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1) Spiked eigenvalues: an example
» SP 500 daily stock prices ; p = 488 stocks;

» n = 1000 daily returns r:(i) = log p:(i)/p:—1(i) from 2007-09-24 to
2011-09-12;

5 daily returns
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The sample correlation matrix

> Let the SCM (488x 488)

» We consider the sample correlation matrix R, with

Sn(isJ)

Rolid) = .G 0 SaG T

> The 10 largest and 10 smallest eigenvalues of R, are:

237.95801 4.8568703 ... 0.0212137 0.0178129
17.762811  4.394394 ... 0.0205001 0.0173591
14.002838  3.4999069 ... 0.0198287 0.0164425
8.7633113  3.0880089 ... 0.0194216 0.0154849

5.2995321 2.7146658 ... 0.0190959 0.0147696



Left: 488 - 1 = 487 eigenvalues

The largest excluded

Plots of sample eigenvalues

right: 488 - 10 = 478 eigenvalues

10 largests excluded
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sample eigenvalues = bulk + spikes

— Analysis and estimation of spikes + bulk



A generic model

Random factor model

q0
Xt = akst(t) + er = Ast + &,
k=1

> st = (s¢e(1),...,st(qo)) € R are qo < p standardised random
signals/factors,

> A= (a1,...,aq), P X qo deterministic matrix of factor loadings

> £ is an independent p-dimensional noise sequence, with a diagonal
covariance matrix: W = cov(e;) = diag{03,...,05}.

Therefore,
Y =cov(x) = AA"+ V.

» this model is very old; has wide range of application fields: psychology,
chemometrics, signal processing, economics, etc.



2). Inference on spikes
a). Known results

Spiked population model

Population covariance matrix:
Y = Cov[x]=AA"+5°l,,
with eigenvalues

spec(Z):(onra;, e 0’2+a;0, o, ..., 02),

where

> o) > ah > > o, > 0 are non null eigenvalues of AA™,

or equivalently

with



Asymptotic framework and assumptions

® p,n — +oo such that p/n — ¢;

® The population covariance matrix has K spikes ai; > - > ax with
respective multiplicity numbers n;, i.e.

2 :
spec(X) = o (u, ..., 1,00, ..., Q2. .. QK QK 1o 1),
—_—— —— N——

m m nK P—do

[m+-+nk=q];

® ax > 1++/c ( detection level ).

0 E(|x}]) < +oo.



Convergence of spike eigenvalues

Consider the sample covariance matrix S, = 2 >°7 x;x’, with sample
n i=1 U
eigenvalues: A\p1 > Xp2 >+ > Anp -

Proposition (Baik and Silverstein - 2006)
Letsi=n +---+n; forl <i< K. Then
> Foreach k € {1,...,K} and sx—1 < j < s, almost surely,

COk .
Oékfll

Anj — ’L/)(O(k) = ax +

» For all1 < i < L with a prefixed range L almost surely,

Angoti = b= (1+ /).

Note.  This result has been extended for more general spikes by Bai & Y.,
Benaych-Georges & Nadakuditi.



b) Estimator of gy (number of spikes)

» Based on these results, we observe that when all the spikes are simple, i.e.
nj = 1, the spacings

r>0 Vj<qo

Onj = Anj — Anj+1 —
0 Yj > qo

> it is possible to detect go form index-number j where §,, ; becomes small
(case of simple spikes). Our estimator is define by

G = min{je{l,...,s}:0nj+1 < dn}, (1)

where (d,), is a sequence to be defined and s > qq is a fixed number.



Consistency of §,: case of simple spikes

Assume

> All spikes are different (simple spike case);
> o2 =1 (if not, take 0, ;/0°);

and

@ Entries have sub-Gaussian tails: for some positive D, D" we have for all
t>D’,
P(lx > t°) <e™.

Theorem  [Passemier & Y. 2011]

Under Assumptions (1)-(5) and in the simple spikes case, if d, — 0 such that
n*3d, — +oo then
P(f]n = qo) — 1.



