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Introduction

Variations on the theme of "sample" (or "empirical") covariance matrices
XXT, where X = {Xjk}f,kzl are random square matrices. The subject is
rather old with a lot of versions and motivations (e.g. a "typical" positive
definite operator in spectral theory). Recent ones are from

(Quantum Statistical Mechanics N (Quantum Informatics).

Key words: quantum phase transitions, entanglement entropy, area law.
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Product of Triangular Matrices

Generalities

Let A be n X n real symmetric and B be n X n real anti-symmetric. Set
X =A+B,

assume a certain distribution for A and B, and study the Normalized
Counting Measure (NCM)

of XXT as n — oo, and also rate of convergence, extreme eigenvalues,
fluctuations of N,, local statistics, eigenvectors, etc.

If the entries of A and B are i.i.d. Gaussian (modulo symmetry), then
XXT is axymptotically Wishart, the hystorically first random matrix.

L.Pastur (MD ILT) Paris, 8 - 10 October 2012

4/

24



Product of Triangular Matrices

Generalities

Recall that in the standard RMT setting X = n~/2Y, where {ij}f,kzl

are independent standard Gaussian (E{Yj} =0, E{Yﬁ(} = 1) and then
N, tends weakly with probability 1 to the "quarter-circle" law

o) =N ) = /T 040

in which A =4 (A = 0) is known as the standard soft (hard) edge. This is
an old result of Marchenko-P. 68

Write
X=X+X")/24+(X-X")/2:=A+B

and obtain the simplest example of the above setting.
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Product of Triangular Matrices

Generalities

A bit more: replace X — X + yl,. This is a particular case of
Silverstein-Dozier 04. Here the limiting DOS is:

y? < 1: similar to quarter-circle law (standard soft and hard edges, the
latter at 0);
y? = 1: upper edge is standard soft, lower edge is at zero and non
standard hard

p(A) =~ Const A71/3, A\, 0;

y? > 1: both edges are strictly positive and standard soft.
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Product of Triangular Matrices

Motivations
Quasi-free Fermions
Hy = A, Ccl L B, clcr+h
A = Z xyCx Cy + 5 Z xyCx €, T Nh.cC.
X, yEA x,yeA

A is real symmetric, B is real antisymmetric. For d =1 and n.n.
interaction follows from quantum spin chains by Jordan-Wigner
transformation.

QSM: Spectrum of Hy as A — Z9. By Bogolyubov transformation
reduces to the spectrum of

A B
m=( % 5

Ql: Spectrum of Kp|a,, A1 C A, where Ky = (b, + e‘ﬁAA)_1 and
1 << ALl << |A]
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Product of Triangular Matrices

Motivations
We have
det(Ay — Aly,) = det ((A +B)(A-B)— /\21,,>
Write
A= 1A++E(A+)T+AO B — EB-&- _ E(B-l—)T
2 2 ' 2 2

where AT and B are lower triangular, and A® is diagonal.
Choose AT = BT, A? = yI, to get

A+ B =A" +yl,.

Assume that {Aj,r(},,zj>k21 are independent Gaussian, E{Aﬁ} =0,

E{(A})*} = 1/n to obtain a mean field type model for quasi-free
fermions requiring the spectrum of

M, = (AT + yl,) (AT +ylI,)T.

Cf. Cholesky decomposition (linear algebra, numerics)
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Product of Triangular Matrices

Results

Theorem

Let M, be as above. Then its NCM converges weakly with probability 1 to
the non-random limit N, whose Stieltjes transform f solves uniquely

il
Iog(1+f):<y2—z(1+f)> , SF-Sz >0, Sz #0.

