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Introduction Our model Result and proof

Historical overview

Definition of a spiked population model (sample covariance
setting, Johnstone 2001):

X Diag(θ1, . . . , θ1︸ ︷︷ ︸
k1

, . . . , θJ , . . . , θJ︸ ︷︷ ︸
kJ

, 1, . . . , 1)X ∗.

Results in the sample covariance setting: from Baik-Ben
Arous-Péché (2005) to Bai-Yao (2012).
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Historical overview - 2

Definition of an additive analogue (Péché 2006):
W + Diag(θ1, . . . , θ1︸ ︷︷ ︸

k1

, . . . , θJ , . . . , θJ︸ ︷︷ ︸
kJ

, 0, . . . , 0).

Results for the additive analogue: from Péché (2006) to
Renfrew-Soshnikov (preprint 2012).
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Two works

Largest eigenvalues of finite rank perturbations of unitarily
invariant random matrices.

Theorem (Benaych-Georges and Nadakuditi 2009)
Almost surely,

λj →N→+∞

{
G−1
ν (1/θj) if θj > 1/ limz↓b Gν(z),

b otherwise,

while for each fixed j > r , almost surely, λj →N→+∞ b. Here,

Gν : C \ supp(ν)→ C, Gν(z) =

∫
R

dν(t)

z − t ,

is the Cauchy-Stieltjes transform of the limit distribution ν, and b
is the maximum of its support.
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Two works

Eigenvalues of full rank perturbations of Wigner matrices.

Theorem (Capitaine-Donati-Martin-Féral and F. 2010)
Let H(z) := z + σ2Gµ(z), then there are kj eigenvalues converging
almost surely to H(θj) iff H ′(θj) > 0, where µ is the limit
distribution of the perturbation, and σ2 is the variance of the
entries of the Wigner matrix.
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Model

XN =

AN +

U∗NBNUN ,

AN = Diag(θ1, . . . , θ1︸ ︷︷ ︸
k1

, . . . , θJ , . . . , θJ︸ ︷︷ ︸
kJ

, α
(N)
1 , . . . , α

(N)
N−r ),

BN = Diag(β
(N)
1 , . . . , β

(N)
N ),

UN is a random N ×N unitary matrix distributed according to
Haar measure.

Question: Spectrum of XN = AN + U∗NBNUN?
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Assumptions

BN = Diag(β
(N)
1 , . . . , β

(N)
N );

µBN :=
1
N

N∑
i=1

δ
β
(N)
i
⇒ ν ∈ Pc(R),

max
1≤j≤N

dist(β
(N)
j , supp(ν))→N→∞ 0.

AN = Diag(θ1, . . . , θ1︸ ︷︷ ︸
k1

, . . . , θJ , . . . , θJ︸ ︷︷ ︸
kJ

, α
(N)
1 , . . . , α

(N)
N−r );

µAN :=
1
N

N∑
i=1

δλi (AN) ⇒ µ ∈ Pc(R),

max
1≤j≤N−r

dist(α
(N)
j , supp(µ))→N→∞ 0,

θj /∈ supp(µ)(the so-called spikes).
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Global behaviour

We will use the usual notation:

µXN :=
1
N

∑
λ∈sp(XN)

δλ.

Asymptotic freeness (Voiculescu 91, Speicher 93)
Under these assumptions,

µXN
a.s.⇒

N→+∞
µ� ν.

What is this � operation?
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Free convolution of measures
Given τ ∈ Pc(R), one defines:

Stieltjes transform

Gτ (z) =

∫
R

dτ(t)

z − t , z /∈ R.

R-transform

Rτ (z) = G−1
τ (z)− 1

z .

Definition
One calls free convolution of µ and ν the probability measure
µ� ν ∈ Pc(R) characterized by:

Rµ�ν(z) = Rµ(z) + Rν(z).
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Subordination

Theorem (Voiculescu 93, Biane 98)
There is a unique analytic map ω : C+ → C+ such that:

∀z ∈ C+, Gµ�ν(z) = Gµ(ω(z)).

Lemma
The map ω has an extension to C so that:
(a) ω is continuous on C+ ∪ R;
(b) ω({∞} ∪ R \ supp(µ� ν)) ⊆ {∞} ∪ R \ supp(µ);

(c) ∀z ∈ C \ R, ω(z) = ω(z);

(d) ω is meromorphic on C \ supp(µ� ν).
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A definition

Definition
For each j ∈ {1, . . . , J}, define Oj the set of solutions in
R \ supp(µ� ν) of the equation

ω(ρ) = θj , (1)

and
O =

⋃
1≤j≤J

Oj .
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Question

Where are precisely located the eigenvalues of
XN = AN + U∗NBNUN?

