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Trace Regression Model

I We observe (Xi ,Yi ), i = 1, . . . ,N such that

Yi = trace
(
X ′

i A
∗) + ξi , i = 1, ...,N,

ξi i.i.d. random errors, Xi ∈ Rm×T known, A∗ ∈ Rm×T unknown

I Problems:

estimation of A∗;

prediction = estimation of X 7→ trace
(
X ′A∗

)
.

I Focus on:

High-dimensional setting: mT � N.

A∗ is a matrix of small rank, r = rank(A∗) � min(m,T ).

Sparse matrices Xi (masks): few non-zero entries.
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Examples: 1. Point masks.

Xi ∈


d∑

j=1

ekj
(m)e ′lj (T ) : 1 ≤ kj ≤ m, 1 ≤ lj ≤ T

 ,

ek(m)’s the canonical basis vectors in Rm.

I d = 1 : Matrix Completion Problem. Suppose we observe only
N � mT entries of matrix A∗ ∈ Rm×T with/without noise

→ can we guess the many other entries?

I Applications: Recommendation systems, e.g., Netflix; dimension
mT ∼ 109, N ∼ 107.

I Role of the rank: Let m = T ⇒ completion impossible if
N < (2m − r)r , where r = rank(A∗)
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I Two cases of matrix completion:

USR matrix completion = Uniform Sampling at Random;
masks Xi i.i.d. uniformly distributed on the set{

ek(m)e ′l (T ) : 1 ≤ k ≤ m, 1 ≤ l ≤ T
}

.

Non-noisy case: Candès/Recht (2008), Candès/Tao (2009).

Collaborative filtering. Random or deterministic masks Xi ,
which are all distinct.
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Examples: 2. Column or row masks

I Multi-task learning = longitudinal (or panel, or cross-section)
data analysis

I N = nT where T number of tasks; n number of observations
per task.

I Vectors of parameters a∗t ∈ Rm, t = 1, . . . ,T for tasks,

A∗ = (a∗1 · · · a∗T ).

I Xi ’s are column masks, only one non-zero column x(t,s) ∈ Rm:

Xi ∈ {(0 · · · 0 x(t,s)︸︷︷︸
t

0 · · · 0), t = 1, . . . ,T , s = 1, . . . , n}.

I Column x(t,s) = the vector of predictor variables corresponding
to sth observation for the tth task.
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Thus, for each i = 1, . . . ,N there exists a pair (t, s) with
t = 1, . . . ,T , s = 1, . . . , n, such that

trace(X ′
i A

∗) = (a∗t )
′x(t,s).

If we denote by Y (t,s) and ξ(t,s) the corresponding values Yi and
ξi , our trace regression model can be written as a collection of T
standard vector regression models:

Y (t,s) = (a∗t )
′x(t,s) + ξ(t,s), t = 1, . . . ,T , s = 1, . . . , n.

(Usual formulation of multi-task learning model.)

I Suppose A∗ = (a∗1 · · · a∗T ) has small rank ≡ ”tasks are related”.

I Problems: estimation of A∗, prediction.
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Examples: 3. ”Complete” matrices Xi

I All the entries of Xi are i.i.d. Rademacher or Gaussian N (0, 1).

I Xi are no longer masks.

I Computationally hard when mT is large, e.g., mT ∼ 109.

I Our results cover this case but it is not of our main interest.

I Parallel work on this case: Negahban/Wainwright (2009) with
N � mT ; Candès/Plan (2010). Without noise: Recht/al. (2007).
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Our aim is to construct estimators Â of matrix A∗ such that the
following distance measures are small with probability close to 1:

I Prediction loss d2
(
Â,A∗) =

1

N

N∑
i=1

trace2
(
(Â− A∗)′Xi

)
I Schatten-q loss

wwÂ− A∗
wwq

Sq

‖ · ‖Sq denotes Schatten-q (quasi-)norm

‖A‖Sq =

(m∧T∑
j=1

σj(A)q
)1/q

, q > 0,

with σi (A)’s singular values of matrix A ∈ Rm×T .
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Prototype reference: Vector estimation and Lasso

I We observe (Xi ,Yi ), i = 1, . . . ,N, such that

Yi = X ′
i β + ξi , i = 1, . . . ,N,

Xi ∈ Rp, β ∈ Rp, ξi
iid∼ N (0, 1)

I High-dimensional setting: p � N.