Proof (idea)

P(an = qO) = 1-P U {5"J < d"} U {6"4,q0+1 > d"}

1<j<qo

v

90
1= P(6n; < dn) — nm(an‘,qo(ﬂ) > d).
Jj=1 *

The terms in the sum converge to zero as d, — 0 and d,; — r > 0. For the

last term

1= (x) = B(n*(naprs — Anaos2) < n*°d)

d d
< 235 ol < 235
P<{|Y}1|_n 25}ﬁ{|Y72|_n 25

where Y is a tight sequence by the next proposition, and n2/3dn/2ﬁ — 400, SO
1—(x)— 1L

IV



Proof (an additional important ingredient)

An (partial) extension of Tracy-Widom law in presence of spikes:

Theorem (Benaych-Georges, Guionnet, Maida - 2010)

Under the above assumptions, for all 1 < | < L with a prefixed range L

2

n3
Yo, = g()\n,qw — b) = Op(1)

where 8 = (14 /)(1+vc1)5 .



Case of multiple spikes

> spacings d,; — 0 from a same spike can also tend to 0;

» Confusion may be possible between these spacings and those from the
bulk eigenvalues;

» Hopefully, fluctuations of both type of spacings have different rates:

—1/2 =2
n / \VASH >~n /e o

Theorem (Bai and Y. (2008))
Under Assumptions (1)-(4) (2), the ni-dimensional real vector
Vn{tn; — ¢aw), j € {sk-1+1,...,s¢}}

converges weakly to the distribution of the n, eigenvalues of a Gaussian
random matrix whose covariance depend of c, and c.

[ related works are from Baik-Ben-Arous-Péché, Paul |



Consistency of §,: case of multiple spikes

The previous theorem of Bai and Y. implies:

» If a; = a1, convergence in Op(n~'/?);

» For unit eigenvalues, faster convergence in O;~(n72/3).

This allows us to use the same estimator provided we use a new threshold d,,.

Theorem (Passemier & Y. (2011))
Under the above assumptions, if
do=o(n""?), and n**d, — 4o,

then
P(f]n = qo) — 1.



Simulation experiments

We decided to use another version of our estimator which performs better

Gn =min{j € {1,...,5} : dnjt1 < dn and Opjyo < dn}

Threshold sequence: d, = Cn~2/3\/2loglog n, where C is a constant to be
adjusted for each case (ldea: law of the iterated logarithm for \,j, j < qo.).



Simulation experiments

» Performance measure: empirical false detection rates over 500
independent replications

P(g» # qo)

» Simulation design:
® qo: number of spikes;
o (j)i<i<qy: spikes;
e p: dimension of the vectors;
e n: sample size;
« c=p/m
e o2 =1 given or to be estimated;

e (: constant in d,.



Experimental design

TABLE 1. Summary of parameters used in the simulation experiments. (L: left, R: right)

Fig. Factors Mod. Factor Fixed parameters Var.
No. No. values p.n c e C par.
00 S /. EF
1 Different {e) ((2211:;:18,,::;:}] lfll Given ”5')1 ¥
A [6,5) Given
2L Different B (10,5) 10 ' 11 n
B (10,5) Estimated
i C 1.5 2
2R Different D (2&)‘ 1]})) 1 Given 5 mn
. Possibly E (o, ,5)  (200,800) 1/4 6
¥ agusl F (eid5) (2000,500) & (UER g 8
Possibly G (6,5,5) Given
4L equal H {10,5.5) 10 ) 99 n
H (10,5, 5) Estimated
Possibly 1 (1.5,1.5 i 2
R equal J o (2.5,1.5, l).._:) ! Given o
5 Models A and D
i} Models G and J
e : 1 8
7 No factor K No factor Given n
10 15
8L Models A and G
S8R Models B and H
9L Models C and I, with ' automatically chosen
9R Models D and J, with € automatically chosen
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FIGURE 1. Misestimation rates as a function of factor strength for (p,n) = (200, &00)
and (p,n) = (2000, 500).
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FIGURE 2. Misestimation rates as a function of n for Models A, B (left) and Model C,
D (right).



c) Discussions

- Comparison with an estimator by Kritchman
and Nadler

In the non-spikes case (go = 0), nS, ~ W,(l, n). In this case

Proposition (Johnstone - 2001)

2 Bnp

n2/3

P (An"l <o s 4 b) — F1(5)

where F; is the Tracy-Widom distribution of order 1 and
1
Bnp=(1++/p/n)(L++/n/p)3.

