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Want to estimate a parameter § € RP

@ Example: How is a response y € R related to the
Parkinson’s disease affected by a set of genes among the
Chinese population?

@ Construct a linear model: y = GTX + ¢, where
E(y[x) = 4TX.

@ Parameter: Non-zero entries in 3 (sparsity of 3) identify a
subset of genes and indicate how much they influence y.

@ Take a random sample of (X, Y ), and use the sample to

estimate (; thatis, we have Y = X3 + .
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Consider recovering 5 € RP in the following noisy linear model:

n nxp n
- -p

where we assume p > n (i.e. given high-dimensional data).

@ The paradigm has shifted to the setting where the dimensionality
is much larger than the number of observations. Think of n,p as
moderately large, e.g., between 103 to 10°.
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High dimensional linear model

Goal: to recover the unknown 3 € RP approximately from noisy
data using computational feasible strategies,

n nxp n
- -p

where we assume p > n (i.e., given high-dimensional data X).

@ X has columns normalized to have ¢, norm v/n, and € is
the Gaussian noise: ¢ ~ N(0, o°ly).
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Model selection and parameter estimation

When can we approximately recover g from n noisy
observations Y ?

@ Questions: How many measurements n do we need in
order to recover the non-zero positions in 3?

@ How does n scale with p or s, where s is the number of
non-zero entries of 3?

@ What if some non-zero entries are really small, say within
noise level?

@ What assumptions about the data matrix X are
reasonable?
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When (3 is known to be s-sparse for some 1 < s < n, which
means that at most s of the coefficients of 3 can be non-zero:

@ Assume every 2s columns of X are linearly independent:
Identifiability condition (reasonable once n > 2s)

2
Xl

5 > 0.
v#£0,2s-sparse ||U||
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Sparse recovery

When (3 is known to be s-sparse for some 1 < s < n, which
means that at most s of the coefficients of 3 can be non-zero:

@ Assume every 2s columns of X are linearly independent:
Identifiability condition (reasonable once n > 2s)

2
Xl

5 > 0.
v#£0,2s-sparse ||U||

A

@ Proposition: (Candées-Tao 05). Suppose that any 2s
columns of the n x p matrix X are linearly independent.
Then, any s-sparse signal g € RP can be reconstructed

uniquely from X 5.
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{o-minimization

How to reconstruct an s-sparse signal 3 € RP from the
measurements Y = X[ given Apin(2s) > 0?

@ Let 3 be the unique sparsest solutionto X3 =Y

B=argmingys_v Bl
where |3, := #{1 <i < p: [ # 0} is the sparsity of (.

@ Unfortunately, £o-minimization is computationally
intractable; (in fact, it is an NP-complete problem).
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Basis pursuit

@ We consider the following convex optimization problem
pri=argmingys_y (18] -

XB=Y

By standard linear programming ttools, this problem is
computational feasible for n, p ~ 10°. (This is studied by Chen,
Donoho, Huo, Logan, Saunders, Candes, Romberg, Tao and others.)
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To acquire the sparse signal 3

@ Basis pursuit works whenever the n x p measurement
matrix X is sufficiently incoherent:

@ RIP (Candes-Tao 05) requires thatforall T € {1,...,p}
with [T | < s and for all coefficients sequences (¢j)jcr,
(1 —ds) llc]|® < IXre/n||? < (1 + ds) ||c[|? holds for some
0 < s < 1 (s-restricted isometry constant).
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sub-Gaussian ensemble, for 0 < §s < 1, it holds with
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Restricted Isometry Property (RIP)

@ The “good” matrices for compressed sensing should
satisfy the inequalities for the largest possible s:

@ For example, for Gaussian random matrix, or any
sub-Gaussian ensemble, for 0 < §s < 1, it holds with
s =< n/log(p/n).

