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Sensing: the information acquisition step

I Digital data: x ∈ Rn. Measure vectors by point sensing

< x , ei >= xi for i = 1, 2, . . . , n

Same for images and other digital data.
Cannot improve if xi independent of each other.

I Analog data: f (x) ∈ Bσ. Bandlimited model popular in EE

f (x) ∈ Bσ ⇔ f (x) :=
1√
2π

∫ σ

−σ
f̂ (w)e2πiwxdw

where f̂ (w) = 0 for |w | > σ. Shannon Sampling Theorem:

f (x) =
∑
k∈Z

f (kT )ψ(x − kT ) if T ≤ 1/2σ

Can exactly recovery f (x) from its point samples {f (kT )}k∈Z.
“Nyquist sampling rate” is T = 1/2σ, largest for f ∈ Bσ.
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After we acquire the data, then we compress

I On a computer all data is stored digital
For vectors x ∈ Rn already in digital form.
For f (x) ∈ Bσ store {f (kT )}Z and use Shannon Theorem

I Most vectors have entries that are very dependent and
f (x) ∈ Bσ are smooth (analytic) with nearby entries related.

I Do we really need to store all of these entries if highly
dependent?

Certainly not!
Welcome to the wonderful world of approximation theory.

I Smoothness (even piecewise smooth) implies compressibility
The options are endless:
Fourier series, orthogonal polynomials, wavelets, curvelets,
shearlets, and any other “let” you can imagine.
(More on these to come...)
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Compression

I Discrete data:
Let the columns of Φ span Rn so that x = Φz for some z .
Let Hk(z) be the k-term hard threshold, setting all but the
largest k entries (in magnitude) to zero.
x compressible in representation Φ if ‖x − ΦHk(z)‖ � ‖x‖.

I Polynomial decay for large problems:
‖x − ΦHk(z)‖ ≤ Const.k−p

I Analog functions: truncated series in representation {ψ`(x)}`

SN f (x) :=
N∑

`=0

f̂`ψ`(x)

Polynomial or exponential decay ‖f (x)− SN f (x)‖ ≤ C .τ−N

I Compression is ubiquitous, essentially always performed.

I Full sensing and then compression is very wasteful
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The advantages of Compressed Sensing

I If k coefficients are sufficient to accurately approximate the
data, why measure it all in the first place?

I Move compression into acquisition: Compressed Sensing (CS)

I There is a cost associated with CS, use when sensing is costly

I A few applications:
MRI Scanner – length of time in device, through-put
UAV imaging – time of flight over target
Nuclear Medicine (CT/SPECT/PET) – radiation dosage
Genomic sequencing – through-put
Satellite – limited communications and battery
(lets see a few pictures...)
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Single Photo-diode digital camera

I Proof of concept for compressed sensing: Baraniuk and Kelly

I 2% measurements compared to number of pixels in recon.

I Savings, measurement time, simple device, power of device, ...

I Multi-spectral variants have been constructed.
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Magnetic Force Resonance Microscopy (A. Hero, M. Ting)

I Non-linear sparsity exploiting reconstruction algorithms:
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Figure 5.28: Three dimensional visualization of the MAP2 reconstruction of 103D’s hydrogen atoms
with g∗ = (

√
2)−1 at an SNR of 6.02 dB. Different viewing angles are shown. The

helical structure of 103D is apparent.

5.8 Conclusion

This chapter proposed methods of performing simultaneous deconvolution and

denoising of sparse images. We wanted methods that estimated the tuning pa-

rameters in a data-driven fashion and which were scalable. Two approaches were

taken. The first was to impose a sparsifying prior on the image θ that contained

unspecified parameters, e.g., the LAZE p.d.f. The unknown parameters of the prior,

103D DNA Molecule - 272 Hydrogen Atoms
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MRI - Angiography

I Stanford MRI Lab: T. Cuker, M. Lustig, and D. G. Nishimura

Compressed Sensing for 
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Astronomy applications: Hershel

I CIRM (France): J.L. Starck

This space telescope has been designed to 
observe in the far-infrared and sub-millimeter 
wavelength range.
Its launch is scheduled for the beginning of 2009. 
The shortest wavelength band, 57-210 microns, is 
covered by PACS (Photodetector Array Camera and 
Spectrometer).