To distinguish a spike eigenvalue \, x from a non-spike one at an asymptotic
significance level v, their idea is to check whether

“8"4 —k
Aok > 0 ( sl b)
where s(~) verifies Fi(s(y)) = 1 — ~. Their estimator is

Gn = argmin (An,k <5 (ﬂ;’;’/js(nf) 4= b)) ~1
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FIGURE 5. Misestimation rates as a function of n for Model A (left) and Model D (right).
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c) Discussions
- on the tuning parameter C

C has been tuned manually in each case ;
For real applications, need a procedure to choose this constant;
Idea: use Wishart distributions as a benchmark to calibrate C ;

consider the gap between two largest eigenvalues: A; — \»



Cont'd

» By simulation to get empirical distribution of A, — X5 ;

» compute the upper 5% quantile s:

» Define a value

Results:

500 independent replications.

P(A1 — X2 < s) ~=0.95 .

C= sn2/3/\/2 X loglog(n) .

TABLE 4. Approximation of the threshold s such that ?()\; X_: < 5) = 0.98.

(p.1)

(200,200)(400,400)(600,600)

72000,200)(4000,400)(7000,700)

Value of s

0.340 0.223 0.170

0.593 0.415 0.306

C

6.367 6.308 6.277

11.106 11.906 12.44




Assessment of the automated value C with ¢ = 10

Models A and G Models B and H
o
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FIGURE 8. Misestimation rates as a function of n for Models A, G (left) and Models
B, H (right)

» C > tuned C slightly ;
» Using C — only a small drop of performance ;

> higher error rates in the case of equal factors for moderate sample sizes



Application to S&P stocks data

The largest excluded

10
08
08
04
02
0 2 5 c I

0.0

12 14 16 18

» Estimated number of factors: go = 17,

» Residual variance: 5% = 0.3616.



3) Inference of the bulk spectrum

Estimation of population spectral distribution

X, mean-zero, p-dim Xi,...,Xn, i.i.d, size n
Cov(X) =X, Sn =32 XiXi /n

‘ Large dimensional situations‘

lim p/n=c>0
n—o0

PSD H, ESD F,
the empirical spectral the empirical spectral

distribution of X, distribution of S,.

Problem: Estimate H, from F,.



The Maréenko-Pastur equation

» Suppose that
p/n—c>0, H, % H,

then under suitable conditions, cf. Marcenko-Pastur '68, Silverstein '95,

F,,&F, n — oo.

> Let §(z):f(lfc)/z+c/1/(xfz)dF(x),

be the Stieltjes transform of (the companion distribution of) F, then

S . zeC
2= §(Z)+C./1+t§(z)dH(t)’ eC,

which is called Mar¢enko-Pastur (MP) equation.

» This gives the inverse map of s(z) on C\R.

Almost all statistical tools for inference of H are based on this equation !!



a). Existing methods for estimation of PSD H

> Inversion of the MP equation:

1. [El Karoui (2008)], nonparametric, complex field;
2. [Li et al. (2012)], parametric, real field.

» Methods based on moments of F:

1. [Rao et al. (2008)], quasi-likelihood;
2. [Bai et al. (2010)],  complete moment method.

» Methods based on moments and contour-integrals:

1. [Mestre (2008)], eigenvalue splitting condition;
2. [Yao et al. (2012)], global moment of H;
3. [Li and Yao (2012)], local moment of H.



Still needs new methods!
However,

> global inversion methods in [El Karoui (2008)] and [Li et al. (2012)] have

some implementation issues that are non trivial to overcome;

» other methods are based on moments, but there are situations where these
moments can not help to identify model parameters.

Example of a PSD H not identifiable by moments

» H has an inverse cubic density function ([Bouchaud and Potters (2009)])

b
h(t'(l) = m, t 2 a,
where the parameter is 0 < o < 1 is the parameter to be estimated and
a=2a—-1, b=2(1—-a)
> Then X .
xh(x)dx =1, / x*h(x)dx =00, for k> 2.

« «@

Moments of H are independent from the parameter «!



b). A generalized expectation based method

Main idea

> Use of general test functions f instead of monomials x* (moments) ;

> These test functions are usually smaller than the monomials x* so that

T(f) = / F(x)dH(x)

are finite.

In the example above of inverse cubic density, f(x) = sin(x) has a finite

integral:
8 - < sin(x)
T(f)_b‘/ (xfa)3dx'




Generalized expectations and their estimates

Let f be a analytic function on an open U/ O Sz, support of F;
Define a generalized expectation T(f) := [ f(t)dH(t);

It will be shown that

T(F) = K(c, f) + 74 25/ (2)F(—1/5(2))dz,

2mic

where K(c, f) is a constant, independent from H and C is a contour
enclosing Sr.