@ These algorithms are also robust with regards to noise,
and RIP will be replaced by more relaxed conditions.
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Sparse recovery for Y = X3 + ¢

@ Lasso (Tibshirani 96), a.k.a. Basis Pursuit (Chen, Donoho
and Saunders 98, and others):

G =argmin|[Y = X3|2/2n + al|]1,
where the scaling factor 1/(2n) is chosen by convenience.
@ Dantzig selector (Candes-Tao 07):
(DS) arg min||3]l1 subjectto [IXT(Y —X3)/n]ls < An.
BeRP
References: Greenshtein-Ritov 04, Meinshausen-Biihimann 06,
Zhao-Yu 06, Candés-Tao 07, van de Geer 08, Wainwright 09,

Koltchinskii 09, Meinshausen-Yu 09, Bickel-Ritov-Tsybakov 09, and
others.
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or so for noiseless model Y = X 3;



Introduction

Sparse Recovery
Thresholding Procedure
Oracle Inequalities

Thresholded Lasso

When X is a Gaussian random matrix

@ Numerical experiments suggest that in practice, most
s-sparse signals are in fact recovered exactly once n > 4s
or so for noiseless model Y = X 3;

@ This shows a strong contrast with the ordinary Lasso’s
behavior in the noisy case:



Introduction

Sparse Recovery
Thresholding Procedure
Oracle Inequalities

Thresholded Lasso

When X is a Gaussian random matrix

@ Numerical experiments suggest that in practice, most
s-sparse signals are in fact recovered exactly once n > 4s
or so for noiseless model Y = X 3;

@ This shows a strong contrast with the ordinary Lasso’s
behavior in the noisy case:
The lower bound for the Lasso: (Wainwright 09). For the
noisy linear model Y = X3 + ¢, where e ~ N(0, I,). Then
the probability of success in terms of exact recovery of the
sparsity pattern tends to zero when n < 2slog(p — s), for
any s-sparse vector.
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Prelude

Is there a way to bridge the difference?

@ Linear sparsity: How can we design an estimator to can
recover a sparse model using nearly a constant number of
measurements per non-zero element despite noise?

@ More generally: How to design a sparse estimator whose
accuracy depends upon the information content of the
object we wish to recover?
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Linear sparsity

o
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Compare probability of success for s = 8 and 64
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The Thresholded Lasso estimator

Define S = supp(B) := {j : 5 # 0}, Lets = |S|. For some
Sg < s to be defined.

@ First we obtain an initial estimator S, using the Lasso with
An = Coy/2logp/n for some constant c.
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T ={je{1,....p}: Bint > to} with the general goal such
that, we get an set Z with cardinality at most 2sg.
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The Thresholded Lasso estimator

Define S = supp(B) := {j : 5 # 0}, Lets = |S|. For some
Sg < s to be defined.
@ First we obtain an initial estimator S, using the Lasso with

An = Coy/2logp/n for some constant c.

@ Threshold the estimator G, with tg, and set
T ={je{1,....p}: Bint > to} with the general goal such
that, we get an set Z with cardinality at most 2sg.

@ Feed (Y, XI) to the ordinary least squares (OLS)
estimator: 37 = (XJ Xz)~*XJY to obtain 3, where Bz = 0.
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Variable selection under the RE condition

@ Restricted eigenvalue assumption RE(s, ko, X):
(Bickel-Ritov-Tsybakov 09). For some integer 1 <s <p
and a positive number kg, the following holds for all v # 0

_1 =2 min Xl
K(s,Ko)  3C{t...p}.lgl<s \/ﬁHUJoHZ

llvgg [l <kollvag ll2
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Variable selection under the RE condition

@ Restricted eigenvalue assumption RE(s, ko, X):
(Bickel-Ritov-Tsybakov 09). For some integer 1 <s <p
and a positive number kg, the following holds for all v # 0

1 A . X,
= min ————— > 0.
K(s,Ko)  sc{t..phlilss /N HU‘]OHZ

llvye 11 <kollvy, Il1
¢ o

@ Theorem (BRT 09). It is sufficient for the Lasso and the
Dantzig selector to achieve squared ¢, 10ss || Ginit — ﬁ||2 of
O(so? logp/n) with high probability.
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Theorem (Z 09): Suppose that RE (s, kg, X) condition holds.
Suppose [in 1= Minjcs |5 > CAny/s for A\, chosen below.
Then with P(7z) > 1 — (y/wlog pp?)” 1 the multi-step
procedure returns 3 with supp(ﬂ) := 7 such that

SC7Z and [T\ S|<c;and|3— 3|2 <O(so?logp/n),
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Theorem (Z 09): Suppose that RE (s, kg, X) condition holds.
Suppose [in 1= Minjcs |5 > CAny/s for A\, chosen below.
Then with P(7z) > 1 — (y/wlog pp?)” 1 the multi-step
procedure returns 3 with supp(ﬂ) := 7 such that