Herschel data transfer problem:
-no time to do sophisticated data compression on 
board.
-a compression ratio of 6 must be achieved.

==> solution:  averaging of six successive images 
on board

CS may offer another alternative.

HERSCHEL
The proposed Herschel compression scheme
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Astronomy applications: Hershel

I CIRM (France): J.L. Starck

Resolution: CS versus Mean

Simulated image
Simulated noisy image with flat and dark

Mean of six images
Compressed sensing reconstructed images

Resolution limit versus SNR
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Astronomy applications: Hershel

I CIRM (France): J.L. Starck

One observation 10 observations 20 observations 100 observations

Compression Rate: 25

JPEG2000 Versus Compressed Sensing
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Matrix completion : Inpainting

I Duke: L. Carin labImage Measurements With Missing Data

80% of RGB Voxels Missing at Random

Lawrence Carin Nonparametric Bayes and Compressive Measurements

Image Measurements With Missing Data

Recovered Image via Beta Process and
in situ Dictionary Learning

Lawrence Carin Nonparametric Bayes and Compressive Measurements

Probit-Regression Matrix Completion: MLB 1954-2008

Prob(Hitter i Successful vs. Pitcher j) =

∫ ∞

0
N (x |Mij , 1)dx

M = SLFST
R + E , SL and SR are sparse

M ∈ Rny×nx , SL ∈ Rny×k , SR ∈ Rnx×k ′
, F ∈ Rk×k ′

Lawrence Carin Nonparametric Bayes and Compressive Measurements
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Matrix completion : Inpainting

I Duke: L. Carin labHyperspectral Data

Lawrence Carin Nonparametric Bayes and Compressive Measurements
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Duke: L. Carin lab

I 2% of Hyperspectral datacube at random, band 1

HSI Inpainting - Measure 2% of Datacube at Random

4× 4 Blocks, Band 1

Lawrence Carin Nonparametric Bayes and Compressive Measurements
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Duke: L. Carin lab

I 2% of Hyperspectral datacube at random, band 50

HSI Inpainting - Measure 2% of Datacube at Random

4× 4 Blocks, Band 50

Lawrence Carin Nonparametric Bayes and Compressive Measurements
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Matrix Completion, segmentation, video

I Stanford: E. CandesVideo, Low-Rank and Sparse

E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust Principal Component Analysis?”
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Back to compression: Fourier Series

Definition (C s-periodic)
The C s [−π, π] seminorm is defined as

‖f ‖C s [−π,π] :=

∫ π

−π

∣∣∣f (s)(x)
∣∣∣ dx

where f (s)(x) denotes the sth derivative of f (x). A function is said
to be in C s [−π, π] if ‖f ‖C s [−π,π] <∞. We refer to a function as

being C s -periodic over [−π, π] if it is in C (s)[−π, π] and
f (j)(π) = f (j)(−π) for j = 0, . . . , s − 1.

Definition (Fourier series)
Let f (x) be in L2[−π, π] and be C s -periodic over [−π, π]. Then, it
can be represented in the Fourier orthonormal basis as

f (x) = (2π)−1/2
∑
k∈Z

f̂ke ikx with f̂k := (2π)−1/2

∫ π

−π
f (x)e−ikxdx .
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Fourier Series compression rate

Theorem (Truncated Fourier Approximation)
Let f (x) be in L2[−π, π] and be C s -periodic for s ≥ 2. Then

‖f − SN f ‖L∞[−π,π] ≤
(

2

π

)1/2

(s − 1)−1‖f ‖C s [−π,π] · N−s+1.

Proof.
Integrate by parts and triangle inequality

f̂k = (2π)−1/2(−ik)−s

∫ π

−π
f (s)(x)e−ikxdx ,

max
x∈[−π,π]

|f (x)− SN f (x)| = max
x∈[−π,π]

∣∣∣∣∣∣
∑
|k|>N

f̂ke ikx

∣∣∣∣∣∣ ≤
∑
|k|>N

∣∣∣f̂k ∣∣∣ ,
∑∞

k=N+1 k−s ≤
∫∞
N k−sdk for s ≥ 2
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Generalized Fourier Series

I Fourier series superb for smooth periodic functions.
I Smooth non-periodic functions via orthogonal polynomials
I Global bases have difficulty for non-smooth functions.

