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Regression Problem
(X,Y) arandom couple in S x T, T'C R
P distribution of (X,Y")

IT distribution of X (design distribution)

fi = argming,g, pE(Y — f(X))?
f+(X) = E(Y|X) regression function




Dictionary

H a class of functions h : S +— |—1, 1| equipped with a

o-algebra By and with a measure pu

For A € Li(u),




Li-penalization

(X1, Y1),...,(X,,Y,) iid. copies of (X,Y)

n

N = argmin, . [nl Z(Yj — (X)) + el 2 )

g=1

D C Li(p) is a bounded convex set

e > 0 regularization parameter




Lo-Error Bounds and Sparsity

Regression problem is called “sparse” with respect to 'H
if there exists a “sparse” function A € D (i.e., A is
supported in a “small” subset of H) such that the L,

approximation error || fx — full7, ) is “small”.

Basic Question. Suppose the regression problem is

“sparse”. Does it imply that A€ is “approximately

sparse” and || f5. — fill7, ) is “small”?




Finite Dictionaries
H:=A{hi,...,hn}
() =1, j=1,...,N
A= (A,...,AN)

Mz = [[Alle

LASSO (Tibshirani (1996), Chen, Donoho and
Saunders (1996), ...):

\° 1= argmin, [nl > (V=X +elMle |, D C RY.

g=1




Sparse Recovery: LASSO and related methods

Connections to High Dimensional Geometry:
Donoho (2004—-), Donoho and Tanner (2005-),
Candes and Tao (2006-), ...

Methods of Asymptotic Geometric Analysis:
Rudelson and Versynin (2005—), Mendelson,

Pajor and Tomczak-Jaegermann (2007-), ...

Sparsity Oracle Inequalities: Bunea, Tsybakov
and Wegkamp (2007—-), van de Geer (2008-),
Koltchinskii (2008-)




Finite Dictionaries: Geometric Characteristics
N

Gram matrix K := ((hi,hj>L2(H)>

i,=1
For w € RY,

C’w::{ueRN: Z ui| < A(w, u)y }

j¢supp(w)

Define the alignment coefficient of w as

sup (w, u)y,.
[ full Ly () <L,u€Cw




Bounds on a(w)
o a(w) < ||K~12wl|y,, w e Im(K1/?)

Restricted Isometry Constant 0, : the smallest
0 € (0,1) such that for all J C {1,..., N} with

card(J) = d, the spectrum of the Gram matrix

((hi, hj>L2(H)) belongs to the interval [1 — 9§, 1 + §].

1,J€J

e For d = card(supp(w)),

sy« — Clwle,  _ Clulvd
1= Ol v Dosa ~ 1= C([lw]len vV 130




Theorem 1 Oracle Inequality. There exist constants
C, D > 0 such that, for all A € D with card(supp)) = d,

for alle > D d“%]\a for allt >0 and
tnn =1+ log N 4 4loglog, n + 2log 2, with probability at

least 1 — et

| £5e = Folltaan < (2050 = fullfom +€2)

d+ log N + tn,N]
- .

C [aQ(sign(A))SQ \/




Let L C Lo(IT), d = dim(L),

Ur(z) = sup |h(x)] and U(L) := ||Ug||

heL,|[h]l Ly am <1

Note that

() [|UL| 2oy = Vd

(b) If there exists an orthonormal basis of L C Lo(II)

consisting of uniformly bounded functions, then

U(L) < Vd.




Theorem 2 There exist constants C, D > 0 such that,
for all N € D, for all L C Lo(IT) with d := dim(L), for all

t >0 andt, :=t+4loglog,n + 2log 2, for all
e>D loiN, the following bounds hold with probability
t

at least 1 — e~ " :

| Fe = Felldaam < |20 = £olldm + €2,

& =0 [a2(sign()\))62 \/ d+ t \/

n

logN\ ;U(L)log N
Prih; .
jeﬁﬂlﬁﬁi\)” LRyl Laomy ) — \ - ]




Under Restricted Isometry Condition:

Suppose, for a small enough ¢ > 0, 035 < c¢. Then, taking
d := card(supp(}))), L :=1s.(h; : j € supp(N)), we get

a(sign(\)) < CVd and U(L) < CV4d,

implying

dlog N + tn}

I £5e = Folldan < 215 = fulldpm + C—2

and, if f, = f\,, card(supp(\.)) = d,

dlogNthn}

n

A= M2, < CfIx = Al +




General Dictionaries: Approximation Error

Bounds

AT = argminyep ||| fx — fell Ly + Mz |

Approximation Error: || fi — fill2,m)




Gram Operators and Alignment Coefficients

Let K : Lo(p) — Lo(p) denote the Gram operator of
the dictionary H :

(Ku)(h) = / (h, 9) 1 yu(9)a(dg).

