records 1948 (known) interactions between 1458 proteins of the yeast.
Recent biotechnological tools enable to produce a huge amount of proteomic or transcriptomic
data. One of the challenge of the post-genomic is to infer the functional interactions between the
genes or the proteins from these data. The task is challenging for the statistician due to the very
high-dimensional nature of the data. For example, microarrays measure the expression level of a
few thousand genes (typically 4000) whereas the sample size n is no more than a few tens. Since
the number of possibles interactions between p genes is p(p−1)/2 (nearly ten millions if p = 4000),
it seems hopeless to try to infer these interactions from n ≈ 20 microarrays. This task is actually
possible (up to some extend) thanks to the sparsity of the interaction network.

Valuable tools for analyzing the network of interactions are the Gaussian Graphical Models.
The vector of the expression levels of the p genes is modeled by a Gaussian variable in Rp.
The Gaussian graph then represents the conditional dependences between the coordinates. More
precisely, if X = (X1, . . . , Xp) represent the expression levels of the p genes, the graph has an
edge between the genes i and j if and only if Xi is not independent of Xj conditionally on the
other variables. The goal of the statistician is to infer these edges from a n-sample of the variables
X. The edges correspond to the non-zero entries of the partial correlation matrix, so when the
sample size n is larger than p, a possible algorithm to infer the edges is to threshold the inverse
of the empirical covariance matrix. This strategy is no more possible when n is (much) smaller
than p and several new algorithms have been proposed. Unfortunately, the real performance of
these algorithms are mostly unknown: the few theoretical results are only valid under restrictive
conditions on the covariance matrix and they assume that the sample size n tends to infinity.

We propose a new statistical procedure to estimate the graph of conditional dependences of
X. We first introduce a collection of candidate graphs and then select one of them by minimizing
a penalized empirical risk. The performance of the procedure is assessed in a non-asymptotic
setting without any hypotheses on the covariance matrix. These good theoretical properties of
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Figure 1: Protein-Protein interaction network of the yeast.

the procedure are confirmed by numerical results. Since we are interested on the maximal ”size”
of the graph that we can infer, we pay a special attention to the maximal degree D of the graphs
that we can handle. This maximal degree turns to be roughly n/(2 log(p/D)), which means that
p should stay small compared to den/(2d)−1, where d is the degree of the graph of conditional
dependences.
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The last decade has witnessed the apparition of applied problems typified by very high-dimensional
variables, in marketing database or gene expression studies for instance. Graphical models (Lauritzen
(1996)) enable concise representations of associational relations between variables. If the graph is known,
the parameters of the model are easily estimated. However, a quite challenging issue is the selection of
the most appropriate graph for a given dataset. We consider this problem and the case of decomposable
Gaussian graphical models (Dawid and Lauritzen (1993)).

Let G = (V,E) be an undirected graph with vertices V = {1, . . . , p} and set of edges E. We suppose
that G is decomposable. To each vertex v ∈ V of the graph, we associate a random variable yv. Let
y = (y1, . . . , yp), a graphical model is a family of distributions on y which are Markov with respect to a
graph. A Gaussian graphical model is such that

y|G,ΣG ∼ Np (0p,ΣG) , (1)

where ΣG is a positive definite matrix which ensures that the distribution of y is Markov with respect
to G. ΣG ensures that the distribution of y is Markov iff (i, j) /∈ E ⇐⇒ (

Σ−1
G
)
(i,j)

= 0.
We observe a sample y1, . . . ,yn from (1) (the data are centered). We would like to identify the set of
most relevant graphs. For the considered multivariate random phenomenon, we are interested in the set
of most relevant conditional independence structures.

We consider the Bayesian paradigm. Conditionally on G, we use a Hyper-Inverse Wishart (HIW) dis-
tribution associated to the graph G as prior distribution on ΣG : ΣG |G, δG ,ΦG ∼ HIWG (δG ,ΦG) where
δG > 0 and ΦG is a p× p symmetric positive definite matrix. Conditionally on G, the HIW distribution
is conjugate

ΣG |G,y1, . . . ,yn, δG ,ΦG ∼ HIWG

(
δG + n,ΦG +

n∑
i=1

yi
(
yi
)T)

. (2)

Moreover, for such a prior, f(y|G, δG ,ΦG) =
hG(δG ,ΦG)

(2π)np/2hG

(
δG + n,ΦG +

n∑
i=1

yi
(
yi
)T) where hG is the

normalizing constant of the HIW distribution associated to the graph G. Finally, we assume a uniform
prior distribution in the space of graphs: π(G) ∝ 1. In that case,

π
(G|y1, . . . ,yn, δG ,ΦG

) ∝ f(y|G, δG ,ΦG) . (3)

It is well-known that (3) is sensible to the specification of the hyper-parameters δG and ΦG (Giudici
and Green (1999), Jones et al. (2005)). In this work, we address this problem and present different
strategies. Then, we introduce a new sampling scheme to explore the space of graphs and conclude with
some experiments on simulated and real datasets.
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