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Questions

Let F' be a set of mean-zero functions on (€2, u) and let o = (Xq, ..., Xy) be
independent, distributed according to p.

Set
PF ={ (fX)Y,: feF |

the coordinate projection of F' onto o.
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Questions 11

What is the structure of a typical
PF = { (FX)Y,: feF }?

If  : R — R is a reasonable function, is

sup
feF

o) - E¢<f>|

small, and if so, why?
e $(t) =t = Uniform law of large numbers

e $(t) =t* == Uniform CLT
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Example I

Let F' = {<:1:, > X € S”‘l}, {4 an isotropic measure on R". Set

Then,
PF ={((Xi,2), 1w € 57t = VNI($™Y),
and
1 - 2 2 2
rer N;f (Xi) —Ef ingg_l{ml — 1| = (%),

So why is (*) small?
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Example 11

If p is L-subgaussian, i.e.,
KX, 2) Ml < Liz]

then if z € ", with probability 1 — 2 exp(—c1e*N),
N

%Z@,@? 9

1=1

< E.

On the other hand, the “complexity” of " is exp(con).

A good estimate — when N > ¢3(¢)n, and the rate of convergence is

nn
N N
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Example I1I

What happens when p is isotropic, log-concave? Then

° H<X,ZC>H¢1 < L|x|, but H<X,:1:>H¢2 can be very large (~ v/n|x|).

e Concentration: since <X : :13>2 € Ly, 2 the degree of concentration of empir-
ical means is exp(—cy(e)V N).

e Complexity: exp(con).

One can expect a good estimate when N > c3(e)n”.

Proved by Kannan-Lovész—Simonovits (97) under more general assumptions.
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Example IV

Bourgain (98): it is enough to take N ~ ¢;(g)nlog® n.
Note:

is small NO'T because of individual concentra-

N 2
SUPpe gn-1 %Zi:1<Xi,:c> —1

tion.

Partial history of the progress:

Rudelson (99), Giannopoulos-Milman (00), Giannopoulos—Hartzoulaki—Tsolomitis
(05), Paouris (06), Guédon-Rudelson (07), Aubrun (07), M (08), Adamczak—
Litvak—Pajor-Tomczak-Jaegermann (10),

showing that N ~ cs(e)n is enough to ensure that
N

%Z@g, )~ 1

1=1

sup < €.

resn—1
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Observations

The proofs are restricted:
e Use linear structure of the problem.

e Use that the indexing set is entire sphere — based either on uniform estimates
on | ,c; Xi| or on a noncommutative Khintchine inequality.

o I[f T C S"~ ! there is no corresponding estimate for sup, . |% Zf\il <XZ-, t>2 — 1‘ :

e Even the [ALPT] estimate is off by log N for N > ¢(3)n!*™" for any 5 > 0
(rate estimate of ~ /% log(eN/n)).

What happens for a general class?
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General results

The complexity parameter I will use is

Vo(Fyaba) = meUPZQS/dezf () (%)

feF

If the Lo(p) and the 1o(u) metrics are equivalent (F is subgaussian) then

Yo( ', 1p) ~ Esup Gy
feFr

A simple chaining argument shows that

1 ey Yo(F, )
N;fm S N

And a similar estimate is not true for any 1), metric, for a < 2!

Sup
feF
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supser [ S SA(X) — EfY 27

Contraction (simple):
| X
<2 P(X) —Ef

1=1

Yol £, )
< sup ||l - 222%2)
feF v N

sup
feF

M-Pajor-Tomczak-Jaegermann (07):

Yo(F, o) N V5 (F, o)

< su : .
~ fe]ngsz \/N N

This is good enough for many geometric applications (e.g., low-M™* esti-

sup
fer

-
—Y X)) —Ef
v

mates for subgaussian operators, reconstruction using subgaussian measure-
ments, norms of subgaussian operators into £3’....), but it is NOT good enough

to handle log-concave operators.
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The main result

If F'is class of zero-mean functions then

Yo(F, o) N V5 (F, 1))

N
1 2 2
o g X;)—Ef7| <su : :

1=1

K sup
feFr

and a similar bound holds with high probability (though with a weaker proba-
bility estimate than in the subgaussian case).
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Main ideas of the proof

Step I: structural results on F':

with probability at least 1 — 2exp(—citlog N), for every I C {1,..., N} and
every f € F,

1/2
<Z f 2<X@’> 1 lF ) + dy /1T Vo™ (eN/1T1),

el

where dy,, = supep || f|l¢,, and this estimate is optimal.

