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Background

It has been known since 1970's that Ei\f contains
nearly Euclidean subspaces of dimension Q(N).

Proofs were probabilistic, hence non-constructive.

Consequence: results not-quite-suitable for subse-
quently discovered applications to high-dimensional
nearest neighbor search, error-correcting codes over
the reals, compressive sensing and other computa-
tional problems.



In this talk

A “low-tech” scheme which, for any 6 > 0, allows
to exhibit nearly Euclidean Q(N)-dimensional sub-
spaces of éjlv while using only N9 random bits.

This extends and complements (particularly) recent
work by Guruswami-Lee-Wigderson.

Characteristic features:

(1) simplicity (we use only tensor products) and

(2) yielding arbitrarily small distortions, or “almost
Euclidean’” subspaces.



From the 1970’s

There exists a subspace E ¢ RY of dimension m >
aN and a scaling constant S such that forall x € E

D zll2 < Sllzlly < lz]l2
Theorem 1 (FLM, 1977) VD > 1 Ja = a(D)
Theorem 2 (Kashin, 1977) Va <1 3D = D(«)
Explicit S, usually S = ©(N~1/2)

FLM usually written with D =1 + ¢
For the Kashin regime D~ 1||z|l < N=1/2|jz||; < ||z||»



Highly non-explicit subspaces
e £/ — a generic element of Gy 4,

e £ =range M, where M is a random N xm matrix
with i.i.d. entries

e £ = kerM, where M is a random (N —m) X N
matrix with i.i.d. entries

o I C R?™ the graph of a generic isometry on R™
In all cases need (at least) 2(N2) random bits

Until a few years ago: explicit subspaces only for
m = O(v/N) (Rudin 1960)



Randomness reduction

Goal: produce, “in polynomial time,” aN-dimensional
nearly Euclidean subspaces of 611\7 while using
d < N2 random bits

Holy Grail: d = O(log N)
Indyk (2000) d = O(N log2N), small o, D =1+¢
AM (2006), LS (2007) d = O(N), all a, D = D(«)

Methods: expander graphs etc.



State of the art before this work
Indyk (2007) no randomness, all D > 1, m = N1—o(1)

GLR (2008) no randomness, all a € (0,1),
D less than any power of N
More precisely, D = (log N)©(logloglog N)

GLW (2008) d =O(N7), all « € (0,1), D = D(a,7)
That is, sublinear randomness in the Kashin regime

Methods: expander graphs and much more.

T his work

Sublinear randomness in both Kashin and FLM
regimes -+ simplicity



The result (for the FLM regime)

Let e,v € (0,1). Given N € N, assume that we have
at our disposal a sequence of random bits of length
N7. Then, in deterministic polynomial (in N) time,
we can generate numbers M > 0, m > ¢(e,v)N and
E, an m-dimensional subspace of 611\[, for which

Ve E (1 —-e)Mlz|2 < |zll1 < (1+e)M||z[2
with probability greater than 98%.

[slight cheating]



The result (for the Kashin regime)

Let v,a € (0,1). Given N € N, assume that we
have at our disposal a sequence of random bits of
length N7. Then, in deterministic polynomial (in
N) time, we can generate numbers M > 0, m > aN
and E, an m-dimensional subspace of Ejlv, for which

Ve e B D(y,a) Yzllo < N7Y2||z]1 < |z

with probability greater than 98%.



Overview of the proof

Fact: Tensor products of nearly Euclidean sub-
spaces are nearly Euclidean

Assume p1, uo probability measures and E; C L1 (p1),
E> C L1(uo) such that

(*)  VYfeE, Nzl < Ifll < £l
Then

(D VEEE1®Ey (AA) HFll2 < ||F|l1 < |IF|2

Beckner (1975), Figiel-Johnson (1980)



What is 1 Q E>7?

1. BE1® Ey C Lo(p1 ® po) C Li(p1 ® po)

2. If (¢;(s)), (¥;(t)) are orthonormal bases in E;
and E», the products (¢;(s)v;(t)) are an orthonor-
mal basis in £ ® FE»

The proof: apply (%) in one variable, then in the
other (modulo some easy extra tricks)



Naive approach

Use N7 = n?2 random bits to produce a seed:
an = aN7V/2-dimensional nearly Euclidean subspace
FC= Ejl\”/Q (a close to 1, n = N7/2 < N)

Next, consider the 2 /~-fold tensor product to obtain
an (aN7/2)2/7 = o2/7 N-dimensional subspace of an

¢1 space of dimension n2/7 = (N7/2)2/Y = N

The distortion is the original distortion to the power
2/7.

This actually works in the Kashin regime!



In the Kashin regime

On the an-dimensional subspace F' C ¢} we have
D7zl < n 7 2zlly < lollo

or, with the normalized counting measure

DY fl2<IIflln < NIfll2

and after tensorizing

D2||F|ls < |F|l1 < ||F]l2

What about the FLM regime?



Milman’'s version of Dvoretzky's theorem

Consider the n-dimensional Euclidean space (over R
or C) endowed with the Euclidean norm |-| and some
other norm ||-|| such that, for some b > 0, ||-|| < b]-|.
Denote M = E||X]||, where X is a random variable
uniformly distributed on the unit Euclidean sphere.
Let ¢ > 0 and let m < ce2(M/b)%n, where ¢ > 0
is an appropriate (computable) universal constant.
Then, for most m-dimensional subspaces F' we have

Ve e F (1—e)Mlz| < |al| < (1 4 &) M]al.



The case of ¢} (with normalized measure)

Vee F' (1 —-e)Mlz|2 < ||lz]l1 < (1 +¢e)M|z|2
with m =dim F = Q(n)

The problem: M ~ /2/m =~ 0.8 < 1

The lower estimate survives tensoring, but the up-
per does not, so after tensoring we can only have
the trivial upper estimate. The gap between the
lower and the upper estimates is (\/2/7(1—5))_2/7,
which can not be close to 1 and is large if v small



The remedy: replace £} with E"/B

(¢5)

Then, with the normalized counting measure,
|z|| < ||x]|o for all x € R™ (the trivial upper bound)

On the other hand the mean of the norm on the
sphere is > /1 — —, so Dvoretzky's theorem vyields

(1 —e)y1—gllzll2 < =]

on a large subspace.
Enough to choose B =~ 1/¢, then

(1—-e)y/1—3%=(1-¢)3/?

After tensorizing, the gap between the lower and
the upper estimates is (1 —&)3/7



It remains to show that a tensorization trick

(*) = (1) works also for Hilbert-space-valued
functions.

This is less immediate than in the scalar case,
but also elementary. Results of this type go
back to Marcinkiewicz-Zygmund (1939)



