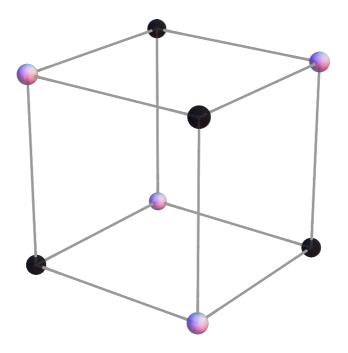
Noise sensitivity and Gaussian surface area

Keith Ball



The cube (in this talk) is $Q = \{-1, 1\}^n$ equipped with normalised counting measure.

A **Boolean** function f on Q is a function taking the values 1 and -1.

The **Noise sensitivity** of f measures how likely it is that the value of f will switch if we move our position in the cube a small amount.

So you pick a random corner X and then switch a randomly chosen εn of its coordinates to get a new point Y, and ask what is the probability that

$$f(X) \neq f(Y)?$$

The picture shows the "most" noise sensitive function: if you move one step you always change the value of f.

This function is a character on the group Q: the highest order character $X \mapsto \prod X_i$.

The least noise sensitive function is the constant function: the principal character. It makes more sense to look at functions with

$$P(f(X) = 1) = P(f(X) = -1) = 1/2.$$

Functions that put more weight on higher order characters, tend to be more noise sensitive.

Noise sensitivity is closely related to the study of the **influences** of variables on Boolean functions: the influence of the i^{th} variable is the chance that flipping this variable will change f.

So the sensitivity with $\varepsilon = \frac{1}{n}$ is the average influence.

The famous result of Kahn, Kalai and Linial states that for 50:50 functions, there must be a variable with influence at least

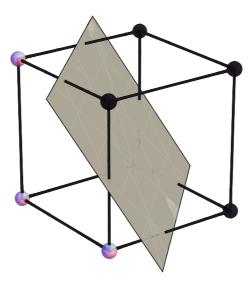
 $\frac{\log n}{n}$

even though the average influence can be 1/n.

Friedgut and Bourgain showed that if only few variables influence f then f is approximately a low order polynomial.

Talagrand estimates from below the expectation of the square root of the number of directions that flip f: so the reason that the average influence cannot be too small is not just a few bad points.

As for $\varepsilon = 1/n$, lower bounds on noise sensitivity don't tell us much: the focus on noise sensitivity is on upper estimates for functions of specific types: for example the sign of a linear function.



If you cut with the function $X \mapsto X_1$ then you have ε chance that your noisy coordinates include the first: so the sensitivity is ε .

The conjecture is that the worst direction is the main diagonal. The coordinates you switch have a reasonable chance of helping you by $\sqrt{\varepsilon n}$ so your point needs to be this close to having the same number of + and - coordinates. The chance of this is about $\sqrt{\varepsilon}$. Peres proved a bound of order $\sqrt{\varepsilon}$. The sharp constant remains open.

If f is the indicator of the intersection of k halfspaces the sensitivity is at most $\sqrt{\varepsilon}k$ but the conjecture is the "usual" one: $\sqrt{\varepsilon}\sqrt{\log k}$.

A useful model for this problem is that of Gaussian noise sensitivity or Gaussian surface area.

If f is a Boolean function on \mathbb{R}^n and X and Yare IID standard Gaussians then the $GNS(\varepsilon)$ is

 $\mathsf{P}(f(X) \neq f(\sqrt{1-\varepsilon}X + \sqrt{\varepsilon}Y)).$

This is closely related to the Gaussian surface area of the set C where f = 1:

 $\int_{\partial C} g$

where g is the standard Gaussian density.

If C has a smooth enough boundary the Gaussian surface area is

$$\lim_{\varepsilon \to 0} \frac{GNS(\varepsilon)}{\sqrt{\varepsilon}}.$$

So for the indicators of half-spaces we have the right dependence, $\sqrt{\varepsilon}$, for GNS.

Klivans, O'Donnell and Servedio use estimates for Gaussian surface area to measure algorithms for learning sets of different types and made a conjecture recently settled by D. Kane.

Theorem 1 (Ball). If C is convex then its GSA is at most $4n^{1/4}$.

Theorem 2 (Nazarov). If C is the intersection of k half-spaces then its GSA is at most $\sqrt{\log k}$.

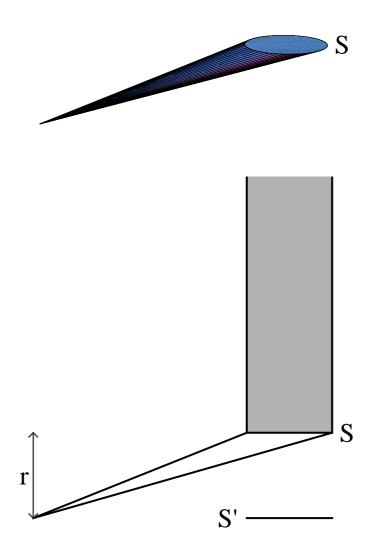
Theorem 3 (Kane). *The GSA of ellipsoids is uniformly bounded.*

Nazarov also showed that the $n^{1/4}$ bound is sharp apart from the constant: for random sets with $\exp(\sqrt{n})$ facets. To begin with, let's check the GSA of Euclidean balls.

The ball of radius r has GSA $\frac{nr^{n-1}\pi^{n/2}}{\Gamma(n/2+1)} \frac{e^{-r^2/2}}{(\sqrt{2\pi})^n}$ whose maximum occurs at $r = \sqrt{n-1}$ where the value is about $\frac{1}{\sqrt{\pi}}$.

It is also easy to check that the GSA for the (correctly sized) cube is $\sqrt{\log n}$ so Nazarov's estimate is sharp for this value of k as well.

