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Covariance matrix

@ Basic problem in multivariate statistics:
by sampling from a high-dimensional distribution, determine
its covariance structure.

@ Principal Component Analysis (PCA): detect the principal
axes along which most dependence occurs:

PCA of a multivariate Gaussian distribution. [Gaél Varoquaux's blog gael-varoquaux.info)
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Covariance matrix

@ The covariance structure of a high-dimensional distribution p
is captured by its covariance matrix X.

@ Let X be a random vector in RP distributed according to p.
We may assume that X is centered (by estimating and
subtracting EX). The covariance matrix of X is defined as

Y =EXX" =EX®X = (EX;X;)? (cov(X;, X))P

ij= 1= i,j=1

e ¥ =Y (X) is a symmetric, positive semi-definite p X p matrix.
It is a multivariate version of the variance Var(X).

o If X(X) =/ we say that X is isotropic. Every full dimensional
random vector X can be made into an isotropic one by the
linear transformation: ¥~1/2X .
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Estimation of covariance matrices

@ Estimation of covariance matrices is a basic problem in
multivariate statistics. It arises in signal processing, genomics,
nancial mathematics, pattern recognition, computational
convex geometry.

@ We take a sample of n independent points Xy, ..., X, from
the distribution and form the sample covariance matrix

1 n
Yo=Y XeX[T.

Y , is a random matrix. Hopefully it approximates 3> well:
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Estimation of covariance matrices

Covariance Estimation Problem. Determine the minimal sample
size n = n(p) that guarantees with high probability (say, 0.99) that
the sample covariance matrix ¥, estimates the actual covariance
matrix X with fixed accuracy (say, € = 0.01) in the operator norm:

120 — 2| < el Z]]-

PCA of a multivariate Gaussian distribution. [Gaél Varoquaux's blog gael-varoquaux.info)
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Estimation problem and random matrices

@ Estimation problem can be stated as a problem on the
spectrum of random matrices.

@ Assume for simplicity that the distribution is isotropic, & = /.

@ Form our sample X1,...,X, into a n X p random matrix A
with independent rows:

@ Then the sample covariance matrix is

1 < 1
Y= ;xkx[ = EATA.
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Estimation problem and random matrices

Y, =1ATA

@ The desired estimation ||X, — /|| < ¢ is equivalent to saying

that %A is an almost isometric embedding RP — R":

(1—e)vn < ||Ax|la < (1 +e)v/n forall x € SP7L.

o Equivalently, the singular values s;(A) = eig(AT A)Y/?2 are all
close to each other and to /n:

(1 - 5)\/5 < Smin(A) < smax(A) < (1 + E)ﬁ

Question. What random matrices with independent rows are
almost isometric embeddings?
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Random matrices with independent entries

@ Simplest example: Gaussian distributions.
A'is a p x n random matrix with independent N(0, 1) entries.
>, is called Wishart matrix.

@ Random matrix theory in the asymptotic regime n, p — oc:

Theorem (Bai-Yin Law) When n, p — oo, n/p — const, one has

smin(A) = Vn— /P, smax(A) = Vn+/p as.

| H“mﬂm

on-p Vn+/p
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Random matrices with independent entries

Bai-Yin: smin(A) = v/n — /P, smax(A) = V/n+ /p.

@ Thus making n slightly bigger than p we force both extreme
values to be close to each other, and make A an almost
isometric embedding.

o Formally, the sample covariance matrix £, = 2AT A nicely
approximates the actual covariance matrix /:

I, — 1] ~ 2\ﬁ+ P
n n

Answer to the Estimation Problem for Gaussian distributions:

sample size n(p) ~ p suffices to estimate the covariance matrix by
a sample covariance matrix.
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Random matrices with independent rows

@ However, many distributions of interest do not have
independent coordinates. Thus the random matrix A has
independent rows (samples), but not independent entries in
each row.

Problem. Study the spectrum properties of random matrices with
independent rows. When do such n x p matrices A produce almost
isometric embeddings?
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High dimensional distributions

Under appropriate moment assumptions on the distribution (of the
rows), are there results similar to Bai-Yin?

Definition. A distribution of X in RP is subgaussian if all its
one-dimensional marginals are subgaussian random variables:

P{|(X,x)| > t} < 2exp(—ct?).

@ Similarly we define subexponential distributions (with tails
2exp(—ct)), distributions with finite moments, etc. We thus
always assess a distribution by its one-dimensional marginals.

@ Examples: The standard normal distribution, the uniform
distributions on round ball, cube of unit vol are subgaussian.