Gibbs’ Phenomenon can be overcome through edge detection
and postprocessing, but does not work well for noisy data.

I Localized expansions allow better qualitative understanding
I Haar system is composed of the scaling function

φ(x) =

{
1 x ∈ [0, 1]
0 x /∈ [0, 1]

and translation and dilations of the mother wavelet

ψ(x) =


1 x ∈ [0, 1/2]
−1 x ∈ (1/2, 1)
0 x /∈ [0, 1]

Let ψn,k(x) := 2n/2ψ(2nx − k).
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Haar Wavelets

Definition (Haar Wavelet)
The Haar system

φ(x)
⋃
ψn,k(x)n∈N,0≤k<2n

is an orthonormal basis for L2[0, 1]. Define the Haar coefficients as

f0 :=

∫ 1

0
f (x)φ(x)dx and fn,k :=

∫ 1

0
f (x)ψn,k(x)dx

and the truncated Haar approximation of f (x) as

WM f (x) := f0 +
M∑

n=0

2n−1∑
k=0

fn,kψn,k(x).

The truncated Haar expansion converges to the original function in
L2[0, 1],

lim
M→∞

‖f −WM f ‖L2[0,1] → 0.
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Wavelet convergence rates: Vanishing moments

I Convergence rate of truncated Wavelet approximations
dictated by the decay rate of coefficients fn,k for n large.

I Consider Haar as example. supp(ψn,k(x)) = 2−n[k, k + 1)
Taylor series f (x) about 2−n(k + 1/2)

fn,k =

∫ 2−n(k+1)

2−nk
ψn,k(x)[f (x0) + (x − x0)f

′(x0) + · · · ]dx

= 2−3n/24f ′(x0) +O(2−5n/2).

I If f (x) piecewise smooth with O(`) discontinuities then ` of
fn,k ∼ 2−n/2 and 2n −O(`) are of size 2−3n/2.

I Overall decay rate 2−n/2 dictated by discontinuities.

I Appears exponential, but needs N = 2n coefficients.

I Decay in N is a slow N−1/2 rate if a linear approximation,
but at exponential rate 2−n/2 if only large entries kept.
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Other wavelets and higher dimensional “lets”

I Wavelets beyond Haar, are they better?

Yes and No.
Convergence rate of all 1D wavelets can be viewed similarly.
Wavelets that cross discontinuities have “large” O(2−n/2)
coefficients, and other coefficients size dictated by number of
vanishing moments, O(2−(2p+1)n/2) for order p wavelet.

I Higher order wavelets have faster convergence, with “ wider”
wavelets and more crossing the discontinuities

I Time-frequency tiling:
Wavelets use translation and dilation
Gabor atoms use translation and modulation
Multi-dimensional variants use other operators
such as rotation and shear

I A few examples to see how they work, discrete case
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The filterbank viewpoint for discrete data

I Convolve discrete vector f ∈ R2n with two vectors
h a “low pass filter” that approximates f and
g a “high pass filter” that captures f − h

I Downsample a = (f ? h) ↓ 2 and d = (f ? g) ↓ 2,
where (u ↓ 2)[k] = u[2k] to keep 2n entries (same as f )

I If h and g are designed properly then f can be recovered.
Upsample a and d by adding a zero after each entry, (u ↑ 2)
Convolve upsampled vectors with the reverse order of h and g

f = (a ↑ 2) ? h̃ + (d ↑ 2) ? g̃

I Example: h = [1 1] and g = [−1 1]
a[1] = f [1] + f [2] and d [1] = −f [1] + f [2]
(a ↑ 2) ? h̃ has two entries both equal to a[1]
(d ↑ 2) ? g̃ has first entry −d [1] and second entry d [1]
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Haar example, one step [Peyre]

I First half if a and second half is d

I Repeat process on a portion
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Haar example, full transform [Peyre]
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Haar m term approximation [Peyre]
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Daubechies4 m term approximation [Peyre]
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Searching for simplicity (sparsity)

I Sparse solutions to underdetermined systems of equations

min
x
‖x‖0 subject to ‖y − Ax‖ ≤ τ

• Basis pursuit: find best set of columns of A for y
• design algorithms that find sparse solutions and hope...