H

For w € Lo(p), let

CwIZ{U3H'—>R3/H

Define the alignment coeflicient of w as

uldp < 4<w,u>L2<u>}-

\supp(w)

sup (w, u)LQ( ).




For all w € Im(K1/?),
a(w) < K20 1,00,

For A € D, denote

O|A| = {w :H — [—1,1] : w(h) = sign(A(h)), h € Supp()\)}




Theorem 3 There exists a constant C' > 0 such that for
all € > 0, for all A € D and for all w € 0|)|,

wm«¢wa@+e/‘ N|dp <
H\supp(w)

1= il + (e’

Moreover,

2 . 2
e = £l < _int N = £t

deﬂh—ﬁhmﬁ%ﬂﬂwgl




Sobolev Norms and Sparsity
H = {h(t,-) t e G}, G C RY

Suppose
a(w) < Cllw||wzeq)




Sparse Spikes

Suppose A € D, \ = Z;lzl Aj, where \; € Li(u),
supp(A;) C U; C G, where U;,j = 1,...,d are disjoint
balls.

Let w = 2521 w; € 0|A|, where w; € W»%(G) and

supp(w,),j = 1,...,d are disjoint. Then

d 1/2
o(w) < (X sl )
j=1

implying a(w) < const v/d.




Example: Fourier Dictionary

S = R4

H = {Cos<t, SRS G}

G C RY bounded open subset, G = —G

w, 11 absolutely continuous measures with densities m, p,
m(t) = m(—t)

It

p(z) = L(1 + [=[*)7,

a(w) < Clwllyeags.




Example: Location Dictionary
S = T¢
{h(- —t):t € Td}

II probability measure with density p, p bounded away

from 0O

1w Haar measure in T¢

It

o = L1+ nf*) =72, n € 2,

a(w) < Cllw||wz.a(ra).




Example: Decision Stumps
S = 0,1]
H = {[[07,5] — [(t,l] 1€ [O, 1]}

IT absolutely continuous measure in |0, 1| with density p

that is bounded away from 0

a(w) < Ol




Weakly Correlated Partitions and Sparsity
{H;, 7=1,..., N} a measurable partition of H
,Cj = C.l.S.(Hj)

covrr(h, g)
on(h)on(g)

on(g) := cov(g,9), pu(h,g) =

Restricted Isometry Constant o0, : the smallest
0 € (0,1) such that for all J C {1,..., N} with

card(J) =d and all h; € L;, 7 € J, the spectrum of the

correlation matrix (pn(hi, hj)) belongs to the
ijet

interval [1 — 9,1 4 4].




Let Kj : LQ(H]',ILL) —> LQ(Hj,,LL),

(Ku)(h) = | cown(hg)ulghutdg). h € Py

Proposition 1 For all J C {1,..., N} with d := card(J)
and all w =) . ;w; with w; € Im(K;ﬂ) and

L —1/2
B = I?EaJXHKj ijLQ(Hj>M)

the following bound holds with some numerical constant
C'>0:

C'B+vd
< .
a(w) < 7 CBéa,




Random Error Bounds and Oracle Inequalities

Under some complexity assumptions on the
dictionary H, we will provide upper bounds on

I fie = Iall7, n) for an arbitrary function A € D and

i = angamingp |7 (%~ ACG) + el |

g=1




Complexity Assumptions on the Dictionary

Suppose there exists a function H(u) > 0,u > 0,
H(u) — oo as u — 0, H regularly varying of exponent
« € |0,2) and such that the following condition on the

random covering numbers holds
log N(H; Lo(11,);u) < H(u), u> 0 a.s.,

or the following condition on the bracketing numbers

holds

log N| | (H; La(TT);u) < H(u), u > 0.