With sample eigenvalues, s(z has an empirical estimate

s)(z2) = —(L=p/n)/z+(p/n) / 1/(x — z)dFa(x)

Therefore, the above generalized expectation can be estimated by

T(F) = Klp/n F)+ 55 § 25, (2)f(-1/5,(2)dz.

(1)



Generalized expectation based estimator of H

» Suppose that H belongs to a parametric family:

H={Hp:0€© CR}.

» Construct a g-dim vector of generalized expectations,

7= (T 1o = ([ 3t )
such that g : 0 — -y is an one-to-one map on ©;

> The generalized expectation estimator (GEE) of 6 is defined to be

0 =8 (7,):

where 5, = (T(f)) 1<j<1, with elements defined by (1).



c). Asymptotic properties of the GEE estimator

Assumptions:

Assumption (a).  n,p — oo with p/n — ¢ € (0, 00).
Assumption (b).  The sample covariance takes form
So =S W, WL /n,

where the entries of W, (p x n) are i.i.d. standard real or complex normal
variables, and Z,l,/2 stands for any Hermitian square root of X ,.

Assumption (c).  H, - H, a proper probability distribution on [0, c0).
Moreover, the sequence of spectral norms (||Z,||) is bounded.



Asymptotics of { 7’( fi)}'s

Theorem (Li and Y. (2012))

Under the assumptions (a)-(c), for each j=1,...,q),

. the generalized expectation T (f;) can be expressed as

¢ 2 @1(-1/5(2)d
Cc

where the constant K(c, f;) = (1 — 1/c)fj(0) if C encloses 0, and zero otherwise;

T(F) = K(c, ) + 5—

. its empirical counterpart T(ﬂ) based on s, (z) converges almost surely to T (f;);

. if in addition, the entries of W, (p X n) are complex normal, the random vector
() — Ho(£)] 2, Ng(0, ®),

n[T(6) ~ Ho(H)],__ > No(0, @)

where the centralization term H,(f;) stands for the expectation of f; with respect to H,,
where the asymptotic covariances ® = (¢ij)qxq are

= P ?{ }{, —1/s(21))fj(=1/s(2))k(z1, 22)dz1dzs,

where k(z1,z2) = s'(z1)s'(z2)/(s(z1) — 5(22)) —1/(z — 22)2.



Asymptotics of the GEE estimator 5,,

Theorem (Li and Y. (2012))

In addition to the assumptions (a)-(c), suppose that the true value of the
parameter O is an inner point of ©. Also, suppose that the function g(0) is
differentiable in a neighborhood of 0y and the Jacobian matrix J(0) = 0g/00 is
invertible at 0y. Then,

1. the GEE 0, is strongly consistent, i.e.

0n — 6o, a.s.,

2. moreover, if in addition, the entries of W, (p X n) are complex normal,
then

(s — g7 (7,)) 2> Ng(0,T(6b)),

where v, = (Hp(fj))1<j<q, and T(60) = J~*(60)®(60)(J*(60))" with ®
being defined in Theorem 1.



d). Application: PSD of S&P 500 stocks
covariances

Data analysis:

» Removed the 6 largest eigenvalues (deemed as spike eigenvalues);

» Assume an inverse cubic density for PSD H associated to the 482 bulk
eigenvalues, that is,

h(tla) = t>a,

(t—a)*
where 0 < o <1, b=2(1— @)’ and a = 2a — 1;

» Moments-based methods fail, LEE may work!



Application to S&P 500 stocks data

» Consider .
F(z) = sin(z), T(f,a)= / sin(t)h(t|a)dt;

» T(f,«) is increasing with respect to «,

neo s/ 0a
10
08 -
08 e
04 04
02 02
00 02 04 06 08 10 00 0z o0a 06 o8 10

Figure: Curves of T(f, ) (left) and OT(f,«)/Oc (right).



Results on S&P 500 stocks data
GEE: T(f,a) = 0.5546, & = 0.3205;

v

» LSE: &’ = 0.4384 (see [Li et al. (2012)]);

v

Denote by f. the density function of LSD F with respect to H(«).

Compute a kernel density estimate frer from the 482 bulk eigenvalues
(Gaussian kernel, bandwidth h = 0.01).

Consider d() = L2(f,, fier), then d(@) = 0.2047, d(@') = 0.2863.

20 20,

v

bl s o 10d WAL AL
3 4 s 0 s

o 1 2

Figure: frr (plain black), 5 (left, blue), and f/ (right, blue).

> GEE yields a significantly better fit to the density of bulk eigenvalues.



Thank you !
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