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Introduction

Outline

@ Setting
@ /7 recovery: Overview

@ /1 minimization and geometry of polytopes.
o Restricted Isometry Property.
o Exact support recovery using LASSO.

@ Contributions.

@ Sketch of proof of the main result.



Introduction

Setting

Noisy Gaussian measurements of sparse vectors

@ Linear random measurements y = Ax + w € R”,
x € RN, A= (aj)icnj<n € R™N, 2 ~ N(0,1/n) and iid,
w € R" and [|w|, <e.

(]

x is sparse < ||x]jo < N is small.

(]

x is weakly sparse (compressible).

Estimate x from y when n < N, ill-posed inverse problem.

(]

Estimate the support / of x from y.

(]

Stability to noise and robusteness to compressibility.




Introduction

Sparse Recovery Algorithms

A large choice of methods

@ Greedy methods : Matching Pursuit, OMP, Cosamp, MCA ...

@ Non convex optimization :

min ||x||, s.t. y—Ax€ C, p€(0,1),C = {0} or C = By,(0)
x€RN

@ Convex optimization :
iy IIxl; s.t. y—AxeC,
o C = {0} : exact ¢; minimization (Basis Pursuit).

o C={z s.t. |Az|| <7} : Dantzig Selector.
o C =By,(0,r) : LASSO/BPDN equivalent to

1 2
min > lly = Ax| + Il (LASSO)



State of the art

Noiseless observations : Geometry of centrosymmetric polytopes

Donoho [04], Donoho and Tanner [05-07]

@ ldentifiability is a geometrical property.

=@i @

—eq

@ x is identifiable if and only if 2% € AA(By,).

IIxTx
@ For x e RN | = {i, x; # 0}, f, = Conv.Hull(sign (x;) a;)ic/-
@ x is identifiable < f, is an exterior facet of A(By,).




State of the art

The geometrical viewpoint

Counting k-faces of centro-symmetric polytopes [Donoho 04]

@ If Ais gaussian or USE, there is a function py(.) such that
w.o.p. on A, all sparse x with

IIxllo < pn(n/N)n are ¢1 — identifiable. (1)

@ If Ais gaussian or USE, x with randomly chosen support and
sign, there is pg(.) such that w.o.p. on A, most sparse x with

lIxllo < pr(n/N)n are ¢1 — identifiable. (2)

@ No stability to noise.

@ Sharp phase transition :

pn(1/2) ~ 0.089, pr(1/2) ~ 0.38
pn(1/4) ~ 0.065, pr(1/4) ~ 0.25.




State of the art

Restricted Isometry Property

Definition of RIP

@ For A e R™N, (5”‘”‘ and 63'* are the smallest real numbers in
(0,1) such that for any x, ||x\|0 <SS,

(108" Ix]1Z < | AX[I3 < (1 + 85)]Ix]3.

Theorem [Fourcart and Lai 08]

If (4v/2 — 3)65U" 4 072% < 4(v2 — 1), (RIPFL)

@ All vectors x such that ||x||p < S are identifiable.
@ Stability to noise, consistency if x is only compressible.

@ There exist Cyp and C; depending on 55‘5"‘ and 658 such that
the solution x* of (LASSO) satisfies

Ix* = xoll, < GoS™Y2 ||x — xs|; + Cie.



State of the art

Bounds for gaussian matrices, N = 4000, n = 1000

prip(L/HP  pn(1/4)P pr(1/4)P
1

0.9

08

0.7]

0.6

0.5]

0.4]

? 50 100 150 200 ﬂr 300 350 400

@ If Ais a Gaussian matrix with iid entries, then w.o.p. A
satisfies (RIPFL) for S = O (W)
@ For n/N =}, (RIPFL) applies up to S = 0.0027n [Blanchard

et al. 09].
@ but (RIPFL) doesn't apply if S > 0.005n. [D. et al 09].



State of the art

Exact Support and sign pattern recovery with LASSO

Theorem [Candes Plan 07]

Let A€ M,, ~(R) which columned are normed and such that
(A) < (S, Let w € R” such that w(i) ~ N'(0,5). Let xo € RV
and T = minje; |xo(7)]-
For sufficiently small constant ¢y
@ if xg is randomly chosen among vectors such that

| < ”Aﬁ%%, (support : uniform and sign : Rademacher).

o if T>85\/2'“N and 7—25‘/2'"’\’

the solution x* of

.1 2
erIIRnNE lly = Axllz + v [Ix]ly (LASSO)

satisfies Supp(x*) = Supp(xo) and sign (x*) = sign (xp) w.0.p.