Are they all contained in a neighborhood of the support of
µ� ν?
Or are some of them lying outside of supp(µ� ν) (the
so-called outliers)?

Theorem (Collins-Male 2011)
If r = 0 (no spikes), then almost surely,

∀η > 0,∃N0 ∈ N,∀N ≥ N0, sp(XN) ⊆ Kη,

where Kη := {x ∈ R | d(x , supp(µ� ν) ≤ η}.
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Main result

In the general case, one proves:

Theorem
The following results hold almost surely:

for each ρ ∈ Oj , for all small enough ε > 0, for all large
enough N,

card{sp(XN)
⋂

]ρ− ε; ρ+ ε[} = kj ;

for almost all η > 0, for all small enough ε > 0, for large
enough N,

sp(XN)
⋂

C \ Kη ⊂
⋃

ρ∈O
⋂

C\Kη

]ρ− ε; ρ+ ε[.
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Generalization

Remark
Actually, our result holds for

X̃N = ÃN + B̃N ,

where ÃN and B̃N are independent random Hermitian matrices,
provided the distribution of B̃N is invariant by conjugation by
unitary matrices.
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Comments

In the particular case of a finite rank deformation AN , one recovers
the result of Benaych-Georges and Nadakuditi (BGN 2009) on the
convergence of the largest eigenvalues:

Theorem (Benaych-Georges and Nadakuditi 2009)
Almost surely,

λj →N→+∞

{
G−1
ν (1/θj) if θj > 1/ limz↓b Gν(z),

b otherwise,

while for each fixed j > r , almost surely, λj →N→+∞ b.

Indeed, in that case, µ = δ0 and ω(z) = 1
Gν(z) .
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Comments

In the case of a full rank deformation of a GUE, one recovers the
result of Capitaine, Donati-Martin, Féral and F. (CDFF 2010).

Theorem (Capitaine-Donati-Martin-Féral and F. 2010)
Let H(z) := z + σ2Gµ(z), then there are kj eigenvalues converging
almost surely to H(θj) iff H ′(θj) > 0.

Indeed, in that case, ν is semicircular, ω is invertible with inverse
H.
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Comments

Remark
This result illustrates that the free probabilistic interpretation of
outliers, discovered in (CDFF 2010) generalizing the one in (BGN
2009), is a general principle.

Remark
It is noteworthy that, in this situation, a simple spike may create
several outliers.
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Sketch of proof-1
We use the following decomposition:

AN = A′N + A′′N ,

A′N = Diag(α, . . . , α, α
(N)
1 , . . . , α

(N)
N−r ),

A′′N = tPΘP,

where P is the r × N matrix defined by

P = (Ir |0r×(N−r)),

Θ is the r × r matrix

Θ = Diag(θ1 − α, . . . , θ1 − α︸ ︷︷ ︸
k1

, . . . , θJ − α, . . . , θJ − α︸ ︷︷ ︸
kJ

),

and α ∈ supp(µ).
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Sketch of proof-2

det(λIN−XN) = det(λIN−(A′N +U∗NBNUN)) det(IN−RN(λ)tPΘP),

where
RN(λ) =

(
λIN − (A′N + U∗NBNUN)

)−1
. (2)

Using that, for rectangular matrices X ∈ MN,r (C),Y ∈ Mr ,N(C),
one has det(IN − XY ) = det(Ir − YX ), one obtains:

det(λIN−XN)) = det(λIN−(A′N +U∗NBNUN)) det(Ir−PRN(λ)tPΘ).

Hence, the outliers of XN are precisely the zeros of det(MN)
outside the support of µ� ν, where

MN := Ir − PRN
tPΘ. (3)



Introduction Our model Result and proof

Sketch of proof-3

Key point
Using Hurwitz’s theorem, the zeros of det(MN) will cluster towards
those of det(M), where M is the almost sure uniform limit of MN .

By concentration arguments, MN − Ir − PE(RN)tPΘ tends to
0 as N goes to infinity.
It is known that E(RN) is diagonal (Kargin 2011). Actually, it
is a polynomial in A′N .
In particular, PE(RN)tP is a scalar matrix.
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Sketch of proof-4

Define ωN so that:

PE(RN)tP =
1

ωN − α
Ir .

Then (ωN)N∈N is a normal sequence of analytic functions, whose
limit points l shall satisfy the subordination equation:

Gµ�ν(z) = Gµ(l(z)),

which has the subordination map ω as a unique solution.
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Sketch of proof-5

So MN almost surely uniformly converges to:

M := Ir −
1

ω − α
Θ. (4)

And z such that det(M(z)) = 0 are precisely solutions of
ω(z) = θj for some j , concluding the proof.
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Thank you for your attention!
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