The strong asymptotic freeness of large random and deterministic matrices

Camille Male

Université Paris Diderot (Paris 7)

Workshop random matrices and their applications, Telecom Paristech, October 8-10

Statement of results

No eigenvalues outside a neighborhood of the lim. support

Consider the N by N' so called "separable covariance matrix"

$$H_{N,N'} = A_N X_{N,N'} B_{N'} X_{N,N'}^* A_N$$
, where

- $\sqrt{N'}X_{N,N'}$: size $N \times N'$ with i.i.d. standard entries $\sim \mu$,
- $A_N, B_N \ge 0$: size $N \times N$ and $N' \times N'$ resp., s.t. $\mathcal{L}_{A_N} \to \mathcal{L}_a$, $\mathcal{L}_{B_{N'}} \to \mathcal{L}_b$.

No eigenvalues outside a neighborhood of the lim. support

Consider the N by N' so called "separable covariance matrix"

$$H_{N,N'} = A_N X_{N,N'} B_{N'} X_{N,N'}^* A_N$$
, where

- $\sqrt{N'}X_{N,N'}$: size $N \times N'$ with i.i.d. standard entries $\sim \mu$,
- $A_N, B_N \ge 0$: size $N \times N$ and $N' \times N'$ resp., s.t. $\mathcal{L}_{A_N} \to \mathcal{L}_a$, $\mathcal{L}_{B_{N'}} \to \mathcal{L}_b$.

Theorem: Boutet de Mondvel, Khorunzhy and Vasilchuck (96)

As
$$N,N' \to \infty$$
 with $c_{N,N'} = \frac{N}{N'} \to c > 0$, $\mathcal{L}_{H_{N,N'}} \to \mu^{(c)}_{\mathcal{L}_a,\mathcal{L}_b}$ a.s.

Theorem: Bai and Silverstein (98), Paul and Silverstein (09)

If moreover μ has a finite fourth moment and for N large enough,

 $\operatorname{Supp}\ \mu_{\mathcal{L}_{A_{N}},\mathcal{L}_{B_{N}}}^{(c_{N,N'})}\subset\operatorname{Supp}\ \mu_{\mathcal{L}_{a},\mathcal{L}_{b}}^{(c)},\ \text{then, a.s.}\ \forall\varepsilon\ \text{and for N large enough,}$

Sp
$$H_{N,N'} \subset \text{Supp } \mu_{\mathcal{L}_a,\mathcal{L}_b}^{(c)} + (-\varepsilon,\varepsilon).$$

Soft version

Theorem: M. (11), Collins, M. (11)

- X_N $N \times N$ GUE matrix,
- $U_N N \times N$ Haar matrix on U_N ,
- ullet $\mathbf{Y}_{\mathcal{N}}=(Y_1^{(\mathcal{N})},\ldots,Y_{\mathcal{P}}^{(\mathcal{N})})$ arbitrary random $\mathcal{N}\times\mathcal{N}$ matrices,
- X_N , U_N and \mathbf{Y}_N being independent.

Soft version

Theorem : M. (11), Collins, M. (11)

- X_N $N \times N$ GUE matrix,
- $U_N N \times N$ Haar matrix on U_N ,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_p^{(N)})$ arbitrary random $N \times N$ matrices,
- X_N , U_N and \mathbf{Y}_N being independent.

Assume that for any Hermitian matrix $H_N = P(\mathbf{Y}_N, \mathbf{Y}_N^*)$,

- **Onvergence of the empirical eigenvalues distribution** a.s. $\mathcal{L}_{H_N} \underset{N \to \infty}{\longrightarrow} \mathcal{L}_h$ with compact support,
- **2** Convergence of the support a.s. for N large enough, $\operatorname{Sp} H_N \subset \operatorname{Supp} \mathcal{L}_h + (-\varepsilon, \varepsilon)$

Then, almost surely, the same properties hold for any Hermitian matrix

$$H_N = P(X_N, U_N, U_N^*, \mathbf{Y}_N, \mathbf{Y}_N^*).$$

Non commutative probability space

Definition : \mathcal{C}^* -probability space $(\mathcal{A}, \cdot^*, \tau, \|\cdot\|)$

- $\mathcal{A}:\mathcal{C}^*$ -algebra,
- \cdot^* : antilinear involution such that $(ab)^* = b^*a^* \ \forall a,b \in \mathcal{A}$,
- au: linear form such that
 - $\tau[1] = 1$,
 - τ is tracial: $\tau[ab] = \tau[ba] \ \forall a, b \in \mathcal{A}$,
 - τ is a faithful state: $\tau[a^*a] \ge 0, \forall a \in \mathcal{A}$ and vanishes iff a = 0.

