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The cube (in this talk) is Q = {−1,1}n equipped

with normalised counting measure.

A Boolean function f on Q is a function taking

the values 1 and −1.

The Noise sensitivity of f measures how likely

it is that the value of f will switch if we move

our position in the cube a small amount.

So you pick a random corner X and then switch

a randomly chosen εn of its coordinates to get

a new point Y , and ask what is the probability

that

f(X) 6= f(Y )?



The picture shows the “most” noise sensitive

function: if you move one step you always change

the value of f .

This function is a character on the group Q: the

highest order character X 7→ ∏

Xi.

The least noise sensitive function is the constant

function: the principal character. It makes more

sense to look at functions with

P(f(X) = 1) = P(f(X) = −1) = 1/2.

Functions that put more weight on higher order

characters, tend to be more noise sensitive.



Noise sensitivity is closely related to the study

of the influences of variables on Boolean func-

tions: the influence of the ith variable is the

chance that flipping this variable will change f .

So the sensitivity with ε = 1
n is the average in-

fluence.

The famous result of Kahn, Kalai and Linial

states that for 50:50 functions, there must be a

variable with influence at least

logn

n

even though the average influence can be 1/n.



Friedgut and Bourgain showed that if only few

variables influence f then f is approximately a

low order polynomial.

Talagrand estimates from below the expectation

of the square root of the number of directions

that flip f : so the reason that the average influ-

ence cannot be too small is not just a few bad

points.

As for ε = 1/n, lower bounds on noise sensitivity

don’t tell us much: the focus on noise sensitivity

is on upper estimates for functions of specific

types: for example the sign of a linear function.



If you cut with the function X 7→ X1 then you

have ε chance that your noisy coordinates in-

clude the first: so the sensitivity is ε.

The conjecture is that the worst direction is

the main diagonal. The coordinates you switch

have a reasonable chance of helping you by
√
εn

so your point needs to be this close to having

the same number of + and − coordinates. The

chance of this is about
√
ε.



Peres proved a bound of order
√
ε. The sharp

constant remains open.

If f is the indicator of the intersection of k half-

spaces the sensitivity is at most
√
εk but the

conjecture is the “usual” one:
√
ε
√

log k.

A useful model for this problem is that of Gaus-

sian noise sensitivity or Gaussian surface area.

If f is a Boolean function on R
n and X and Y

are IID standard Gaussians then the GNS(ε) is

P(f(X) 6= f(
√

1 − εX +
√
εY )).



This is closely related to the Gaussian surface

area of the set C where f = 1:

∫

∂C
g

where g is the standard Gaussian density.

If C has a smooth enough boundary the Gaus-

sian surface area is

lim
ε→0

GNS(ε)√
ε

.

So for the indicators of half-spaces we have the

right dependence,
√
ε, for GNS.



Klivans, O’Donnell and Servedio use estimates

for Gaussian surface area to measure algorithms

for learning sets of different types and made a

conjecture recently settled by D. Kane.

Theorem 1 (Ball). If C is convex then its GSA

is at most 4n1/4.

Theorem 2 (Nazarov). If C is the intersection

of k half-spaces then its GSA is at most
√

log k.

Theorem 3 (Kane). The GSA of ellipsoids is

uniformly bounded.

Nazarov also showed that the n1/4 bound is

sharp apart from the constant: for random sets

with exp(
√
n) facets.



To begin with, let’s check the GSA of Euclidean

balls.

The ball of radius r has GSA

nrn−1πn/2

Γ(n/2 + 1)

e−r
2/2

(
√

2π)n

whose maximum occurs at r =
√
n− 1 where

the value is about 1√
π
.

It is also easy to check that the GSA for the

(correctly sized) cube is
√

logn so Nazarov’s es-

timate is sharp for this value of k as well.



Assume that 0 is inside C and consider a piece

S of the surface of C.

S

r

S

S'



The Gaussian volume of the shaded cylinder sit-

ting above the surface is the product of the

(n − 1)-dimensional Gaussian volume of S′ and

the 1-dimensional Gaussian measure of the half-

infinite interval.

