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Introduction

Variations on the theme of "sample" (or "empirical") covariance matrices
XXT , where X = fXjkgnj ,k=1 are random square matrices. The subject is
rather old with a lot of versions and motivations (e.g. a "typical" positive
de�nite operator in spectral theory). Recent ones are from

(Quantum Statistical Mechanics \ (Quantum Informatics).

Key words: quantum phase transitions, entanglement entropy, area law.
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Product of Triangular Matrices
Generalities

Let A be n� n real symmetric and B be n� n real anti-symmetric. Set

X = A+ B,

assume a certain distribution for A and B, and study the Normalized
Counting Measure (NCM)

Nn = n�1
n

∑
l=1

δ
λ
(n)
l

of XXT as n! ∞, and also rate of convergence, extreme eigenvalues,
�uctuations of Nn, local statistics, eigenvectors, etc.

If the entries of A and B are i.i.d. Gaussian (modulo symmetry), then
XXT is axymptotically Wishart, the hystorically �rst random matrix.
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Product of Triangular Matrices
Generalities

Recall that in the standard RMT setting X = n�1/2Y , where fYjkgnj ,k=1
are independent standard Gaussian (EfYjkg = 0, EfY 2jkg = 1) and then
Nn tends weakly with probability 1 to the "quarter-circle" law

ρ(λ) := N 0(λ) =
1
4π

r
4� λ

λ
1[0,4](λ)

in which λ = 4 (λ = 0) is known as the standard soft (hard) edge. This is
an old result of Marchenko-P. 68

Write
X = (X + XT )/2+ (X � XT )/2 := A+ B

and obtain the simplest example of the above setting.
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Product of Triangular Matrices
Generalities

A bit more: replace X ! X + yIn. This is a particular case of
Silverstein-Dozier 04. Here the limiting DOS is:

y2 < 1: similar to quarter-circle law (standard soft and hard edges, the
latter at 0);
y2 = 1: upper edge is standard soft, lower edge is at zero and non
standard hard

ρ(λ) ' Const λ�1/3, λ & 0;

y2 > 1: both edges are strictly positive and standard soft.
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Product of Triangular Matrices
Motivations

Quasi-free Fermions

HΛ = ∑
x ,y2Λ

Axy c+x cy +
1
2 ∑
x ,y2Λ

Bxy c+x c
+
y + h.c .

A is real symmetric, B is real antisymmetric. For d = 1 and n.n.
interaction follows from quantum spin chains by Jordan-Wigner
transformation.

QSM: Spectrum of HΛ as Λ ! Zd . By Bogolyubov transformation
reduces to the spectrum of

AΛ =

�
A B
�B �A

�
.

QI: Spectrum of KΛjΛ1 , Λ1 � Λ, where KΛ = (I2n + e�βAΛ)�1 and
1 << jΛ1j << jΛj.
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Product of Triangular Matrices
Motivations

We have

det(AΛ � λI2n) = det
�
(A+ B)(A� B)� λ2In

�
Write

A =
1
2
A+ +

1
2
(A+)T + A0, B =

1
2
B+ � 1

2
(B+)T

where A+ and B+ are lower triangular, and A0 is diagonal.
Choose A+ = B+, A0 = yIn to get

A+ B = A+ + yIn.

Assume that fA+jkgn�j>k�1 are independent Gaussian, EfA+jkg = 0,
Ef(A+jk )2g = 1/n to obtain a mean �eld type model for quasi-free
fermions requiring the spectrum of

Mn = (A+ + yIn)(A+ + yIn)T .

Cf. Cholesky decomposition (linear algebra, numerics)
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Product of Triangular Matrices
Results

Theorem
Let Mn be as above. Then its NCM converges weakly with probability 1 to
the non-random limit N, whose Stieltjes transform f solves uniquely

log(1+ f ) =
�
y2 � z(1+ f )

��1
, =f � =z > 0, =z 6= 0.