Contributions

Contibutions

Results for Gaussian matrices

@ Refinement of Theorem [Candes Plan 07] for Gaussian
matrices
@ without any prior on the distribution of xy and w.
@ with explicit and optimal constants.

@ robustness to compressibility.

@ Without any hypothesis on —

o Supp(x*) is controlled.
@ /5 consistency results.

@ Explicit bounds may be better that the ones derived from RIP.

@ Justify debiasing.




Contributions

Support and sign pattern identification

Theorem 1

Let (a,b) € (0, 1)2, N > n, y = Axo + w where A is a Gaussian
matrix and ||w||, <

o If|xollg =5 < 2 N

S

2In N
T - N and if T> T—a m

then w.o.p. Supp(x ) = Supp(xo) and sign (x*) = sign (xo) and

a
Ix* = x0lla < ey 72 +1)

9 ify=




Contributions

Support inclusion

Theorem 2

Let (a,b) € (0, 1)2, N > n, y = Axo + w where A is a Gaussian
matrix and ||w||, <

o Iflxllo=S< Tww
o ify = £/l

then w.o.p Supp(x*) C Supp(xp) and

a
1" = xoll, < &(y/ 1.t 1)




Contributions

Numerical experiments

Example with a =0.95, n=1 and N = 4000
b=0.7 08 09 1
N K

@ Rates of exact
support recovery
versus sparsity
level.
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Sketch of proof

Sketch of proof of Theorem 1

@ For a vector x, let's denote [ its support,

@ A the associated active matrix and X the restriction of x to /.
@ We have Ax = A/X.

@ Let's denote PA/J_ the orthogonal projection on V- with
V' = Span{(a;)ies}-

@ If Ais gaussian, ¥(y,7) € R" x R**, the solution x* of

1
min 3 lly = Ax|3 + ¥ l1xlly (LASSO)

@ is unique with probability 1 and
o (AfA)) associated to x* is inversible with probability 1.




Sketch of proof

Sketch of proof of Theorem 1

A necessary condition

o If Supp(x*) = I = Supp(xp) and sign (x*) = sign (xg) then
the solution of (LASSO) is defined by

x* =% — v(ALA)) " Lsign (Xg) + (ALA)) LAlw. (3)

~

A sufficient condition

o Let's denote T = min;¢ |xo(f)], if
(A4 Lsien (55) — (ALA) Afw]|, < T (SC1)
and

[(aj, yAI(A A1) 'sign (Xo0) — Par (W) <7, Vi ¢ 1 (SC2)

the vector x* defined by (3) is the solution of (LASSO).

\



Sketch of proof

Sketch of proof of Theorem 1

: v |, < T

o If /] < 22

° ||(A,tA,)*1sign (XO)HDQ < 1+ 3Vab < 4 with w.o.p

@ Properties of Wishart matrices (signs of coefficients and
spectral norm).

° ||(AfA,)*1AfWHDQ < 2&/% with w.o.p.

@ Rotation Invariance of (A{A;)7*Af, x? concentration lemmas,
and spectral norm of Wishart matrices.

0 If v < % and € < %\/ﬁ then condition (SC1) applies :

|7 (AjA) " sign (%5) — (AJA) AW < T




Sketch of proof

Sketch of proof of Theorem 1

@ If u and a; are independent, then (aj, u) ~ N(0, %)

o If j ¢ 1, u=~A(AlA) Lsign (Xo) — PAIJ_(W) and a; are
independent.

@ It follows that w.o.p.

2In N
max [(aj, u) < /== llulz (4)

o |lull3 < 72 || AI(ATA) sign (x5)||5 + €2 using Pythagore !!!
o ||A/(AA)) tsign (xo H2 is bounded using a classical Wishart

concentration lemma.

o It follows that if |/| < ab” and v > (;;3,2,", condition SC2
applies.




Conclusions

Take Away Messages

Conclusions

@ Optimal bounds for exact support recovery with Gaussian
measurements.

@ Partial support recovery if % is too small.

@ New bounds for ¢ recovery different from RIP.

@ Robustness to noise and compressibility without RIP.

Going Further

@ Extension to subgaussain matrices (USE and Bernoulli)

@ Paper available online very soon.
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