In particular,

Py F Cct (72<F \1ba) By +dwaB¢gy> -
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Step 1

To put Step I in context, note that it Y € Ly, then with high probability, a

vector of independent copies of Y satisfies
(Y1, Y) € Y|y By <= Y7 S [V, log"*(eN/i).
In other words, P, F' has

1. A “peaky” part — originates from the complexity of F', has a short support

and is nicely bounded in £

2. A “regular” part —as if F' has a 1), envelope function.
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So, where do we stand?

This gives us a picture that is almost optimal:

N
1 2 V22<F7¢2>

su —E 1 X;) < :

w2 S e S T
and

1 1 <&
2 2

sup |— | X;)—Ef1 §Dsu — X;)—Ef]|.
feg N;f (1< (Xs) — Ef7 1 e 1D N@; f(Xi) —Ef

So, the process is small because:

e The LY norms of the “peaky” parts of functions in £ are uniformly small —
BUT THERE IS NO CONCENTRATION!!

e And for the bounded part, empirical means do concentrate around true means

at the correct rate.
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So, where do we stand 117

This is NOT enough to prove the result!

2
fYZ <F7 ¢2>
— il
?UZ]E}NZJC (1 (X)) S N
and
.
sup Zf T <oy (Xo) — Ef 21 ey | S Osup NZf(Xz)—Ef
feF el i—1

However, L1 # dy,, but rather
O ~ dy, log!'® (Ndil/fyS(F, o) +2) .

off by a log NV factor for “large” N - where one expects to see concentration.
Truncation methods cannot overcome this!!
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Step II - Highlights

Consider the Bernoulli process

SUpZ&“Z Z’ = Sup Zé“z

S UEPO

228+1

To preform chaining, at the s-th step one needs to control points.

Observe: with probability at least 1 — 2 exp(—t2/2),

In our case, v = (f(XZ))ZN:l, U = (g(Xi))Z-jil and

a; = (vF —u?) = (v — u)(vs + ).
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Step II - Highlights

e Use the “global information” on a monotone rearrangement of the coordinates
of (u+v)¥, from the previous step: u,v € P,F implying decomposition to

“short support” + bounded in 3, and “regular part”.
P,F C ct) (72(F, o) BY + d¢1B¢{V> |

e Obtain a similar — but “local” information on a monotone rearrangement
of 22 vectors (v; —u)y = ((f — ¢)(X3))Y, — that depends on || f — g||u,,
If = gll4, and on s.

1/2
e For each vector, select £ in S, af + /1 (ZZ rla )*) according to the

above information....

e Now, completing the chaining argument concludes the proof.
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Outcomes 1

e Many classical results from AGA hold for a random log-concave operator, with
the complexity parameter being ,( F, 1)5) rather than the Gaussian parameter

VnM*. For example, low-M* estimates, bounds on the norm ||| K ete.

e Question: How does one estimate v (S™ 1, 1h9(1)) for an isotropic, log-concave

measure [7

e If /i is the conditioning of u to a “large subset” of R", (e.g., to cy/nBY), then

(S () S V/nlogn.

If © is unconditional, then

12(S" ¥a(p) S V.
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Outcomes 11

This is enough to show that if N < exp(y/n), then with high u™¥-probability,

N
1 2 nlogn nlogn
AT Xia —1 < )
resnt | N ;< A N

and if 1 is unconditional and N < n®, then with high p"V-probability

In n
< T
~e N+N.

We should expect the subgaussian rate, at least when N < exp(y/n).

Sup
resn—1

1 N
NZ<X“$>2 —1

1=1
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Outcomes 111

The fact that

72(F7 %) 722<F7 ¢2>
igpl\f\\m TN N

1N
<2 P(X) —Ef

1=1

K sup
fer

is another good reason to study 75(F, 19) and extend the beautiful theory of
’}/Q(F, L2>

But, in fact, the complexity parameter we need is really better:

mfsupz | f = 7o fllr,s < mfsupZQs/QHf — s f || (1)

feF ", fer
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