Examples

- Commutative space: Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, consider $(L^{\infty}(\Omega, \mu), \bar{\cdot}, \mathbb{E}, \|\cdot\|_{\infty})$,
- Matrix spaces: $(\mathrm{M}_{\mathit{N}}(\mathbb{C}),\cdot^*, au_{\mathit{N}}:=rac{1}{\mathit{N}}\mathrm{Tr},\|\cdot\|).$

Non commutative random variables

Proposition

If $aa^*=a^*a$ then there exists a compactly supported probability measure μ_a on $\mathbb C$ such that $\forall P$ polynomial $\tau\big[P(a,a^*)\ \big]=\int P(z,\bar z)d\mu_a(z).$ Moreover $\|a\|=\sup\{|t|\ |\ t\in \mathrm{Supp}\ \mu_a.$ If A_N is an N by N normal matrix, then $\mu_{A_N}=\mathcal L_{A_N}.$

Non commutative random variables

Proposition

If $aa^*=a^*a$ then there exists a compactly supported probability measure μ_a on $\mathbb C$ such that $\forall P$ polynomial $\tau \big[P(a,a^*) \, \big] = \int P(z,\bar z) d\mu_a(z)$. Moreover $\|a\| = \sup\{|t| \mid t \in \operatorname{Supp} \, \mu_a \text{.} \text{ If } A_N \text{ is an } N \text{ by } N \text{ normal matrix, then } \mu_{A_N} = \mathcal L_{A_N}.$

Definition

- The map $\tau_{\mathbf{a}}: P \mapsto \tau \big[P(\mathbf{a}, \mathbf{a}^*) \big]$: law of $\mathbf{a} = (a_1, \dots, a_p)$.
- Convergence in n.c. law $a_N \rightarrow a$:

$$\tau[P(\mathbf{a}_N, \mathbf{a}_N^*)] \xrightarrow[N \to \infty]{} \tau[P(\mathbf{a}, \mathbf{a}^*)], \ \forall P,$$

• Strong convergence in n.c. law $a_N \rightarrow a$: CV in n.c. law and

$$||P(\mathbf{a}_N, \mathbf{a}_N^*)|| \xrightarrow[N \to \infty]{} ||P(\mathbf{a}, \mathbf{a}^*)||, \forall P.$$

Interest of this notion for large matrices

Let $\mathbf{A}_N = (A_1^{(N)}, \dots, A_p^{(N)})$ be a family of N by N matrices, and $\mathbf{a} = (a_1, \dots, a_p)$ in $(\mathcal{A}, \cdot^*, \tau)$.

Then $\mathbf{A}_N \overset{\mathcal{L}^{n.c.}}{\underset{N \to \infty}{\longrightarrow}} \mathbf{a}_N \Leftrightarrow \forall H_N = P(\mathbf{A}_N, \mathbf{A}_N^*)$ Hermitian

$$\mathcal{L}_{H_N} \xrightarrow[N \to \infty]{} \mu_h$$
, where $h = P(\mathbf{a}_N, \mathbf{a}_N^*)$.

Moreover $\mathbf{A}_N \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} \mathbf{a}_N$ strongly $\Leftrightarrow \forall H_N = P(\mathbf{A}_N, \mathbf{A}_N^*)$ Hermitian

$$\left\{ \begin{array}{c} \mathcal{L}_{H_N} \underset{N \to \infty}{\longrightarrow} \mu_h, \text{ where } h = P(\mathbf{a}_N, \mathbf{a}_N^*), \\ \forall \varepsilon > 0, \forall N \text{ large, Sp } H_N \subset \text{Supp } \mu_h + (-\varepsilon, \varepsilon). \end{array} \right.$$

The relation of freeness

Definition of freeness

The sub-algebras A_1, \ldots, A_p are free iff

$$\left(a_j \in \mathcal{A}_{i_j}, \ i_j \neq i_{j+1}, \ \mathrm{and} \ \tau\big(a_j\big) = 0, \forall j \geq 1\right) \Rightarrow \tau(a_1 a_2 \dots a_n) = 0 \ \forall n \geq 1.$$

Theorem: Voiculescu

- X_N $N \times N$ GUE matrix,
- $U_N N \times N$ Haar matrix on U_N ,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_r^{(N)})$ arbitrary random $N \times N$ matrices, uniformly bounded,
- X_N , U_N and \mathbf{Y}_N being independent.