Assume that 0 is inside C and consider a piece S of the surface of C.



The Gaussian volume of the shaded cylinder sitting above the surface is the product of the (n-1)-dimensional Gaussian volume of S' and the 1-dimensional Gaussian measure of the halfinfinite interval.

This is

$$GSA(S)e^{r^2/2}\int_r^\infty e^{-x^2/2}\,dx \ge GSA(S)\frac{1}{1+r}.$$

Integrating over the surface of C we get

$$1 - \gamma(C) \ge \int_{\partial C} \frac{1}{1 + r(y)} g(y)$$

where r(y) is the distance of the tangent plane at y, from 0.

From this we get an estimate when C is bounded by k hyperplanes.

$$1 - \gamma(C) \ge \int_{\partial C} \frac{1}{1 + r(y)} g(y)$$

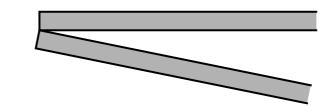
Hyperplanes at distance more than $\sqrt{2 \log k}$ from the origin have Gaussian area at most 1/k and there are at most k of them.

For all points y on facets at distance less than $\sqrt{2\log k}$,

$$\frac{1}{1+r(y)} \ge \frac{1}{\sqrt{2\log k}}$$

so these contribute a GSA of at most $\sqrt{2\log k}$.

If we look at Nazarov's argument applied to a ball of radius about \sqrt{n} (or a polytopal approximation to it) we have $r(y) = \sqrt{n}$ for all y on the surface and so it looks as though we will get GSA roughly \sqrt{n} .



The gaps don't get small.

To get an estimate of $n^{1/4}$ we use an argument motivated by Cauchy's integral formula for surface area

$$|\partial C| = c_n \int_{S^{n-1}} |P_{\theta}C| \, d\sigma.$$

Each projection is covered twice by the surface.

We try to find a measure μ on \mathbb{R}^{n-1} so that for each small piece of surface S

$$GSA(S) = \int_{S^{n-1}} \mu(P_{\theta}C) \, d\sigma.$$

Then $GSA(C) \leq 2\mu(\mathbb{R}^{n-1})$.

The measure should have density F(x) = f(|x|)and then for a small piece of surface centred at $r\phi$ with unit normal ψ the identity we want is

$$\frac{1}{\sqrt{2\pi}}e^{-r^2/2} = \int_{S^{n-1}} f\left(r\sqrt{1-\langle\theta,\phi\rangle^2}\right) |\langle\theta,\psi\rangle| \, d\sigma.$$

This can't be true because of the the two angles ϕ and ψ . But we only need an inequality.

As long as f decreases on $[0,\infty)$ the right side is minimised when ϕ and ψ are orthogonal and in this case we get

$$\frac{2}{\pi}\int_0^{\pi/2} f(r\sin\theta)\sin^{n-1}\theta\,d\theta.$$

So we want

$$\frac{1}{\sqrt{2\pi}}e^{-r^2/2} = \frac{2}{\pi}\int_0^{\pi/2} f(r\sin\theta)\sin^{n-1}\theta\,d\theta.$$

$$\tilde{g}(r) = \frac{2}{\pi} \int_0^{\pi/2} f(r \sin \theta) \sin^{n-1} \theta \, d\theta.$$

The operator

$$f \mapsto \frac{2}{\pi} \int_0^{\pi/2} f(.\sin\theta) \sin^{n-1}\theta \, d\theta$$

has polynomials as eigenfunctions so we can invert in a simple way.

$$\int_0^t f(r)r^{n-2} dr = t^{n-1} \int_0^{\pi/2} \tilde{g}(t\sin\theta)\sin^{n-2}\theta d\theta.$$

Now analyse f.

Nazarov showed that $n^{1/4}$ is sharp. The preceding argument shows that if we want near equality, the pieces of surface should have normal vectors almost perpendicular to their radius vectors.

The Gaussian measure lies at radius \sqrt{n} so we want most of the surface to be at this distance from 0.

Nazarov's other argument shows that the bounding hyperplanes should be $n^{1/4}$ from 0.

These conditions are compatible.

Kane's argument estimates the noise sensitivity of an ellipsoid (or a solid whose surface is given by a polynomial of degree at most d).

f is the sign of a polynomial of degree d. X and Y are IID standard Gaussians and we want

$$p = \mathsf{P}\left(f(X) \neq f(\cos\theta X + \sin\theta Y)\right)$$

(where $\cos \theta = \sqrt{1-\varepsilon}$).

This is the same as

 $P(f(\cos\theta X + \sin\theta Y) \neq f(\cos 2\theta X + \sin 2\theta Y))$ and

 $P(f(\cos 2\theta X + \sin 2\theta Y) \neq f(\cos 3\theta X + \sin 3\theta Y))$ and so on. So

$$np = \mathsf{E}\left(\mathbf{1}_{(f(Z_0)\neq f(Z_\theta))} + \dots + \mathbf{1}_{(f(Z_{(n-1)\theta})\neq f(Z_{n\theta}))}\right)$$

The latter is at most the expectation of the number of sign changes of $f(Z_{\phi})$ on the interval $[0, n\theta]$.

In the limit as $n \to \infty$ we get that p is at most $\frac{\theta}{2\pi} \mathsf{E}(\mathsf{Number of sign changes of } f(Z_{\phi}) \text{ on } [0, 2\pi].$

For each ω in the probability space

$$Z_{\phi} = \cos \phi X(\omega) + \sin \phi Y(\omega)$$

traces an ellipse as ϕ runs over $[0, 2\pi]$. We want to control the number of times this ellipse crosses the zero set of f.