I Sparsity index s of β = number of non-zero components of β is
small;

s = |β|0 =
∑p

j=1
I{i : βj 6= 0} � p.
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I vector case: LASSO estimator

β̂ = argmin
β∈Rp

{
1

N

N∑
i=1

(
Yi − X ′

i β
)2

+ λ|β|1
}

,

|β|1 = `1-norm of β, λ > 0 tuning parameter.

I matrix case: Schatten-1 estimator

Â ∈ argmin
A∈Rm×T

{
1

N

N∑
i=1

(
Yi − trace

(
X ′

i A
))2

+ λ
wwA
ww

S1

}
.

I penalized least squares with Schatten (quasi-)norm penalty

motivation: shrinkage towards low-rank representations
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I vector case: LASSO estimator

β̂ ∈ argmin
β∈Rp

{
1

N

N∑
i=1

(
Yi − X ′

i β
)2

+ λ|β|1
}

,

|β|1 = `1-norm of β, λ > 0 tuning parameter.

I matrix case: Schatten-p estimator

Â ∈ argmin
A∈Rm×T

{
1

N

N∑
i=1

(
Yi − trace

(
X ′

i A
))2

+ λ
wwA
wwp

Sp

}
, 0 < p ≤ 1.

I penalized least squares with Schatten (quasi-)norm penalty

motivation: shrinkage towards low-rank representations
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Sparsity Oracle Inequalities – Vector Case

Prediction loss: d2(β̂, β) = 1
N |X(β̂ − β)|22,

X = (Xji )1≤i≤N;1≤j≤p, and | · |q, q ≥ 1, is the `q norm.

Theorem (Bickel, Ritov and T., 2009, Rigollet and T., 2010)

Consider the Lasso estimator β̂ with λ = A
√

log p
N ,A > 2

√
2.

Then with probability at least 1− p1−A2/8, under the RI condition,

d2(β̂, β) ≤ C

(
s log p

N

)
, s = |β|0, ”FAST” rate,

and, under NO assumption on X,

d2(β̂, β) ≤ C |β|1

√
log p

N
”SLOW” rate.
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Sparsity Oracle Inequalities – Matrix Case???

I Investigate two possibilities:

(i) ”Fast” rates scheme. Here we need some strong conditions,
such as matrix analogs of RI assumption.

(ii) ”Slow” rates scheme. We need essentially no assumption on
the masks but some mild assumptions on the Schatten norm
of A∗.

I The outcome is surprising:

(i) ”Fast” rates scheme (i.e., using RI) essentially fails when we
deal with very sparse masks Xi .

(ii) ”Slow” rates scheme leads to the rates which are NOT slow if
matrices Xi are very sparse!
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I Schatten-p estimator:

Â ∈ argmin
A∈Rm×T

{
1

N

N∑
j=1

(
Yj − trace

(
X ′

j A
))2

+ λ
wwA
wwp

Sp

}
, p ≤ 1

I Prediction loss:

d2
(
Â,A∗) =

1

N

N∑
i=1

trace2
(
(Â− A∗)′Xi

)
I Basic inequality

d2
(
Â,A∗) ≤ 2

1

N

N∑
i=1

ξi trace
((

Â− A∗)′Xi

)
︸ ︷︷ ︸

”stochastic term”

+ λ
(wwA∗wwp

Sp
−
wwÂ
wwp

Sp

)
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Lemma

Under appropriate assumptions, with probability ≥ 1− exp(−C (m + T )),

 1

N

N∑
i=1

ξi trace
(
(Â− A∗)′Xi

) ≤ δ

2
I{0<p<1}d

2
(
Â,A∗)+ τδp−1‖Â− A∗‖p

Sp
,

for all δ > 0, where 0 < τ < ∞ is an explicitly given parameter(m,T ,N).