SCT and |T\S|<c;and]|B— 8|2 <0O(so?logp/n),

@ where \, > 20+/1 +a,/2logp/n, where a > 0; and
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Theorem (Z 09): Suppose that RE (s, kg, X) condition holds.
Suppose [in 1= Minjcs |5 > CAny/s for A\, chosen below.
Then with P(7z) > 1 — (y/wlog pp?)” 1 the multi-step
procedure returns 3 with supp(ﬂ) := 7 such that

SCT and |T\S|<c;and]|B— 8|2 <0O(so?logp/n),

@ where \, > 20+/1 +a,/2logp/n, where a > 0; and
o Ty = {e |[XTe/n||, < ovitay/2log p/n}.
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Theorem (Z 09): Suppose that RE (s, kg, X) condition holds.
Suppose [in 1= Minjcs |5 > CAny/s for A\, chosen below.
Then with P(7z) > 1 — (y/wlog pp?)” 1 the multi-step
procedure returns 3 with supp(ﬂ) := 7 such that

SCT and |T\S|<c;and]|B— 8|2 <0O(so?logp/n),

@ where \, > 20+/1 +a,/2logp/n, where a > 0; and
o Ty = {e |[XTe/n||, < ovitay/2log p/n}.

p=512n =500

@ ko = 1 for the Dantzig
1 el selector and = 3 for the
Lasso; ¢; = 1/64A2. (2s);
Proof imposes
S > K4(S, ko)

min

00 02 04 06 08 1.0
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Compare probability of success for p = 1024
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Sample size increases almost linearly with s

p = 1024 Sample size vs. Sparsity

800 1000

600

Prob. of success
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Linear sparsity result: summary

@ The thresholded Lasso requires that n = slog(p/n), in
order to achieve (almost) exact recovery of the sparsity
pattern for (sub)Gaussian random matrix when Gy is
sufficiently large.

@ This shows a strong contrast with the ordinary Lasso: to
reach the same goal, the required sample size is much
larger.
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Thresholded Lasso
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selection when some non-zero elements are well below o /+/n;

@ |dentify the relevant set of variables that are significant;

@ Estimation accuracy: recovers a good approximation B to
B, with ¢, loss tightly bounded — in an “oracle” sense.
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Ideal model selection: sparse oracle inequalities

Contributions: Define a meaningful criterion for variable
selection when some non-zero elements are well below o /+/n;

@ |dentify the relevant set of variables that are significant;

@ Estimation accuracy: recovers a good approximation B to
B, with ¢, loss tightly bounded — in an “oracle” sense.

In addition to RE, we assume

2
Xl

A
Amax(2s) = ; — 5
v#0,2s-sparse ||UH
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Nearly ideal model selection

Consider subset least squares estimators 3, = (XTX) XY
@ Question: How to find a sparse subset 7 such that
Z| < 2so and E[|3z — B[ = O(log p)E ||5* — 5%,
where §* is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E 8" — BI|* = argmin 1 oy EIG — 52
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Nearly ideal model selection

Consider subset least squares estimators 3, = (XTX) XY
@ Question: How to find a sparse subset 7 such that
Z| < 2so and E[|3z — B[ = O(log p)E ||5* — 5%,
where §* is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E 8" — BI|* = argmin 1 oy EIG — 52

® We show [ — 5|12 = O(log p)S=F_, min(3?, o /n),
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Nearly ideal model selection

Consider subset least squares estimators 3, = (XTX) XY

@ Question: How to find a sparse subset 7 such that
Z| < 2so and E[|3z — B[ = O(log p)E ||5* — 5%,
where §* is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E 8" — BI|* = argmin 1 oy EIG — 52

@ We show ||z — || = O(log p)>_P_, min(52, 52/n), given
Proposition: (Candés-Tao 07). For Amax(S) < oo, then
E |5 — 8% = min (L, 1/Amax(s)) 3F_; min(52, 02 /n).
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Nearly ideal model selection

Consider subset least squares estimators 3, = (XTX) XY

@ Question: How to find a sparse subset 7 such that
Z| < 2so and E[|3z — B[ = O(log p)E ||5* — 5%,
where §* is the ideal least-squares estimator which
minimizes the expected mean squared error (MSE)
E 8" — BI|* = argmin 1 oy EIG — 52

@ We show ||z — || = O(log p)>_P_, min(52, 52/n), given
Proposition: (Candés-Tao 07). For Amax(S) < oo, then
E |5 — 8% = min (L, 1/Amax(s)) 3F_; min(52, 02 /n).