We have: supp N = [a_(y), a+(y)] � R+, N is a. c. and if ρ = N 0, then
(i) y 6= 0: a�(y) ' e�1y4e�1/y 2 , y ! 0, a+(y) ' e(1+ y2), y ! 0

ρ(λ) ' Const ja� � λj1/2, ja� � λj ! 0,

(ii) y = 0: a�(0) = 0, a+(0) = e and

ρ(λ) '
�

Const (e � λ)1/2, λ % e,
(λ log2 λ)�1, λ & 0.
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Product of Triangular Matrices
Outline of Proof (reminder of the quarter-law derivation)

A short(est) proof of the quarter-circle law for Gaussian vectors is as
follows:
(i) Pass to the Stieltjes transform of Nn:

gn(z) :=
Z Nn(dλ)

λ� z = n�1Tr G (z), G = (M � z)�1

(ii) Use the Poincaré inequality to prove

Varfgn(z)g � Const /n2j Im z j4

thereby reducing the problem to the convergence of Efgn(z)g.
(iii) Use the resolvent identity and the integration by parts to prove

fn := Efgng = �
1
z
+
1
z
fn �

1
zn
EfgnTr MnGg.
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(iv) Use again the resolvent identity and (ii) � (iii) to obtain

zf 2n + zfn + 1 = C (z)/n, C (z) < ∞, =z 6= 0.

(v) Pass to the limit n! ∞, solve the limiting quadratic equation for
Im f (z) Im z > 0 and recover N from the Stieltjes-Frobenuis inversion
formula.
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Product of Triangular Matrices
Outline of Proof for Triangular Gaussian Matrices

Consider the technically simpler case y = 0. Use again the Stieltjes
transform of Nn and the Poincaré

Varfgn(z)g � 1/n2j=z j4,

reducing the problem to the study of

f = lim
n!∞

fn, fn := Efgng = n�1
n

∑
j=1
EfGjjg, =z 6= 0.
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Product of Triangular Matrices
Outline of Proof

The resolvent identity, the integration by parts and vanishing of
�uctuations of n�1Tr... imply:

EfGjjg ' �
1
z
+
1
z
j � 1
n
EfGjjg �

1
z
EfGjjg

j�1
∑

��k=1
Efn�1Tr(ATGA)kkg

Efn�1Tr(ATGA)jjg '
1
n

n

∑
k=j

EfGkkg �
1
n

n

∑
k=j

EfGkkgEfn�1Tr(ATGA)jjg.

View this as the �nite-di¤erence scheme for

f (t, z) = lim
n!∞,j/n!t

EfGjjg.
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Product of Triangular Matrices
Outline of Proof

Then the limit j/n! t 2 [0, 1] yields the equations

f (t, z) = �
�
z �

Z t

0
h(s, z)ds

��1
, h(t, z) =

�
1+

Z 1

t
f (s, z)ds

��1
,

and

f (z) =
Z 1

0
f (t, z)dt.

Denote

ϕ(t, z) =
Z 1

t
f (s, z)ds, ϕ(0, z) = f (z),

to obtain

∂2

∂t2
ϕ =

�
∂

∂t
ϕ

�2
(1+ ϕ)�1,

∂

∂t
ϕ

����
t=0

= z�1, ϕ(0, z) = f (z),

thus
ϕ(t, z) = �1+ e�C (t�1), Ce�C = �z�1.
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Product of Triangular Matrices
Comments

(i) f is not algebraic, cf Anderson-Zeitouni 08, e.g. Silverstein-Dozier case

f =
�
y2(1+ f )�1 � z(1+ f )

��1
.

(ii) Most singular hard edge known. Recall the standard hard edge

ρ(λ) = Const λ�1/2(1+ o(1)), λ & 0,

of the quarter-circle law and more general Laguerre-type ensembles.
(iii) Implies an interesting quantum phase transition via the "scaling
asymptotics" of ρ for λ � y2 ! 0.
(iv) The rate of convergence of minimum eigenvalue of Mn, eigenvectors,
etc.
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Product of Triangular Matrices
Comments

(v) Matrices fZ+jk gnj ,k=1 with i.i.d. (but not necessarily Gaussian) entries.
Use the "interpolation trick" (a two-term integration by parts) for

n�1/2(
p
1� tA+ +

p
tZ+).

(vi) More general versions

H + n�1Z+T (Z+)T , and (Z0 + n�1/2Z+)T (Z0 + n�1/2Z+)T

where Z has independent entries and H, T and Z0 are given.
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Tensor Product Version of Sample Covariance Matrices
De�nition

Consider complex random i.i.d. vectors fϕjαg
p,k
α,j=1, p = 1, 2..., k is �xed,

and ϕjα 2 Cd is

either d�1/2X jα, and X
j
α is complex Gaussian vectors with i.i.d.

standard components

or uniformly distributed over the unit sphere.

Set
Φα = ϕ1α 
 ...
 ϕkα

and consider the dk � dk random matrix

Mp,d ,k =
p

∑
α=1

Φα 
Φα.

We are interested in the (non-random) limit as p ! ∞, d ! ∞,
p/dk = p/n! c 2 (0,∞) of
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Tensor Product Version of Sample Covariance Matrices
De�nition

the Normalized Counting Measure (NCM)

Np,d ,k = d
�k

d k

∑
l=1

δλl , n = d
k .