We have: supp N = [a_(y),a+(y)] C R4, Nisa. c. and ifp = N, then
() y #0: a_(y) = ey e %,y 20, an(y) = e(1+y?), y — 0

p(A) =~ Const |atx — A|Y?2, |ax — A| — 0,

(i) y =0:a_(0) =0, a;(0) =e and

[ Const(e—A)12, A 7,
p(A)_{ (AMog?A)~1, AN, 0.
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Product of Triangular Matrices

Outline of Proof (reminder of the quarter-law derivation)

A short(est) proof of the quarter-circle law for Gaussian vectors is as
follows:
(i) Pass to the Stieltjes transform of N,:

6(2) = | ’\;"’(_d)z‘) — T G(2), G = (M—2)"

(ii) Use the Poincaré inequality to prove
Var{g,(z)} < Const /n?|Im z|*

thereby reducing the problem to the convergence of E{g,(z)}.
(iii) Use the resolvent identity and the integration by parts to prove

1 1 1
fn = E{gn} = —; + ;fn - EE{gnTI‘ MnG}

L.Pastur (MD ILT) Paris, 8 - 10 October 2012



(iv) Use again the resolvent identity and (ii) — (iii) to obtain
2f2 + zf, +1 = C(z)/n, C(z) < 0, Fz # 0.

(v) Pass to the limit n — oo, solve the limiting quadratic equation for
Im f(z)Imz > 0 and recover N from the Stieltjes-Frobenuis inversion
formula.
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Product of Triangular Matrices

Outline of Proof for Triangular Gaussian Matrices

Consider the technically simpler case y = 0. Use again the Stieltjes
transform of N, and the Poincaré

Var{g,(z)} < 1/n?|Sz|*,

reducing the problem to the study of

n—oo

f=limf, f,:=E{g,} =n" Y E{G;}, Sz #0.
=1
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Product of Triangular Matrices

Outline of Proof

The resolvent identity, the integration by parts and vanishing of
fluctuations of n™1Tr... imply:

1 1
E{Gj} =~ -+ = E{GJ,} E{G,,} 2 E{n ' Tr(A” GA)uc}
~~k=1
E{n'Tr(AT GA);} ~ Z E{Gu} — = Z E{Gw }E{n 'Tr(AT GA);}.
View this as the finite-difference scheme for
f(t,.z)= lim E{G;}.

n—oo,j/n—t
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Product of Triangular Matrices
Outline of Proof

Then the limit j/n — t € [0, 1] yields the equations

F(t,7) = — (z—/oth(s,z)ds) Ch(t,z) = (1+/t1 f(s,z)ds)

-1 -1

and .
f(z) = / £(t 2)dt.
0
Denote 1
(p(t,z):/ f(s.2)ds, (0,2) = f(2),
t
to obtain
o= (20) Aot 2¢| =2 00,0 = 0
a2? = \at? 4 ’at(Pt:O_z P2 =12
thus

p(t,z) = —14+e Y Ce € =771
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Product of Triangular Matrices

Comments

(i) f is not algebraic, cf Anderson-Zeitouni 08, e.g. Silverstein-Dozier case

-1
f= (y2(1 + ) —z(1+ f)) .
(ii) Most singular hard edge known. Recall the standard hard edge
p(A) = Const A"Y2(14 0(1)), A\, 0,

of the quarter-circle law and more general Laguerre-type ensembles.

(iii) Implies an interesting quantum phase transition via the "scaling
asymptotics" of p for A ~ y? — 0.

(iv) The rate of convergence of minimum eigenvalue of M, eigenvectors,
etc.
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Product of Triangular Matrices

Comments

(v) Matrices {Zijr}J’-’k:l with i.i.d. (but not necessarily Gaussian) entries.
Use the "interpolation trick" (a two-term integration by parts) for

nY2(V1—tAT +tZ").
(vi) More general versions
H+n1ZtT(ZN7, and (Zy +n Y229 T(Zy +n224)7

where Z has independent entries and H, T and Zj are given.
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Tensor Product Version of Sample Covariance Matrices

Definition

Consider complex random i.i.d. vectors {%}Z,’Jl'(:l' p=12., kis fixed,
and ¢/ € C? is

@ either dfl/QX‘{., and XD{ is complex Gaussian vectors with i.i.d.
standard components

@ or uniformly distributed over the unit sphere.
Set

Dy =L@ .0 ¢k
and consider the d¥ x d* random matrix

p
Mp,d,k = Z D, ® D,.
a=1

We are interested in the (non-random) limit as p — oo, d — oo,
p/d*=p/n—ce (0,00) of
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Tensor Product Version of Sample Covariance Matrices

Definition

the Normalized Counting Measure (NCM)

dk
Ny gk = dk Z(S)\/, n = d.