@ The uniform distribution on any convex body of unit volume
is sub-exponential (follows from Brunn-Minkowski inequality,
see Borell's lemma). Discrete distributions are usually not
even subexponential unless they are supported by
exponentially many points.
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Random matrices with independent subgaussian rows

Proposition (Random matrices with subgaussian rows). Let A be
an n X p matrix whose rows Xy are independent sub-gaussian
isotropic random vectors in R?. Then with high probability,

\/E - C\/I3 < 5min(A) < Smax(A) < \/B+ Cﬁ

@ As before, this yields that the sample covariance matrix
.= %ATA approximates the actual covariance matrix /:

1S, — 1] < c\er cP.
n n

@ Answer to the Estimation Problem for subgaussian
distributions is same as for Gaussian ones: sample size
n(p) ~ p suffices to estimate the covariance matrix by a
sample covariance matrix.
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Random matrices with independent subgaussian rows

Proposition (Random matrices with subgaussian rows). Let A be
an n x p matrix whose rows X, are independent sub-gaussian
isotropic random vectors in R”. Then with high probability,

\/E - C\/I3 < 5min(A) < 5max(A) < \/B + Cﬁ

Proof (e-net argument). As we know, the conclusion is equivalent
to saying that ﬁA is an almost isometric embedding.

Equivalently, we need to show that ||Ax||3 is close to its expected
value n for every unit vector x. But
n
JAXIE = 3 (X, x)2

k=1
is a sum of independent subexponential random variables.
Exponential deviation inequalities (Bernstein's) yield that
| Ax||? = n with high probability. Conclude by taking union bound
over x in some fixed net of the sphere SP~1 and approximation. [
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Beyond sub-subgaussian

@ This argument fails for anything weaker than sub-gaussian
distributions — exponential deviation inequalities will fail.
Different ideas are needed to address the Estimation Problem
for distributions with heavier tails.

@ Boundedness assumption: we will assume throughout the rest
of this talk that the distribution is supported in a centered ball
of radius O(,/p). Most of the (isotropic) distribution always
lies in that ball, as E||X||3 = p.
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Random matrices with heavy-tailed rows

Under no moment assumptions at all, we have:

Theorem (Random matrices with heavy tails). Let A be an nx p
matrix whose rows X, are independent isotropic random vectors in
RP. Then with high probability,

vn— Cy/plog p < smin(A) < smax(A) < Vn+ Cy/plogp.

@ log p is needed (uniform distribution on p orthogonal vectors).
@ As before, this yields that the sample covariance matrix
= %ATA approximates the actual covariance matrix /:

|
1=, =1 < C\/p &P for n > p.
n

This result was proved by Rudelson’00 (Bourgain'99: log® p).
@ The answer to the Estimation Problem for heavy-tailed

distributions is requires a logarithmic oversampling: a sample

size n(p) ~ plog p suffices to estimate the covariance matrix.
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Random matrices with heavy-tailed rows

Theorem (Random matrices with heavy tails). Let A be an n x p

matrix whose rows X, are independent isotropic random vectors in
RP. Then with high probability,

vn— Cy/plog p < smin(A) < smax(A) < v/n+ Cy/plogp.

Proof There are now several ways to prove this result. The most
straightforward argument: Ashlwede-Winter's approach. It directly
addresses the Estimation Problem. The sample covariance matrix

1 n
Y, = nkz_:lxkx[

is a sum of independent random matrices XkaT. One can prove
and use versions of classical deviation inequalities (Chernoff,
Hoeffding, Bernstein, Bennett ...) for sums of random matrices.
Proofs are similar — exponentiating and estimating m.g.f. using
trace inequalities (Golden-Thompson). See Tropp'10. CJ




When is the logarithmic oversampling needed?

Problem (when is logarithmic oversampling needed?) Classify the
distributions in RP for which the sample size n(p) ~ p suffices to
estimate the covariance matrix by the sample covariance matrix.

@ What we know: for general distributions, logarithmic
oversampling is needed: n(p) ~ plog p by Rudelson’s
theorem. For subgaussian distributions, not needed: n(p) ~ p.

@ It was recently shown that n(p) ~ p for sub-exponential
distributions: Adamczak, Litvak, Pajor, Tomczak'09. This
includes uniform distributions on all convex bodies.

@ But there is still a big gap between the distributions that do
not require the logarithmic oversampling (convex bodies) and
those that do require (very discrete).

@ How to close this gap? We conjecture that for most
distributions, n(p) ~ p. For example, this should hold under
any non-trivial moment assumptions:
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The logarithmic oversampling is almost never needed?

Conjecture. Consider a distribution in RP with bounded g-th
moment for some q > 2, i.e. E|(X, x)|9 < C9 for all unit vectors x.
Then the sample size n ~ p suffices for estimation of the
covariance matrix X by the sample covariance matrix >, w.h.p.:

|, — X <e.