This is

GSA(S)er
2/2

∫ ∞

r
e−x

2/2 dx ≥ GSA(S)
1

1 + r
.

Integrating over the surface of C we get

1 − γ(C) ≥
∫

∂C

1

1 + r(y)
g(y)

where r(y) is the distance of the tangent plane

at y, from 0.

From this we get an estimate when C is bounded

by k hyperplanes.



1 − γ(C) ≥
∫

∂C

1

1 + r(y)
g(y)

Hyperplanes at distance more than
√

2 log k from

the origin have Gaussian area at most 1/k and

there are at most k of them.

For all points y on facets at distance less than

√
2 log k,

1

1 + r(y)
≥ 1√

2 log k

so these contribute a GSA of at most
√

2 log k.



If we look at Nazarov’s argument applied to a

ball of radius about
√
n (or a polytopal approxi-

mation to it) we have r(y) =
√
n for all y on the

surface and so it looks as though we will get

GSA roughly
√
n.

The gaps don’t get small.



To get an estimate of n1/4 we use an argument

motivated by Cauchy’s integral formula for sur-

face area

|∂C| = cn

∫

Sn−1
|PθC| dσ.

Each projection is covered twice by the surface.

We try to find a measure µ on Rn−1 so that for

each small piece of surface S

GSA(S) =
∫

Sn−1
µ(PθC) dσ.

Then GSA(C) ≤ 2µ(Rn−1).



The measure should have density F (x) = f(|x|)

and then for a small piece of surface centred at

rφ with unit normal ψ the identity we want is

1√
2π
e−r

2/2 =
∫

Sn−1
f

(

r
√

1 − 〈θ, φ〉2
)

|〈θ, ψ〉| dσ.

This can’t be true because of the the two angles

φ and ψ. But we only need an inequality.

As long as f decreases on [0,∞) the right side

is minimised when φ and ψ are orthogonal and

in this case we get

2

π

∫ π/2

0
f(r sin θ) sinn−1 θ dθ.

So we want

1√
2π
e−r

2/2 =
2

π

∫ π/2

0
f(r sin θ) sinn−1 θ dθ.



g̃(r) =
2

π

∫ π/2

0
f(r sin θ) sinn−1 θ dθ.

The operator

f 7→ 2

π

∫ π/2

0
f(. sin θ) sinn−1 θ dθ

has polynomials as eigenfunctions so we can in-

vert in a simple way.

∫ t

0
f(r)rn−2 dr = tn−1

∫ π/2

0
g̃(t sin θ) sinn−2 θ dθ.

Now analyse f .



Nazarov showed that n1/4 is sharp. The pre-

ceding argument shows that if we want near

equality, the pieces of surface should have nor-

mal vectors almost perpendicular to their radius

vectors.

The Gaussian measure lies at radius
√
n so we

want most of the surface to be at this distance

from 0.

Nazarov’s other argument shows that the bound-

ing hyperplanes should be n1/4 from 0.

These conditions are compatible.



Kane’s argument estimates the noise sensitivity

of an ellipsoid (or a solid whose surface is given

by a polynomial of degree at most d).

f is the sign of a polynomial of degree d. X and

Y are IID standard Gaussians and we want

p = P(f(X) 6= f(cos θ X + sin θ Y ))

(where cos θ =
√

1 − ε).

This is the same as

P (f(cos θ X + sin θ Y ) 6= f(cos 2θ X + sin2θ Y ))

and

P (f(cos 2θ X + sin2θ Y ) 6= f(cos 3θ X + sin3θ Y ))

and so on.



So

np = E

(

1(f(Z0) 6=f(Zθ))
+ · · · + 1(f(Z(n−1)θ) 6=f(Znθ))

)

.

The latter is at most the expectation of the

number of sign changes of f(Zφ) on the interval

[0, nθ].

In the limit as n→ ∞ we get that p is at most

θ

2π
E(Number of sign changes of f(Zφ) on [0,2π].

For each ω in the probability space

Zφ = cosφX(ω) + sinφY (ω)

traces an ellipse as φ runs over [0,2π]. We

want to control the number of times this ellipse

crosses the zero set of f .