Approximation by Finite Dimensional Subspaces
L C Ly(IT) a linear subspace, dim(L) < 400
For H' C 'H,

p(H'; L) := sup || Prrh|r,am
heH/




Theorem 4 There exist constants C, D > 0 such that
for all N € D, w € 0|\|, L C Lo(IT) with d := dim(L) and
p = p(supp(w); L), for allt > 0 and

t, :=t+4loglog,n + 2log 2, for all ¢ > D\/%\@7 the

t

following bounds hold with probability at least 1 — e " :

1 — Fllm + / 5dp <
H\supp(w)




Moreover, with the same probability, the following

sparsity oracle inequality holds:

1Fse = Follay < (13 = el + 155 = Fllaméa + €3],

where

d+1t,
oV

n n

Hip/ V) | U(L)H(p/@] |




Regularized Boosting
The problem

n

5\8 = argmin)\e]@ [nl Z(Yy — f)\(X]))2 —l_ €H)\HLl(/L)

j=1
can be viewed as a regularized boosting.

Blanchard, Lugosi and Vayatis (2003) obtained

oracle inequalities for regularized boosting (for more
1 V42

general losses than quadratic) with error rate n™ 2 v+,

where V is the VC-dimension of the base class H. In the
case of N-dimensional decision stumps, V' = [2log,(2N)].




An Additive Model: High-Dimensional Decision
Stumps

S :=10,1]"
H; = {hi‘j) ¢ € [0, 1]}

W (2) := Tog(z;) — Ly (z;), ¢ = (21,...,x5) € S
H = U;V:1 H,;

1t “Lebesgue measure”




A= Zj\le Aj, supp(A;) C H;
falz) =300 fa ()

Nl Lo = 511 v

L+-penalization is equivalent to

(fise o f3) =

N

arguin 17 SV~ (et ) 062+ 5 D v |




Sparsity in Additive Models

Let J C {1,...,N}, d:= card(J) and let A, be the set of

sparse functions A such that

(8) A=2_ic;Aj, supp(A;) CH;

(b) there exist w; € 9|\;|, j € J, |Jwj|lweap < L, Lis a

constant.

Suppose also that the spaces £; = c.l.s.(H;) are “weakly

correlated” (e.g., d34 is bounded by a small constant).




Let & := Dy /8%

Then, for all A € A,, with probability at least 1 — e,

|5 _f*H%Q(H) < {HfA—f*H%Q(H)+§an/\—f*HL2(H)+§7ﬂa

where

e . g[(dlog(nd))l/3 | dlog N+t + 4log(2'/* log, n)]
n - NOYE

n




Sparse Recovery in Convex Hulls: Entropy

Penalization

(X1, Y1), ..., (X,,Y,) ii.d. copies of (X,Y)

A

A\ := argmin, [n1 Z(Y] — A(X)* + 8/ Alog )\d,u]

j=1 T

H

D is a convex set of probability densities with respect to u

e > 0 regularization parameter




Symmetrized Kullback-Leibler Distance

A
K(M|As) = / M log<>\—1>d,u
H 2

K()\l, )\2) = K()\l’)\Q) + K()\Q’)\l)
For A € D,
A(A) = / Adup, A CH.
A




Theorem 5 Approximation Error. There exists a
constant C' > 0 such that for all ¢ > 0 and for all A € D

| fae = fill oy + K (A% A) <

1= £ + a*og Ne?|

Moreover,

2 . 2
e = £l < ot 15 = £+

Caflog Vel = sy + Ca(log Ve




In addition, for all’ H' C 'H

ACHAHY) < 2A(H\ M) + [Hf/\—fHLQ +a(log N)e ]

and

A\ ) < 205 (H\H') + [Hf/\—fHLQ +a*(log \)e ]




Theorem 6 Random Error. There exist constants
C, D > 0 such that for all H' C 'H, L C Lo(II) with
d:=dim(L) and p := p(H'; L), for all t > 0 and

t, :=t+4loglog,n + 2log 2, for all ¢ > D\/%\@7 the

—t .

following bounds hold with probability at least 1 — e

n

‘e \¢ d+ty
1 — Frellan + eK (38, X°) < 0[ \/

"y e




In addition,

AN (H\H') < C[As(H\H')\/ o \/




Moreover, for all A € D, with the same probability, the

following sparsity oracle inequality holds

fie = Fllay < (15 = £l + s = fellaaén +€2),

where

&2 .=C [aQ(log Ne*\/ 4+t \/

n

n

p\/ BN\ s \/ /D) UGS