@ Recall that any isotropic distributions has a bounded second
moment. The conjecture says that a slightly higher moment
should suffice for estimation without logarithmic oversampling.
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The logarithmic oversampling is almost never needed

Theorem (Covariance). Consider a distribution in RP with bounded
g-th moment for some g > 4. Then the sample covariance matrix
> , approximates covariance matrix: with high probability,

QN

1_
IZ0— £l < (loglog p)?(£)* .

@ As a consequence, the sample size n ~ (loglog p)%7p suffices
for covariance estimation: || X, — X|| <e.
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Estimation of moments of marginals

@ Once we know ¥ we know the variances of all one-dimensional
marginals: (¥x,x) = (EXXTx,x) = E(X, x).
@ More generally, we can estimate r-th moments of marginals:

Theorem (Marginals). Consider a random vector X in RP with
bounded 4r-th moment. Take a sample of size n ~ p if r € [1,2)
and n~ p"/? if r € (2,00). Then with high probability,

sup
xesp—1

IR r r
;ZKX?XH _]E|<X7X>’ <e
k=1

@ The sample size n has optimal order for all r.

@ For subexponential distributions, this result is due to
Adamczak, Litvak, Pajor, Tomczak'09. Without extra
moment assumptions (except the r-th), a logarithmic
oversampling is needed as before. The optimal sample size in
this case is n ~ p’/? log p due to Guedon, Rudelson’07.
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Norms of random operators

Corollary (Norms of random operators). Let A be an n x p matrix

whose rows X, are independent random vectors in RP with

bounded 4r-th moment, r > 2. Then with high probability,
Al e, S 2+ pY".

~

@ This result is also optimal. Conjectured to hold for r = 2.

@ For subexponential distributions, this result is due to
Adamczak, Litvak, Pajor, Tomczak'09. Without extra
moment assumptions (except the r-th), a logarithmic
oversampling is needed as before.
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Heuristics of the argument: structure of divergent series

@ Two new ingredients in the proofs of these results:
(1) structure of slowly divergent series;
(2) a new decoupling technique.

@ Consider a simpler problem: for a random vector with heavy
tails, we want to show that ||X,|| = O(1):

n

IZall = sup %Z<Xk,x>2: o(1).

xe§n—1 k=1

This is a stochastic process indexed by vectors x € S"~ 1.

@ For each fixed x, we have to control the sum of independent
random variables >, (X, x)2. Unfortunately, because of the
heavy tails of these random variables, we can only control the
sum with a polynomial rather than exponential probability
1 —n=91)_ This is too weak for uniform control over x in the
sphere SP~! where e-nets have exponential sizes in p.
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Sums of independent heavy-tailed random variables

@ This brings us to a basic question in probability theory: control
a sum of independent heavy-tailed random variables Zj.

@ Here we follow a simple “combinatorial” approach. Suppose

1 n
— E Zi > 1.
n

k=1

Try and locate some structure in the terms Z, that is
responsible for the largeness of the sum.

@ Often one can find an ideal structure: a subset of very large
terms Z,. Namely, suppose there is | C [n], |/| = ng such that

Zo> 42 forkel.
no

(we can always locate an ideal structure loosing log n).
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Sums of independent heavy-tailed random variables

Ideal structure: a subset /, |/| = ng, such that Zx > 4,% for k € I.

@ Advantage of the ideal structure: the probability that it exists
can be easily bounded. Even if Z, have just the first moment,
say EZ, = 1:

@ By independence, Markov's inequality and union bound over /,

. : n\ /ng\mn
P{ideal structure exists} < ( ) <—0) < e 2m,
ng/) \4n

We get an exponential probability despite the heavy tails.
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Combinatorial approach for stochastic processes

@ Let us see how the combinatorial approach works for
controlling stochastic processes. Assume for some x € "1

1 n
=) (X, x)? > 1L
n k=1

@ Suppose we can locate an ideal structure responsible for this:
a subset /, |I| = ng, such that (X, x)? > 4.5 forkel. As
we know,

P{ideal structure} < e 2.

@ This is still not strong enough to take union bound over all x
in some net of the sphere SP~1 which has cardinality e”.

e Dimension reduction: By projecting x onto E = span(Xg)ke/
we can automatically assume that x € E. This subspace has
dimension ng. Its e-net has cardinality e™ which is OK!

@ Unfortunately, x € E becomes random, correlated with Xj's.

@ Decoupling can make x depend on a half of X,'s (random
selection a la Maurey). Condition on this half “finish the proof.