I Simple solutions to under determined systems of equations

x such that y = Ax and αi ≤ xi ≤ βi

• if enough of xi are equal to αi or βi is it unique?

I Low rank matrix approximation (matrix completion)

min
M

rank(M) subject to ‖y −A(M)‖ ≤ τ

• unknown representation in which M is simple
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Coherence

Let A be the sensing matrix and ai its i th column

µ2(A) := max
i 6=j

|a∗i aj |

I Pros:
• Easy to calculate!
• Easy to use to prove pretty good results
• A general tool for any algorithm (wide usage)

I Cons:
• A general tool for any algorithm (bad results)
• Worst case results are limited to “sqrt” proportionality

Use coherence analyze: Thresholding, Matching Pursuit,
Orthogonal Matching Pursuit, and `1-regularization

∗ for the moment assume solution is unique
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One step thresholding

Input: y , Am,n and k (number of nonzeros in output vector).
Algorithm: Set Λ the index set of the k ≤ m largest in |A∗m,ny |
Output the n-vector x whose entries are

xΛ = (A∗ΛAΛ)−1A∗Λy and x(i) = 0 for i /∈ Λ.

Theorem
Let y = Am,nx0, with the columns of Am,n having unit `2 norm, and

‖x0‖0 <
1

2

(
ν∞(x0) · µ2(Am,n)

−1 + 1
)
,

then the Thresholding decoder with k = ‖x0‖0 will return x0, with
νp(x) := minj∈supp(x) |x(j)|/‖x‖p.
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One step thresholding (proof)

Proof.
With y = Am,nx0, denote w = A∗m,ny = A∗m,nAm,nx0.

The i th entry in w is equal to wi =
∑

j∈supp(x0)
x0(j)a

∗
i aj .

For i /∈ supp(x0) the magnitude of wi is bounded above as:

|wi | ≤
∑

j∈supp(x0)

|x0(j)| · |a∗i aj | ≤ kµ2(Am,n)‖x0‖∞.

For i ∈ supp(x0) the magnitude of wi is bounded below as:

|wi | ≥ |x0(i)| −

∣∣∣∣∣∣
∑

j∈supp(x0),j 6=i

x0(j)a
∗
i aj

∣∣∣∣∣∣
≥ |x0(i)| − (k − 1)µ2(Am,n)‖x0‖∞.

Recovery if maxi /∈supp(x0) |wi | < mini∈supp(x0) |wi |.
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Matching Pursuit [Tr05]

Input: y , Am,n and k (number of nonzeros in output vector).
Algorithm: Let r j := y − Ax j .
Set x0 = 0, and let i := argmax`|a∗` r j | and define
x j+1 = x j + (a∗i r

j)ei where ei is the i th coordinate vector.
Output x j when a termination criteria is obtained.

Theorem
Let y = Am,nx0, with the columns of Am,n having unit `2 norm, and

‖x0‖`0 <
1

2

(
µ2(Am,n)

−1 + 1
)
,

then Matching Pursuit will have supp(x j) ⊆ supp(x0) for all j .

∗ Preferable over one step thresholding: no dependence on νp(x0).
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Matching Pursuit (proof)

Proof.
Assume supp(x j) ⊂ supp(x0) for some j , which is true for j = 0.
Let r j = y − Am,nx

j , and wi =
∑

`∈supp(x0)
(x0 − x j)(`) · a∗i a`.

For i /∈ supp(x0) the magnitude of wi is bounded above as:

|wi | ≤
∑

`∈supp(x0)

|(x0 − x j)(`)| · |a∗i a`| ≤ kµ2(Am,n)‖|x0 − x j‖∞.

For i ∈ supp(x0) the magnitude of wi is bounded below as:

|wi | ≥ |(x0 − x j)(i)| −

∣∣∣∣∣∣
∑

`∈supp(x0),` 6=i

(x0 − x j)(`) · a∗i a`

∣∣∣∣∣∣
≥ |(x0 − x j)(i)| − (k − 1)µ2(Am,n)‖x0 − x j‖∞.