Difficulty: requires some new tools, e.g., ε-entropy of the (non-

convex) Schatten-p ball {A ∈ Rm×m : ‖A‖Sp ≤ 1}, p < 1,

in the Frobenius norm, with explicit dependence on p

τ = ”EFFECTIVE NOISE LEVEL”;

Choose λ = 4τ
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Examples of ”noise levels” τ
(Gaussian ξi )

Assumptions on Xi Assumptions on N,m,T , p ”Noise levels” τ

Unif. bounded L p = 1 c
(

m+T
N

)1/2

Unif. bounded L 0 < p < 1, m = T c(p)
(

m
N

)1−p/2

USR matrix compl. p = 1, (m + T )mT > N c m+T
N

Collab. filtering p = 1 c (m+T )1/2

N

The sampling operator L : A 7→
(
trace(X ′

1A), ..., trace(X ′
NA)

)
/
√

N
is uniformly bounded if there exists a constant c0 < ∞ such that

|L(A)|22 ≤ c0‖A‖2S2

for all matrices A ∈ Rm×T where | · |2 is the Euclidean norm in RN .
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We first explore the ”Slow rates” scheme:

without Restricted Isometry
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”Slow rates” scheme

I Basic inequality + Lemma, setting δ = 1/2 and λ = 4τ :

d2(Â,A∗) ≤ 8τ
(
‖Â− A∗‖p

Sp
+ ‖A∗‖p

Sp
− ‖Â‖p

Sp

)
≤ 16τ‖A∗‖p

Sp

since ‖A + B‖pSp
≤ ‖A‖pSp

+ ‖B‖pSp
, p ≤ 1.

Theorem (Sparsity Oracle Inequality – ”Slow rates” scheme)

Let 0 < p ≤ 1, λ = 4τ . Then, for cases listed in the table above,

d2
(
Â,A∗

)
≤ 16τ‖A∗‖pSp

,

with probability ≥ 1− exp(−C (m + T )) where C > 0 is
independent of N,m,T.
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Remarks
I The rate is faster for smaller p in the penalty.
I If σ1(A

∗) ≤ C we have the bound

d2
(
Â,A∗

)
≤ Crτ.

So, the rates are FAST or VERY FAST:

for uniformly bounded sampling operator with m = T ,
p = (log(N/m))−1:

d2
(
Â,A∗

)
∼ rm

N
log

(
N

m

)
,

for USR matrix completion with p = 1:

d2
(
Â,A∗

)
∼ r(m + T )

N
,

for collaborative filtering with p = 1:

d2
(
Â,A∗

)
∼ r(m + T )1/2

N
.
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Rate heuristics for prediction loss: Square matrix case

I A∗ ∈ Rm×m and rank(A∗) = r
⇒ (2m − r)r free parameters

r � m ⇒ intrinsic dimension ∼ rm

Rate =
intrinsic dimension

sample size
∼ rm

N

(
� m2

N

)
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I For USR matrix completion setting we achieve the optimal rate
heuristics using the ”slow rate” argument if the maximal singular
value of A∗ is uniformly bounded.

I Collaborative filtering leads to even faster convergence rates as
compared to USR matrix completion.

I On the difference from the vector problems, the log-factor is can
be avoided in the rates if the maximal singular value is uniformly
bounded.

I Another difference is that the concentration is exponential and
not polynomial in the dimension.
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We now turn to ”Fast rates” scheme:

with Restricted Isometry

Alexandre Tsybakov Estimation of High-Dimensional Low Rank Matrices



Restricted Isometry: Vector versus Matrix

I Vector case. Restricted Isometry: ∃ 0 < δs < 1 such that(
1− δs

)
|β|2 ≤

1√
N
|Xβ|2 ≤

(
1 + δs

)
|β|2

for all β ∈ Rp with sparsity index |β|0 ≤ s.

I Matrix case. Restricted Isometry RI(r,ν) condition:
∃ 0 < δr < 1 such that

(
1− δr

)
‖A‖S2 ≤ ν

(
1

N

N∑
i=1

trace2
(
A′Xi

))1/2

≤
(
1 + δr

)
‖A‖S2

for all A ∈ Rm×T with rank(A) ≤ r . Scaling factor ν.
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Examples.

1 USR matrix completion. Point masks. The scaling constant in
matrix version of Restricted Isometry is

ν ∼
√

mT .

But we can only achieve it if N > mT
⇒ ”matrix completion catastrophe”, see below...

2 Multi-task learning. Column masks. The scaling constant is

ν ∼
√

T .