If $\mathbf{Y}_N \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} \mathbf{y}$, then $(X_N, U_N, \mathbf{Y}_N) \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} (x, u, \mathbf{y})$, where x, u and \mathbf{y} are free.

The asymptotic freeness of large random matrices

Definition: Freeness

The sub-algebras A_1, \ldots, A_p are free iff

$$\left(a_j \in \mathcal{A}_{i_j}, \ i_j \neq i_{j+1}, \ \mathrm{and} \ \tau\big(a_j\big) = 0, \forall j \geq 1\right) \Rightarrow \tau\big(a_1 a_2 \dots a_n\big) = 0 \ \forall n \geq 1.$$

Theorem: Voiculescu

- X_N $N \times N$ GUE matrix,
- $U_N N \times N$ Haar matrix on U_N ,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_p^{(N)})$ arbitrary random $N \times N$ matrices, uniformly bounded,
- X_N , U_N and \mathbf{Y}_N being independent.

If $\mathbf{Y}_N \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} \mathbf{y}$, then $(X_N, U_N, \mathbf{Y}_N) \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} (x, u, \mathbf{y})$, where x, u and \mathbf{y} are free.

The strong asymptotic freeness of large random matrices

Theorem: Haagerup and Thorbjørnsen, 05

Let $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ be independent GUE matrices. Then $\mathbf{X}_N \xrightarrow[N \to \infty]{} \mathbf{x}$ strongly, where $\mathbf{x} = (x_1, \dots, x_p)$ family of free semi-circular n.c.r.v.

Let $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_\rho^{(N)})$ arbitrary random $N \times N$ matrices, such that $\mathbf{Y}_N \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} \mathbf{y}$ strongly

Theorem: M., 11, Collins, M., 11

Let X_N be a GUE matrix, U_N be a Haar matrix on \mathcal{U}_N , such that X_N , U_N and \mathbf{Y}_N are independent. Then $(X_N, U_N, \mathbf{Y}_N) \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} (x, u, \mathbf{y})$ strongly, where x semi-circular n.c.r.v., u Haar unitary n.c.r.v. and x, u, \mathbf{y} are free.

(Non direct) consequence

Proposition: the sum of two Hermitian random matrices, Collins, M. (11)

Let A_N , B_N be two $N \times N$ independent Hermitian random matrices. Assume that:

- 1 the law of one of the matrices is invariant under unitary conjugacy,
- ② a.s. $\mathcal{L}_{A_N} \xrightarrow[N \to \infty]{} \mathcal{L}_a$ and $\mathcal{L}_{B_N} \xrightarrow[N \to \infty]{} \mathcal{L}_b$ compactly supported
- **3** a.s. the spectra of the matrices converges to the support of the limiting distribution.

Then, a.s. the spectrum of $A_N + B_N$ converges to the support of $\mu \boxplus \nu$, where \boxplus denotes the free additive convolution.

Remark: We do not assume that (A_N, B_N) converges strongly!

(Non direct) consequence

Consider the N by N' separable covariance matrix

$$H_{N,N'}=A_NX_{N,N'}B_{N'}X_{N,N'}^*A_N,$$

where

- the common distribution μ of the entries of $\sqrt{N'}X_{N,N'}$ is Gaussian,
- $N = \alpha n$, $N' = \beta n$ so that $c_{N,N'} = \frac{N}{N'} = \frac{\alpha}{\beta} = c$.
- A_N and B_N converges strongly in n.c. law.