I=1

It is also of interest the limits of the extreme eigenvalues, local statistics,
fluctuations of N, 4 «, etc.

Studied by M. Hastings et al (CMP 310 (2012) 25-74) as a part of
analysis of quantum analog of classical probability problem on the
distribution of p balls between p bins (quantum models of data hiding and
correlation locking schema).

Proved the MP law for the limit N of the expectation of the NCM and the
convergence of extreme eigenvalues to the endpoints of the support of N
by fairly involved combinatorial analysis of moments d*kTrI\/Ig”d,k, m € IN.
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Tensor Product Version of Sample Covariance Matrices

Definition

Remark. For Gaussian ¢'s @, € (C9)®* has just dk independent
parameters, while a generic ¥ € (Cd)®k has d* independent parameters.
Nevertheless the MP law and the convergence of extreme eigenvalues hold
in this case.

We show below that the MP law is valid for the limit with probability 1 of
Np,4.k in the above and more general cases (vectors with independent but
not necessarily Gaussian components as well as for vectors with
log-concave distribution).
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Tensor Product Version of Sample Covariance Matrices

Pajor-P. Approach

The approach used above for the quarter-circle law and its "triangular"
analog does not apply to the tensor product version, i.e. k > 1 (unlike the
case k = 1). We use an extension of the Marchenko-P. and Girko
approach. lts version for k = 1 is given by Pajor-P. It is applicable not
necessarily Gaussian @ 's and any 1 < k < co.

(i) Observe that

p
M = Z L“' LIX = (" q)a)(Ptx
a=1
(i) Use either martingale differences (or Poincaré for Gaussian) to prove

Var{g,(z)} = 0(1),3z #0, n— 0o, p — o0, p/n € [0, c0)

(iii) Use the resolvent identity to write

p
gn = nITrG = —z~ Z Go,. go,x
a=1
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Tensor Product Version of Sample Covariance Matrices

Pajor-P. Approach

(iv) Use the rank one perturbation formulas:

Gu Ly Gy

G=G6G——~——,
1 + (Gﬂéq)a' (sz)

Go = Glg,=0
implying (G )
_ P o)
(Cou ) = 137G 0 o)

to rewrite (iii) as

- av (G 9,)

1 1 X T

& = —z "+ (zn E —_—
( ) a=1 1 (Glxqoa'qoa)
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(v) Use the independence of G, and ¢, and to obtain:
Eo{(Gaop,, 9,)} = n TGy, Var{(Guop,, ¢,)} < Const/n|Sz|>.

(iv) Use (ii) and (v) to replace (Gx¢,. ¢,) in (iv) by its expectation

fun := E{n"1TrG, }.

(v) Use the rank one perturbation formula of (iv) to find that

fun = fo + O(1/n) and get the "pre"— limiting quadratic equation

1 ¢ f,

f=—=+<

z * z1+f,

equivalent to the above.

+o0(1), Sz#0, c=p/n
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Tensor Product Version of Sample Covariance Matrices

Basic Relations

For any n X n matrix A we need random vectors ¢ € C" possessing
(i) isotropy
E{(Ap,¢)} =n"'Tr A,

(i) vanishing of fluctuations of (Ag, @) ("good" vectors)

Var{ (Ag. 9)} = [|All6,, &, = O(1), n — co.

Let ¢ € CY be a random vector as above and A is d* x d* matrix. If
@',...p* are k independent copies of ¢ then the random vector
P=9'®..® (p’< also possesses the above properties in which n = d*
and 6, is replaced by Cyd,, where Cy depends only on k.

Proof is based on the martingale-differences.
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Tensor Product Version of Sample Covariance Matrices

Perspectives

Study the extreme eigenvalues, both for ¢ > 1 (both edges are standard

soft) and ¢ = 1 (lower edge is standard soft). Have likely different rates of
convergence (depending on k).

Example: for Gaussian vectors

C(z)k

Var{g,} < Tk 0< C(z) <oo, Imz #0,

thus, different scaling of fluctuations of linear eigenvalue statistics (CLT),
etc.
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