3 ”Complete” matrices Xi . All Gaussian or Rademacher entries.
Restricted isometry with scaling constant

ν = 1,

cf. Recht et al. (2007).
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Assumptions on Xi Assumptions on N,m,T , p ”Noise levels” τ

Unif. bounded L p = 1 c
(

m+T
N

)1/2

Unif. bounded L 0 < p < 1, m = T c(p)
(

m
N

)1−p/2

Theorem (Sparsity Oracle Inequality – ”Fast” scheme: with RI)

Let rank(A∗) ≤ r . Assume the RI (br ,ν) condition with a sufficiently
large b = b(p) and some 0 < ν < ∞. Let the sampling operator L be

uniformly bounded. Then, for the Schatten-p estimator Â with λ = 4τ ,
with τ as in the table above we have

d2
(
Â,A∗) ≤ Crτ

2
2−p ν

2p
2−p ,

‖Â− A∗‖q
Sq
≤ Crτ

q
2−p ν

2q
2−p , ∀ q ∈ [p, 2],

with probability ≥ 1− exp(−C (m + T )) where C > 0 is independent of

N,m,T.
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Remarks

I ”Complete” matrices Xi . Then ν = 1. If also p = 1, we have
the bound

d2
(
Â,A∗

)
≤ Crτ2 ∼ r(m + T )

N
.

Same for the Frobenius norm. This is the optimal rate.

I USR matrix completion: no Restricted Isometry if mT � N.
The RI scheme does not apply.
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Example: USR matrix completion
Xi point masks which are i.i.d. and uniformly distributed on{

ek(m)e ′l (T ) : 1 ≤ k ≤ m, 1 ≤ l ≤ T
}

.

Set δ
(i)
kl = I{Xi=ek (m)e′l (T )}. Then ∀ A ∈ Rm×T :

mT

N

N∑
i=1

tr2
(
X ′

i A
)

=
mT

N

N∑
i=1

∑
k,l

a2
kl δ

(i)
kl =

∑
k,l

a2
kl

(mT

N

N∑
i=1

δ
(i)
kl

)
.

But E
(

mT
N

∑N
i=1 δ

(i)
kl

)
= 1 for all k, l , and

∑
k,l a

2
kl = ‖A‖2S2

.

I ⇒ the RI condition, if it holds, should be naturally scaled by
ν =

√
mT , a very large value.
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Matrix completion: the RI catastrophe

mT

N

N∑
i=1

trace2
(
X ′

i A
)

=
∑
k,l

a2
kl

(mT

N

N∑
i=1

δ
(i)
kl

)
.

E
(

mT
N

∑N
i=1 δ

(i)
kl

)
= 1 for all k, l , and

∑
k,l a

2
kl = ‖A‖2S2

.

I Since δ
(i)
kl are i.i.d. Bernoulli(1/(mT)),

Var
(

mT
N

∑N
i=1 δ

(i)
kl

)
∼ mT

N ⇒ RI condition requires mT < N!

⇒ nothing can be done under the requirement mT � N which is
intrinsic for matrix completion problems.

⇒ Restricted isometry not adapted to problems with sparse masks
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Theorem (Matrix completion, I)

Let ξ1, . . . , ξN be i.i.d. N (0, σ2) random variables, and assume that
m = T > 1, N > e m and that Xi are i.i.d. uniformly distributed on{

ek(m)e′l (T ) : 1 ≤ k ≤ m, 1 ≤ l ≤ T
}

.

Let A∗ ∈ Rm×m with rank(A∗) ≤ r and the maximal singular value
σ1(A

∗) ≤ (N/m)C
∗

for some 0 < C∗ < ∞. Set

p = (log(N/m))−1.

Then, ∀ ϑ ≥ c2 with a universal constant c > 0, for a proper choice of
λ = λ(ϑ), the Schatten-p estimator Â satisfies:

d(Â,A∗)2 ≤ Cϑ
rm

N
log

(
N

m

)
with probability ≥ 1− c exp(−ϑm/c2) for some c > 0.
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Theorem (Matrix completion, II)

Let ξi , i = 1, ...,N, with

IE |ξi |l ≤
1

2
l!σ2H l−2, l = 2, 3, ...,

with some finite constants σ and H. Assume that mT (m + T ) > N and
that the Xi are point masks, which are iid uniformly distributed on{

ek(m)e′l (T ) : 1 ≤ k ≤ m, 1 ≤ l ≤ T
}

and independent from ξ1, ..., ξN . Then with an appropriate choice of
λ = λ(m,T ,N, σ, H), the Schatten-1 estimator Â satisfies

d(Â,A∗)2 ≤ 16C̄‖A∗‖S1

m + T

N

with probability at least 1− 4 exp{−(2− log 5)(m + T )}, where

C̄ = C̄ (σ,H).
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Theorem (Matrix completion, III)