Recovery if maxi∈supp(x0) |wi | > maxi /∈supp(x0) |wi |.
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Orthogonal Matching Pursuit [Tr05]

Input: y , Am,n and k (number of nonzeros in output vector).
Algorithm: Let r j := y − Ax j .
Set x0 = 0 and Λ0 to be the empty set, and set j = 0.
Let r j := y − Ax j , i := argmax`|a∗` r j |, and Λj+1 = i

⋃
Λj .

Set x j+1
Λj+1 = (A∗

Λj+1AΛj+1)−1A∗
Λj+1y

and x j+1(`) = 0 for ` /∈ Λj+1, and set j = j + 1.
Output x j when a termination criteria is obtained.

Theorem
Let y = Am,nx0, with the columns of Am,n having unit `2 norm, and

‖x0‖`0 <
1

2

(
µ2(Am,n)

−1 + 1
)
,

then after ‖x0‖`0 steps, Orthogonal Matching Pursuit recovers x0.

∗ Proof, same as Matching Pursuit. Finite number of steps.
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`1-regularization [Tr05]

Input: y and Am,n.
“Algorithm”: Return argmin‖x‖1 subject to y = Ax .

Theorem
Let y = Am,nx0, with

‖x0‖`0 <
1

2

(
µ2(Am,n)

−1 + 1
)
,

then the solution of `1-regularization is x0.

∗ Preferable over OMP: faster if use good `1 solver.
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`1-regularization (proof, page 1)

Proof.
Let Λ0 := supp(x0) and Λ1 := supp(x1) with
y = Am,nx0 = Am,nx1, and ∃i with i ∈ Λ1 with i /∈ Λ0.
Note that because y = AΛ0x0 = AΛ1x1,

‖x0‖1 = ‖(A∗Λ0
AΛ0)

−1A∗Λ0
AΛ0x0‖1

= ‖(A∗Λ0
AΛ0)

−1A∗Λ0
y‖1

= ‖(A∗Λ0
AΛ0)

−1A∗Λ0
AΛ1x1‖1.

Establish bounds on (A∗Λ0
AΛ0)

−1A∗Λ0
ai .

To establish proof need bounds for i ∈ Λ and i /∈ Λ.

For i ∈ Λ0: ‖(A∗Λ0
AΛ0)

−1A∗Λ0
ai‖1

= ‖(A∗Λ0
AΛ0)

−1A∗Λ0
AΛ0ei‖1 = ‖ei‖1 = 1
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`1-regularization (proof, page 2)

Proof.
For any i /∈ Λ0 we establish the bound in two parts; first,

‖A∗Λ0
ai‖1 ≤

∑
`∈Λ0

|a∗`ai | ≤ kµ2(Am,n).

Noting A∗Λ0
AΛ0 = Ik,k + B where Bi ,i = 0 and |Bi ,j | ≤ µ2(Am,n),

then

‖(Ik,k+B)−1‖1 =

∥∥∥∥∥
∞∑

`=0

(−B)`

∥∥∥∥∥
1

≤
∞∑

`=0

‖B‖`
1 =

1

1− ‖B‖1
≤ 1

1− (k − 1)µ2(Am,n)
.

Therefore, for i /∈ Λ0:

‖(A∗Λ0
AΛ0)

−1A∗Λ0
ai‖1 ≤

kµ2(Am,n)

(1− (k − 1)µ2(Am,n))
< 1
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`1-regularization (proof, page 3)

Proof.
Proof concludes through triangle inequality and use that:
• For i ∈ Λ0: ‖(A∗Λ0

AΛ0)
−1A∗Λ0

ai‖1 = 1

• For i /∈ Λ0: ‖(A∗Λ0
AΛ0)

−1A∗Λ0
ai‖1 < 1

• And ∃i with i ∈ Λ1 and i /∈ Λ0.