@ Note >, min(5?,02/n) = minic s _py 16 = Bill° + [1]o?/n
represents the ideal squared bias and variance tradeoff.
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Defining 2sg

@ Let 0 < sg < s be the smallest integer such that

S min(B2,)\%02) < soA%02, where \ = /2logp/n.
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Defining 2sg

@ Let 0 < sg < s be the smallest integer such that
S min(B2,)\%02) < soA%02, where \ = /2logp/n.

@ If we order the ;’s in decreasing order of magnitude
B1] = |B2]... = [Bpl, then |G| < Ao V| > so.

[ee]
S So 2sg S
p =512 n =500
© | s=960=1
o An =qlogp/n
ER
go
o~ | oy/2logp/n
P S —————————
\\ ay/logp/n
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Nearly ideal model selection under the RE

Theorem: (Z 10) Suppose RE(sg, 6, X) holds with K (s, 6),
and 2s-sparse eigenvalue conditions hold. Then with

probability at least 1 — (/7 log pp?)~?, the Thresholded Lasso
estimator achieves sparse oracle inequalities:

|Z| < 2sg and |Z\S|<sp<s and

p
13— 8l> < O(logp)> min(3Z,0%/n).

i=1
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Nearly ideal model selection under the RE

Theorem: (Z 10) Suppose RE(sg, 6, X) holds with K (s, 6),
and 2s-sparse eigenvalue conditions hold. Then with

probability at least 1 — (/7 log pp?)~?, the Thresholded Lasso
estimator achieves sparse oracle inequalities:

|Z| < 2sg and |Z\S|<sp<s and
P
18— B> < O(logp) Y min(3Z,o?/n).
i=1

@ Obtain Gyt using the Lasso with A, > 20v/1 + a)\, where
A = +/2logp/n; Threshold Gyt with ty chosen from
(D1)\a, C4Aa], where Dy = Amax(S — So) + 9K ?(sg, 6)/2 and
C4 > Dq; and refit with model 7 using OLS.
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Oracle inequalities for the Lasso

@ Theorem (Z 10). RE(so, 6, X) is a sufficient condition for
the Lasso to achieve squared ¢, loss of O(sgo?logp/n) so
long as Amax(2s) < oo and Agin(2sp) > 0.

[ee]
S So 259 S
p =512 n =500
© | s=9%0=1
o A =+logp/n
S+
g o
| oy/2logp/n
PR R S
ay/logp/n
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Decompose the /, loss

o HBI — ﬁHz = HBI - ﬁIHZ + 16z - 817

[ce)
S So 2sg S
p=512 n =500
© | s=960=1
IS} Ao =+/logp/n
S+
S o
o~ oy/2logp/n
P T .,
g aylogp/n
o o/n
2

0 20 40 60 80 100 120

@ Each term above is bounded by O(sg\%0?), where
soA20? < O(logp)E || — 5*|%
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@ Theorem (Z 09). Under RIP type of condition, the
Gauss-Dantzig selector proposed by Candés-Tao 07
achieves such sparse oracle inequalities.

@ Analysis builds upon Candés-Tao’s result for the initial
Dantzig selector.
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Summary on the general thresholding rules

When Gnin is well below the noise level

@ We show how to choose a sparse model Z, upon which the
OLS estimator achieves the sparse oracle inequalities.

@ We consider the bound on #>-loss as a natural criterion to
evaluate a sparse model when it is not exactly S.

@ Variables in model Z are essential in predicting X 5.
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Subset selection: related work

@ Oracle inequalities in /, loss have been studied in
Donoho-Johnstone 94 and Candées-Tao 07.

@ Also relevant is the work of Meinshausen and Yu 09,
Wasserman and Roeder 09, and Zhang 09.
@ A final note: this method was called “selection/estimation

(s/e) procedure” in Foster and George 94, and “subset
least squares” by Mallows 73.
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Conclusion

@ In the high dimensional linear model, it is possible to
estimate the parameter G and its significant set of variables
accurately using the Thresholded Lasso.
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Conclusion

@ In the high dimensional linear model, it is possible to
estimate the parameter G and its significant set of variables
accurately using the Thresholded Lasso.

@ In a joint work with Peter Buehlmann, Philipp Rutimann
and Min Xu, we apply the thresholding/re-estimation idea
to Gaussian graphical model selection and covariance
estimation.
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@ That is it! Thank you very much!
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