Let ξi , i = 1, ...,N, iid N (0, σ2). Consider the problem of collaborative

filtering (i.e. N different point masks). Then the Schatten-1 estimator Â
with λ = λ(m,T ,N, σ) satisfies

d(Â,A∗)2 ≤ 256‖A∗‖S1

√
m + T

N

with probability at least 1− 2 exp{−(4− log 5)(m + T )}.

I collaborative filtering leads to faster convergence rates as
compared to USR matrix completion setting

I the log-factor is avoidable for uniformly bounded maximal
singular value
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Theorem (Multi-task learning)

Let ξ1, . . . , ξN be i.i.d. N (0, σ2) random variables, and assume
that m = T > 1, n > e log m. Consider the multi-task learning
problem with A∗ ∈ Rm×m, rank(A∗) ≤ r and the maximal singular
value σ1(A

∗) ≤ (n/ log m)C
∗

for some 0 < C ∗ < ∞. Assume that
the spectra of the task Gram matrices Ψt are uniformly in t
bounded from above by a c0T where c0 < ∞. Set

p = (log n − log log m)−1.
Then, ∀ ϑ ≥ 1, for a proper choice of λ = λ(ϑ), the Schatten-p
estimator Â satisfies:

d(Â,A∗)2 ≤ Cϑ
r

n
log

(
n

log m

)
log m

with probability ≥ 1− C m−ϑ/C2
for some C > 0.
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Matrix versus Vector Sparsity

I linear dependence on rank(A∗)

∼ linear dependence on sparsity index s

I (at least) linear dependence on m

6∼ logarithmic dependence on p
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I impossible to recover all low-rank matrices

(counter-) example: eie
′
j , with ei ’s the canonical unit vectors

I possible to recover most of them?

Theorem (Candès & Tao 2009)

In the non-noisy setting (ξi ≡ 0), under the strong incoherence
condition (SIC), exact recovery is possible with high probability for

N > C rm(log m)6, r = rank(A∗),

observed entries with locations uniformly sampled at random.

Heuristics:

SIC ensures that the singular vectors of A∗ are sufficiently ”spread
out” or ”incoherent”
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Matrix completion is possible by convex programming:

minimize ‖A‖S1

subject to Yi = trace
(
X ′

i A
)
, i = 1, . . . ,N

I ‖.‖Sp denotes Schatten-p (quasi-)norm

‖A‖Sp =

( m∑
j=1

σj(A)p
)1/p

, p > 0,

σi (A)’s singular values of A

I Equivalent: yij , (i , j) ∈ Ω ⊂ {1, 2, ...,m}2 observed entries

minimize ‖A‖S1

subject to aij = yij , (i , j) ∈ Ω
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I Candès and Recht (2008), Candès and Tao (2009)

→ focus on exact recovery

I Candès and Plan (2009)

→ same setting in the presence of noise,

proposed estimators Â of A∗ and evaluated ‖Â− A∗‖S2

→ establish bounds on ‖Â− A∗‖2S2
of order m3

when A∗ ∈ Rm×m and the noise is Gaussian

→ argued that even the oracle cannot achieve better rate in

the Frobenius norm than rm3/N, which is rather pessimistic

⇒ Nothing reasonable can be achieved for the Frobenius norm

in the matrix completion problem
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Sparsity for Matrices (Two notions of matrix sparsity)

I small number of non-zero entries
→ Meinshausen and Bühlmann (2006) (in view of inverse

covariance matrices and graphical models)
→ Bickel and Lewina (2008) (banded covariance matrices)
→ Wainwright, Yu (2008), ...

I newly introduced in the framework of matrix completion:
→ sparsity quantified by the rank (Recht et al. 2007)

sparse matrix = small rank matrix
→ Negahban and Wainwright (2009), Candès and Plan (2010)

(using restricted isometry of sampling operator)

I We assume:
– masks Xi have small number of non-zero entries
– A∗ is of small rank, rank(A∗) � m
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