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Background

It has been known since 1970’s that `N1 contains

nearly Euclidean subspaces of dimension Ω(N).

Proofs were probabilistic, hence non-constructive.

Consequence: results not-quite-suitable for subse-

quently discovered applications to high-dimensional

nearest neighbor search, error-correcting codes over

the reals, compressive sensing and other computa-

tional problems.



In this talk

A“low-tech” scheme which, for any δ > 0, allows

to exhibit nearly Euclidean Ω(N)-dimensional sub-

spaces of `N1 while using only Nδ random bits.

This extends and complements (particularly) recent

work by Guruswami-Lee-Wigderson.

Characteristic features:

(1) simplicity (we use only tensor products) and

(2) yielding arbitrarily small distortions, or “almost

Euclidean” subspaces.



From the 1970’s

There exists a subspace E ⊂ RN of dimension m ≥
αN and a scaling constant S such that for all x ∈ E

D−1‖x‖2 ≤ S‖x‖1 ≤ ‖x‖2

Theorem 1 (FLM, 1977) ∀D > 1 ∃α = α(D)

Theorem 2 (Kashin, 1977) ∀α < 1 ∃D = D(α)

Explicit S, usually S = Θ(N−1/2)

FLM usually written with D = 1 + ε

For the Kashin regime D−1‖x‖2 ≤ N−1/2‖x‖1 ≤ ‖x‖2



Highly non-explicit subspaces

• E – a generic element of GN,m

• E = rangeM , where M is a random N ×m matrix
with i.i.d. entries

• E = kerM , where M is a random (N − m) × N
matrix with i.i.d. entries

• E ⊂ R2m, the graph of a generic isometry on Rm

In all cases need (at least) Ω(N2) random bits

Until a few years ago: explicit subspaces only for
m = O(

√
N) (Rudin 1960)



Randomness reduction

Goal: produce, “in polynomial time,” αN-dimensional

nearly Euclidean subspaces of `N1 while using

d� N2 random bits

Holy Grail: d = O(logN)

Indyk (2000) d = O(N log2N), small α, D = 1+ε

AM (2006), LS (2007) d = O(N), all α, D = D(α)

Methods: expander graphs etc.



State of the art before this work

Indyk (2007) no randomness, all D > 1, m = N1−o(1)

GLR (2008) no randomness, all α ∈ (0,1),

D less than any power of N

More precisely, D = (logN)O(log log logN)

GLW (2008) d = O(Nγ), all α ∈ (0,1), D = D(α, γ)

That is, sublinear randomness in the Kashin regime

Methods: expander graphs and much more.

This work

Sublinear randomness in both Kashin and FLM

regimes + simplicity



The result (for the FLM regime)

Let ε, γ ∈ (0,1). Given N ∈ N, assume that we have

at our disposal a sequence of random bits of length

Nγ. Then, in deterministic polynomial (in N) time,

we can generate numbers M > 0, m ≥ c(ε, γ)N and

E, an m-dimensional subspace of `N1 , for which

∀x ∈ E (1− ε)M‖x‖2 ≤ ‖x‖1 ≤ (1 + ε)M‖x‖2
with probability greater than 98%.

[slight cheating]



The result (for the Kashin regime)

Let γ, α ∈ (0,1). Given N ∈ N, assume that we

have at our disposal a sequence of random bits of

length Nγ. Then, in deterministic polynomial (in

N) time, we can generate numbers M > 0, m ≥ αN
and E, an m-dimensional subspace of `N1 , for which

∀x ∈ E D(γ, α)−1‖x‖2 ≤ N−1/2‖x‖1 ≤ ‖x‖2
with probability greater than 98%.



Overview of the proof

Fact: Tensor products of nearly Euclidean sub-

spaces are nearly Euclidean

Assume µ1, µ2 probability measures and E1 ⊂ L1(µ1),

E2 ⊂ L1(µ2) such that

(∗) ∀f ∈ Ek λ−1
k ‖x‖2 ≤ ‖f‖1 ≤ ‖f‖2

Then

(†) ∀F ∈ E1 ⊗ E2 (λ1λ2)−1‖F‖2 ≤ ‖F‖1 ≤ ‖F‖2

Beckner (1975), Figiel-Johnson (1980)



What is E1 ⊗ E2?

1. E1 ⊗ E2 ⊂ L2(µ1 ⊗ µ2) ⊂ L1(µ1 ⊗ µ2)

2. If (φi(s)), (ψj(t)) are orthonormal bases in E1

and E2, the products (φi(s)ψj(t)) are an orthonor-

mal basis in E1 ⊗ E2

The proof: apply (∗) in one variable, then in the

other (modulo some easy extra tricks)



Naive approach

Use Nγ = n2 random bits to produce a seed:

αn = αNγ/2-dimensional nearly Euclidean subspace

F ⊂ `n1 = `N
γ/2

1 (α close to 1, n = Nγ/2 � N)

Next, consider the 2/γ-fold tensor product to obtain

an (αNγ/2)2/γ = α2/γN-dimensional subspace of an

`1 space of dimension n2/γ = (Nγ/2)2/γ = N

The distortion is the original distortion to the power

2/γ.

This actually works in the Kashin regime!



In the Kashin regime

On the αn-dimensional subspace F ⊂ `n1 we have

D−1‖x‖2 ≤ n−1/2‖x‖1 ≤ ‖x‖2
or, with the normalized counting measure

D−1‖f‖2 ≤ ‖f‖1 ≤ ‖f‖2
and after tensorizing

D−2/γ‖F‖2 ≤ ‖F‖1 ≤ ‖F‖2

What about the FLM regime?



Milman’s version of Dvoretzky’s theorem

Consider the n-dimensional Euclidean space (over R
or C) endowed with the Euclidean norm |·| and some

other norm ‖·‖ such that, for some b > 0, ‖·‖ ≤ b|·|.
Denote M = E‖X‖, where X is a random variable

uniformly distributed on the unit Euclidean sphere.

Let ε > 0 and let m ≤ cε2(M/b)2n, where c > 0

is an appropriate (computable) universal constant.

Then, for most m-dimensional subspaces F we have

∀x ∈ F (1− ε)M |x| ≤ ‖x‖ ≤ (1 + ε)M |x|.



The case of `n1 (with normalized measure)

∀x ∈ F (1− ε)M‖x‖2 ≤ ‖x‖1 ≤ (1 + ε)M‖x‖2
with m = dim F = Ω(n)

The problem: M ∼
√

2/π ≈ 0.8 < 1

The lower estimate survives tensoring, but the up-

per does not, so after tensoring we can only have

the trivial upper estimate. The gap between the

lower and the upper estimates is (
√

2/π(1−ε))−2/γ,

which can not be close to 1 and is large if γ small



The remedy: replace `n1 with `
n/B
1 (`B2 )

Then, with the normalized counting measure,
‖x‖ ≤ ‖x‖2 for all x ∈ Rn (the trivial upper bound)

On the other hand, the mean of the norm on the
sphere is ≥

√
1− 1

B, so Dvoretzky’s theorem yields

(1− ε)
√

1− 1
B ‖x‖2 ≤ ‖x‖

on a large subspace.

Enough to choose B ≈ 1/ε, then

(1− ε)
√

1− 1
B = (1− ε)3/2

After tensorizing, the gap between the lower and
the upper estimates is (1− ε)3/γ



It remains to show that a tensorization trick

(∗)⇒ (†) works also for Hilbert-space-valued

functions.

This is less immediate than in the scalar case,

but also elementary. Results of this type go

back to Marcinkiewicz-Zygmund (1939)