Roman Vershynin Estimation of covariance matrices



Combinatorial approach for stochastic processes

@ This argument yields the optimal Marginal Theorem (on
estimation of r-th moments of one-dimensional marginals).

@ Generally, in locating the ideal structure one looses a log p
factor. To loose just loglog p as in the Covariance Theorem,
one has to locate a structure that's weaker (thus harder to
find) than the ideal structure. This requires a structural
theorem for series that diverge slower than the iterated
logarithm.
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Sparse estimation of covariance matrices

@ A variety of practical applications (genomics, pattern
recognition, etc.) require very small sample sizes compared
with the number of parameters, calling for

n <& p.

@ In this regime, covariance estimation is generally impossible
(for dimension reasons). But usually (in practice) one knows a
priori some structure of the covariance matrix X.

@ For example, ¥ is often known to be sparse, having few
non-zero entries (i.e. most random variables are uncorrelated).
Example:
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Covariance graph
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Gene association network of E. coli [J. Schafer, K. Strimmer’05]
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Sparse estimation of covariance matrices

Sparse Estimation Problem. Consider a distribution in RP whose
covariance matrix ¥ has at most s < p nonzero entries in each
column (equivalently, each component of the distribution is
correlated with at most s other components). Determine the
minimal sample size n = n(p, s) needed to estimate X with a fixed
error in the operator norm, and with high probability.

@ A variety of techniques has been proposed in statistics,
notably the shrinkage methods going back to Stein.
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Sparse estimation of covariance matrices

@ The problem is nontrivial even for Gaussian distributions, and
even if we know the location of the non-zero entries of X.
Let's assume this (otherwise take the biggest entries of ¥,).

@ Method: compute the sample covariance matrix ¥ ,. Zero out
all entries that are a priori known to be zero. The resulting
sparse matrix M - X, should be a good estimator for X.

@ Zeroing out amounts to taking Hadamard product (entrywise)
M - %, with a given sparse 0/1 matrix M (mask).

@ Does this method work? Yes:
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Sparse estimation of covariance matrices

Theorem (Sparse Estimation). [Levina-V'10] Consider a centered
Gaussian distribution in RP with covariance matrix ¥. Let M be a
symmetric p X p “mask” matrix with 0,1 entries and with at most
s nonzero entries in each column. Then

BIM - Z, - M%) < Clog?p(y/ + ) - I2),
n n

Compare this with the consequence of the Bai-Yin law:

p . p
B, - 21~ (22 + )1zl

This matches the Theorem in the non-sparse case s = p.
Note the mild, logarithmic dependence on the dimension p
and the optimal dependence on the sparsity s.

A logarithmic factor is needed for s = 1, when M = /.

As a consequence, sample size n ~ s log® p suffices for sparse
estimation. In the sparse case s < p, we have.n < p.
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Sparse estimation of covariance matrices

More generally,

Theorem (Estimation of Hadamard Products). [Levina-V'10]

Consider a centered Gaussian distribution on RP with covariance

matrix 2. Then for every symmetric p X p matrix M we have
[Mll12 , [IM]

E|M - E,— M| < Clog? p(12 722 + E0) ),

where ||M||12 = max;(>_; m,gj)l/2 is the {1 — ¢ operator norm.

@ This result is quite general. Applies for arbitrary Gaussian
distributions (no covariance structure assumed), arbitrary
mask matrices M.
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Complexity of matrix norm

@ Sparse Estimation Theorem would follow by an e-net
argument if the norm of a sparse matrix can be computed on
a small set.

@ As is well known, the operator norm of an p x p matrix A can
be computed on an %—net N of the unit sphere SP~1

Al ~ A
Al ~ ma [ Ax 2

and one can construct such net with cardinality |N| < eP.
@ Can one reduce the size of N for sparse matrices?

Question (discretizing the norm of sparse matrices). Does there
exist a subset V' of SP~1 such that, for every p x p matrix A with
at most s nonzero entries in each row and column, one has

Al ~ max||A
Al ~ max |Ax|2

and with cardinality |NV| < (Cp/s)® < p© ?
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Gaussian Chaos

@ Since we don’'t know how to answer this question, the proof of
the estimation theorem takes a different route — through
estimating a Gaussian chaos.

@ A gaussian chaos arises naturally when one tries to compute
the operator norm of a sample covariance matrix

Y= %22:1 XkaT:

IZall = sup (Zox,x) = D Tali,j)xix; = g Xki XijXi X
xESP~ 1 =1 ki,j

where Xj; are Gaussian random variables (the coordinates of
the sampled points from the Gaussian distribution).

e Argument: (1) decoupling; (2) “combinatorial” approach to
estimation, classifying x according to the measure of its
sparsity — similar to [Schechtman’04] and many later papers.
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