Then, a.s. for n large enough, no eigenvalues of $H_{N,N'}$ are outside a small neighborhood of the support of the limiting distribution

Idea of the proof

From (X_N, \mathbf{Y}_N) to (U_N, \mathbf{Y}_N)

Based on a coupling (X_N, U_N) between a GUE and a Haar matrix:

- Let Z_N be a Hermitian matrix. If $(Z_N, \mathbf{Y}_N) \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} (z, \mathbf{y})$ strongly and $f_N : \mathbb{R} \to \mathbb{C}$ CV uniformly to f, then $(f_N(Z_N), \mathbf{Y}_N) \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} (f(z), \mathbf{y})$ strongly.
- Let $X_N = V_N \Delta_N V_N^*$ GUE matrix, F_N the cumulative function of its eigenvalues. Then, $F_N \underset{N \to \infty}{\longrightarrow} F$ uniformly and

$$H_N := F_N(X_N) = V_N F_N(\Delta_N) V_N^* = V_N \operatorname{Diag} \left(\frac{1}{N}, \dots, \frac{N}{N}\right) V_N^*.$$

• Let G_N^{-1} be the inverse cumulative function of the eigenvalues of a Haar matrix, independent of X_N, \mathbf{Y}_N . Then $G_N^{-1} \xrightarrow[N \to \infty]{} G^{-1}$ uniformly and

$$U_N:=G_N^{-1}(H_N)$$

is a Haar matrix.

The main steps for the convergence of (X_N, \mathbf{Y}_N)

Haagerup and Thorbjørnsen's method:

- A linearization trick,
- Uniform control of matrix-valued Stieltjes transforms,
- Oncentration argument.

The main steps for the convergence of (X_N, \mathbf{Y}_N)

Haagerup and Thorbjørnsen's method:

- A linearization trick,
- Uniform control of matrix-valued Stieltjes transforms,
- 3 Concentration argument.

In this proof, we use an idea of Bai and Silverstein

- A linearization trick, unchanged,
- Uniform control of matrix-valued Stieltjes transforms, based on an "asymptotic subordination property",
- An intermediate inclusion of spectrum, by Shlyakhtenko,
- Concentration argument, no significant changes.

An equivalent formulation

A linearization trick

The convergence of spectrum: a.s. for every self adjoint polynomial P, $\forall \varepsilon > 0$ and N large

$$\operatorname{Sp}(P(X_N, \mathbf{Y}_N, \mathbf{Y}_N^*)) \subset \operatorname{Sp}(P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)) + (-\varepsilon, \varepsilon).$$

is equivalent to the convergence: a.s. $\forall k \geq 1$, for every self adjoint degree one polynomial L with coefficient in $\mathbf{M}_k(\mathbb{C})$, $\forall \varepsilon > 0$ and N large

$$\mathrm{Sp}\big(\ L(X_N,\mathbf{Y}_N,\mathbf{Y}_N^*)\ \big)\subset \mathrm{Sp}\big(\ L(\mathbf{x},\mathbf{y},\mathbf{y}^*)\ \big)+(-\varepsilon,\varepsilon).$$

Sum of block matrices $H_N = a \otimes X_N + \sum_j (b_j \otimes Y_j^{(N)} + b_j^* \otimes Y_j^{(N)*})$! Based on operator spaces techniques (Arveson's theorem and dilation of operators).

Matricial Stieltjes transforms and \mathcal{R} -transforms

Let $(A, .^*, \tau, \|\cdot\|)$ be a C^* -probability space. Consider z in $M_k(\mathbb{C}) \otimes A$.

Definitions

• The $M_k(\mathbb{C})$ -valued Stieltjes transform of z is

$$\begin{array}{cccc} G_z: & \mathrm{M}_k(\mathbb{C})^+ & \to & \mathrm{M}_k(\mathbb{C}) \\ & & \wedge & \mapsto & (\mathrm{id}_k \otimes \tau_N) \Big[\big(\Lambda \otimes \mathbf{1} - z \big)^{-1} \Big]. \end{array}$$

• The amalgamated \mathcal{R} -transform over $\mathrm{M}_k(\mathbb{C})$ of z is

$$\begin{array}{cccc} \mathcal{R}_z: & \mathcal{U} & \to & \mathrm{M}_k(\mathbb{C}) \\ & \Lambda & \mapsto & G_z^{(-1)}(\Lambda) - \Lambda^{-1}. \end{array}$$

The subordination property

Let x selfadjoint and $\mathbf{y}=(y_1,\ldots,y_q)$ be elements of $\mathcal A$ and let a and $\mathbf{b}=(b_1,\ldots,b_q)$ be $k\times k$ matrices, a Hermitian. Define

$$s = a \otimes x, \quad t = \sum_{j=1}^{q} b_j \otimes y_j + b_j^* \otimes y_j^*.$$

Proposition

If x is free from y, then one has

$$G_{s+t}(\Lambda) = G_t \Big(\Lambda - \mathcal{R}_s \big(G_{s+t}(\Lambda) \big) \Big).$$

From x a semicircular n.c.r.v.

$$\mathcal{R}_s: \Lambda \mapsto a\Lambda a$$
.