It is also of interest the limits of the extreme eigenvalues, local statistics,
�uctuations of Np,d ,k , etc.

Studied by M. Hastings et al (CMP 310 (2012) 25-74) as a part of
analysis of quantum analog of classical probability problem on the
distribution of p balls between p bins (quantum models of data hiding and
correlation locking schema).

Proved the MP law for the limit N of the expectation of the NCM and the
convergence of extreme eigenvalues to the endpoints of the support of N
by fairly involved combinatorial analysis of moments d�kTrMm

p,d ,k , m 2 N.
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Tensor Product Version of Sample Covariance Matrices
De�nition

Remark. For Gaussian ϕ�s Φα 2 (Cd )
k has just dk independent
parameters, while a generic Ψ 2 (Cd )
k has dk independent parameters.
Nevertheless the MP law and the convergence of extreme eigenvalues hold
in this case.

We show below that the MP law is valid for the limit with probability 1 of
Np,d ,k in the above and more general cases (vectors with independent but
not necessarily Gaussian components as well as for vectors with
log-concave distribution).
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Tensor Product Version of Sample Covariance Matrices
Pajor-P. Approach

The approach used above for the quarter-circle law and its "triangular"
analog does not apply to the tensor product version, i.e. k > 1 (unlike the
case k = 1). We use an extension of the Marchenko-P. and Girko
approach. Its version for k = 1 is given by Pajor-P. It is applicable not
necessarily Gaussian ϕα�s and any 1 � k < ∞.
(i) Observe that

M =
p

∑
α=1

Lα, Lα = (�, ϕα)ϕα.

(ii) Use either martingale di¤erences (or Poincaré for Gaussian) to prove

Varfgn(z)g = o(1),=z 6= 0, n! ∞, p ! ∞, p/n 2 [0,∞)

(iii) Use the resolvent identity to write

gn := n�1TrG = �z�1 + (zn)�1
p

∑
α=1
(G ϕα, ϕα)
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Tensor Product Version of Sample Covariance Matrices
Pajor-P. Approach

(iv) Use the rank one perturbation formulas:

G = Gα �
GαLαGα

1+ (Gα ϕα, ϕα)
, Gα = G jϕα=0

implying

(G ϕα, ϕα) =
(Gα ϕα, ϕα)

1+ (Gα ϕα, ϕα)
.

to rewrite (iii) as

gn = �z�1 + (zn)�1
p

∑
α=1

(Gα ϕα, ϕα)

1+ (Gα ϕα, ϕα)
.
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(v) Use the independence of Gα and ϕα and to obtain:

Eαf(Gα ϕα, ϕα)g = n�1TrGα, Varf(Gα ϕα, ϕα)g � Const/nj=z j2.

(iv) Use (ii) and (v) to replace (Gα ϕα, ϕα) in (iv) by its expectation
fαn := Efn�1TrGαg.
(v) Use the rank one perturbation formula of (iv) to �nd that
fαn = fn +O(1/n) and get the "pre"� limiting quadratic equation

fn = �
1
z
+
c
z

fn
1+ fn

+ o(1), =z 6= 0, c = p/n

equivalent to the above.
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Tensor Product Version of Sample Covariance Matrices
Basic Relations

For any n� n matrix A we need random vectors ϕ 2 Cn possessing
(i) isotropy

Ef (Aϕ, ϕ)g = n�1Tr A;

(ii) vanishing of �uctuations of (Aϕ, ϕ) ("good" vectors)

Varf (Aϕ, ϕ)g = jjAjjδn, δn = O(1), n! ∞.

Lemma

Let ϕ 2 Cd be a random vector as above and A is dk � dk matrix. If
ϕ1,...ϕk are k independent copies of ϕ then the random vector
Φ = ϕ1 
 ...
 ϕk also possesses the above properties in which n = dk

and δn is replaced by Ck δd , where Ck depends only on k.

Proof is based on the martingale-di¤erences.
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Tensor Product Version of Sample Covariance Matrices
Perspectives

Study the extreme eigenvalues, both for c > 1 (both edges are standard
soft) and c = 1 (lower edge is standard soft). Have likely di¤erent rates of
convergence (depending on k).

Example: for Gaussian vectors

Varfgng �
C (z)k
n1+1/k , 0 < C (z) < ∞, Im z 6= 0,

thus, di¤erent scaling of �uctuations of linear eigenvalue statistics (CLT),
etc.
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