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History

• Johnson – Schechtman ’82 proved the existence of a
random embedding for non-Euclidean spaces :

• Let 1 < p < 2. Then for any ε > 0

`n
p

1+ε
↪→ `N

1 , N = C(p, ε)n.

• More precisely, they gave an explicit definition of a random
operator, T : `n

p → `N
1 , and proved that :

1− ε ≤ |Tα|1 ≤ 1 + ε , ∀α ∈ Sn−1
p .
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1 ≤ p < 2 p = 2
almost-isometric JS ’82 FLM ’77

ε−embed
isomorphic JS ’03

with NZ ’01 K ’77
N = (1 + η)n

• Naor – Zvavitch ’01 provided an explicit definition of a
random operator which satisfies the desired property :

`n
p

C
↪→ `N

1 , N = (1 + η)n,

where C = (c log n)(1−1/p)(1+1/η).



History

1 ≤ p < 2 p = 2
almost-isometric JS ’82 FLM ’77

ε−embed P ’83
isomorphic JS ’03

with NZ ’01 K ’77
N = (1 + η)n

• Pisier ’83 extended this result to the case of a general
finite normed space E of dimension N :

`n
p

1+ε
↪→ E,

where n depends only on ε and on the stable-type p
constant of E.
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History

1 ≤ p < 2 p = 2
almost-isometric JS ’82 FLM ’77

ε−embed P ’83
isomorphic JS ’03

with NZ ’01 K ’77
N = (1 + η)n

• Johnson – Schechtman ’82 used a discretization method
to approximate p−stable random variables.

• Naor – Zvavitch ’01 used truncated p−stable random
variables.

• Pisier ’83 used a completely different approach.



Definitions

• Let (ei)1≤i≤N be the canonical basis of RN .

• Let Y be a random vector taking the values {±e1, . . . ,±eN},
with probability 1

2N .

• We define the following operator :

T : `n
p → `N

r

α = (α1, . . . , αn) 7→
σp,r

N1/q

n∑
i=1

αi

∑
j≥1

1
j1/p

Yi,j,

where 1
r = 1

p + 1
q , and (Yi,j) are independent copies of Y.
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Theorem [Random embedding of `n
p into `N

r ]

Let 0 < r < p < 2 and 2p
p+2 ≤ r ≤ 1.

For any η > 0, and any integers n, N = (1 + η)n we have

P
{
∀α ∈ Sn−1

p , c(p, r)1/η ≤ |Tα|r ≤ C(p, r)
}
≥ 1− c exp(−cp,rn),

where c(p, r),C(p, r), cp,r depend only on p and r,
and c is an absolute constant.

Remark

This operator, T, is a particular instance of the operators
defined by Pisier ’83 for the almost-isometric result
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Stable random variables

• A real-valued symmetric r.v. θ is called standard p−stable :

E exp(itθ) = exp(−|t|p) , ∀t ∈ Rn.

• Why "stable" ? ∑
i αiθi

D
= (
∑

i |αi|p)1/p · θ1,

where αi ∈ R, θi is standard p− stable r.v., and for any
finite sequence.

• In particular, it suggests that `n
p is isometric to a subspace

of L1 :
`n

p ↪→ L1.
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Stable random variables

• Let (λi)i be independent random variables with common
exponential distribution P{λi > t} = exp(−t), t ≥ 0.

• Set Γj =
∑j

i=1 λi, for j ≥ 1.

• We recall that Y is the random vector taking the values
{±e1, . . . ,±eN}, with probability 1

2N .

• By a result of LePage – Woodroofe – Zinn ’81 :

Θ =
∑
j≥1

Γ
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p . We have

P{
∣∣|Tα|1 − |α|p∣∣ ≥ t} ≤ 2 exp(−cpNtq),

note that |α|p = 1.

• It means
1− t ≤ |Tα|1 ≤ 1 + t

t = ε > 0 , N = Cn.
• But

|Tα|1 ≤ 1 + t , ∀t > 0.

• Large deviation is useful for almost-isometric results and
for obtaining upper bounds in general.
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Ideas behind this result

P{
∣∣|Tα|1 − |α|p∣∣ ≥ t} ≤ 2 exp(−cpNtq).

• In our situation : N = (1 + η)n and t ∈ (0, 1).

• We may assume in addition that α ∈ Sn−1
p has a small

support : | supp(α)| ≤ δn.
Cn X n

(1 + η)n X δn

• It means that for such vectors with δ ' 1
C , we may use this

large deviation inequality again, and have a lower bound.
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Division of Sn−1
p (following Rudelson-Vershynin)

• Let δ, ρ ∈ (0, 1).

• We define
Sparse(δ) = {α ∈ `n

p : | supp(α)| ≤ δn}.

• We partition Sn−1
p into two sets with respect to Sparse(δ)

and ρ.

• We define the following sets :

AS(δ, ρ) = {α ∈ Sn−1
p : distp(α,Sparse(δ)) ≤ ρ},

NAS(δ, ρ) = Sn−1
p \ AS(δ, ρ),

where AS(δ, ρ) is the ρ-enlargement (for the `n
p metric) of

the set of sparse vectors intersected with Sn−1
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Small ball estimate

• For α ∈ NAS(δ, ρ)

P{|Tα|1 ≤ t} ≤ (cpt)N , t > 0.

• It means t ≤ |Tα|1 w.h.p

• Basic properties of NAS vector :

∃I ⊆ {1, . . . , n} such that |I| ≥ 1
2δnρp and ∀k ∈ I we have

ρ

(2n)1/p
≤ |αk| ≤

1
(δn)1/p
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Theorem [Multi-dimensional Esseen type inequality]

Let X be a random vector in RN , such that the function

ξ 7→ E exp(i〈ξ,X〉)

belongs to L1(RN).

Then for any compact star-shape K ⊂ RN , for any t > 0

P {‖X‖K ≤ t} ≤ |K|
( t

2π

)N
∫
RN
|E exp (i〈ξ,X〉)| dξ.

Remarks

• We generalize the classical Esseen inequality to the
multi-dimensional case, and to an arbitrary norm.

• The proof is an application of Fourier analysis.
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Application

• For α ∈ NAS(δ, ρ) P{
∣∣|Tα|1∣∣ ≤ t} ≤ (cpt)N .

• Recall : P {‖X‖K ≤ t} ≤ |K|
( t

2π

)N ∫
RN |E exp (i〈ξ,X〉)| dξ.

Set K = N · BN
1 and X = N · Tα. Then

|Tα|1 = ‖X‖K .

• Lemma : For any vector α ∈ NAS(δ, ρ), the function

ξ 7→ E exp(i N 〈ξ,Tα〉), belongs to L1(RN). Moreover,∫
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