Stability under analytic perturbations

Recall the subordination property:

$$G_{s+t}(\Lambda) = G_t \Big(\Lambda - \mathcal{R}_s \big(G_{s+t}(\Lambda) \big) \Big)$$

If G satisfies

$$G(\Lambda) = G_t \Big(\Lambda - \mathcal{R}_s \big(G(\Lambda) \Big) \Big) + \Theta(\Lambda),$$

where Θ is an analytic perturbation, then we get

$$\|G(\Lambda) - G_{s+t}(\Lambda)\| \leqslant (1+c \|(\operatorname{Im} \Lambda)^{-1}\|^2) \|\Theta(\Lambda)\|.$$

An asymptotic subordination property

Let X_N be a GUE matrix, let $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)})$ be deterministic matrices and let a and $\mathbf{b} = (b_1, \dots, b_q)$ be $k \times k$ matrices, with a Hermitian. Define

$$S_N = a \otimes X_N, \quad T_N = \sum_{j=1}^q (b_j \otimes Y_j^{(N)} + b_j^* \otimes Y_j^{(N)*}).$$

Proposition

One has

$$G_{S_N+T_N}(\Lambda) = G_{T_N}(\Lambda - \mathcal{R}_s(G_{S_N+T_N}(\Lambda))) + \Theta_N(\Lambda),$$

with Θ_N an analytic perturbation.

A first try

Hence, with \mathbf{y} the limit in law of \mathbf{Y}_N

$$\begin{cases}
G_{s+t}(\Lambda) &= G_t \left(\Lambda - \mathcal{R}_s \left(G_{s+t}(\Lambda) \right) \right), \\
G_{S_N + T_N}(\Lambda) &= G_{T_N} \left(\Lambda - \mathcal{R}_s \left(G_{S_N + T_N}(\Lambda) \right) \right) + \Theta_N(\Lambda).
\end{cases}$$

- \Rightarrow we get an estimate of $\|G_{S_N+T_N}(\Lambda) G_{s+t}(\Lambda)\|$ only if we can control $\|G_{T_N}(\Lambda) G_t(\Lambda)\|$.
- \Rightarrow with the concentration machinery we get the Theorem, but with unsatisfactory assumptions on \textbf{Y}_{N} ...

Bai and Silverstein idea, in the flavor of free probability

Put x and \mathbf{Y}_N in a same \mathcal{C}^* -probability space, free from each other. Same idea as discussing on the measure $\mu_{\mathcal{L}_{A_N},\mathcal{L}_{B_N}}^{(c_{N,N'})}$. Then

$$\begin{split} G_{s+T_N}(\Lambda) &= G_{T_N}\Big(\Lambda - \mathcal{R}_s\big(\ G_{s+T_N}(\Lambda)\ \big)\ \Big), \\ G_{S_N+T_N}(\Lambda) &= G_{T_N}\Big(\Lambda - \mathcal{R}_s\big(\ G_{S_N+T_N}(\Lambda)\ \big)\ \Big) + \Theta_N(\Lambda). \end{split}$$

 \Rightarrow we get an estimate of $\|G_{S_N+T_N}(\Lambda) - G_{s+T_N}(\Lambda)\|$ without any additionnal assumption on \mathbf{Y}_N .

An theorem about norm convergence

Theorem: by Shlyakhtenko, in an appendix of M. (11)

Let $\mathbf{Y}_N \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} \mathbf{y}$ strongly, x a semicircular n.c.r.v. free from $(\mathbf{Y}_N, \mathbf{y})$. Then,

$$(x, \mathbf{Y}_N) \xrightarrow[N \to \infty]{\mathcal{L}^{n.c.}} (x, \mathbf{y}).$$

 \Rightarrow Together with this estimate of $||G_{S_N+T_N}(\Lambda) - G_{s+T_N}(\Lambda)||$, the concentration machinery applies.

Thank you!