Then,

‖x0‖1 =

∥∥∥∥∥∥
∑
i∈Λ1

(A∗Λ0
AΛ0)

−1A∗Λ0
aix1(i)

∥∥∥∥∥∥
1

≤
∑
i∈Λ1

|x1(i)| ·
∥∥(A∗Λ0

AΛ0)
−1A∗Λ0

ai

∥∥
1

<
∑
i∈Λ1

|x1(i)| = ||x1‖1.
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But, is the solution even unique?

The sparsity of the sparsest vector in the nullspace of A,

spark(A) := min
z
‖z‖`0 subject to Az = 0.

Theorem (Spark and Coherence)

spark(Am,n) ≥ min(m + 1, µ2(Am,n)
−1 + 1)

If ‖x0‖ < (µ2(Am,n)
−1 + 1)/2 unique satisfying y = Am,nx0.

Proof.
Gershgorin disc theorem for A∗ΛAΛ with |Λ| = k:
1 on diagonal, off diagonals bounded by µ2(Am,n).
If k < µ2(Am,n)

−1 + 1, smallest singular value of A∗ΛAΛ is > 0
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How to interpret these results, is better possible?

I When is ‖x0‖`0 < 1
2

(
µ2(Am,n)

−1 + 1
)
?

Grassman Frames: µ2(Am,n) ≥
(

n−m
m(n−1)

)1/2
∼ m−1/2

“Sqrt bottleneck” ‖x0‖`0 .
√

m

I Is better possible? (not without more)
Fourier & Dirac: Am,n = [F I ] for m the square of an integer:
Let Λ = [

√
m, 2

√
m, · · · ,m], then∑

j∈Λ ej =
∑

j∈Λ fj =⇒ spark(Am,n) = 2
√

m.

I Slightly more accurate sometimes with cumulative coherence:
maxi∈Λ maxΛ′

∑
j∈Λ′ a

∗
i aj

I To avoid pathological cases introduce randomness
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One step thresholding: average sign pattern [ScVa07]

Input: y , Am,n and k (number of nonzeros in output vector).
Algorithm: Set Λ the index set of the k ≤ m largest in |A∗m,ny |
Output the n-vector x whose entries are

xΛ = (A∗ΛAΛ)−1AΛy and x(i) = 0 for i /∈ Λ.

Theorem
Let y = Am,nx0, with the columns of Am,n having unit `2 norm,
the sign of the nonzeros in x0 selected randomly from ±1
independent of Am,n, and

‖x0‖`0 < (128 log(2n/ε))−1ν2
∞(x0)µ

−2
2 (Am,n),

then, with probability greater than 1− ε, the Thresholding decoder
with k = ‖x0‖`0 will return x0.
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One step thresholding: average sign pattern (proof, pg. 1)

Theorem (Rademacher concentration)
Fix a vector α. Let ε be a Rademacher series, vector with entries
drawn uniformly from ±1, of the same length as α, then

Prob

(∣∣∣∣∣∑
i

εiαi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2

32‖α‖2
2

)

Let Λ := supp(x0). Thresholding fail to recover x0 if

max
i /∈Λ

|a∗i y | > min
i∈Λ

|a∗i y |.

Prob

(
max
i /∈Λ

|a∗i y | > p and min
i∈Λ

|a∗i y | < p

)
≤

Prob

(
max
i /∈Λ

|a∗i y | > p

)
+ Prob

(
min
i∈Λ

|a∗i y | < p

)
=: P1 + P2

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



One step thresholding: average sign pattern (proof, pg. 2)

P1 = Prob

(
max
i /∈Λ

|a∗i y | > p

)
≤

∑
i /∈Λ

Prob (|a∗i y | > p)

=
∑
i /∈Λ

Prob

∣∣∣∣∣∣
∑
j∈Λ

x0(j)(a
∗
i aj)

∣∣∣∣∣∣ > p


≤ 2

∑
i /∈Λ

exp

(
−p2

32
∑

j∈Λ |x0(j)|2|a∗i aj |2

)

≤ 2(n − k) exp

(
−p2

32k‖x0‖2
∞µ

2
2(Am,n)

)
.
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One step thresholding: average sign pattern (proof, pg. 3)

P2 = Prob

(
min
i∈Λ

|a∗i y | < p

)

≤ Prob

min
i∈Λ

|x0(i)| −max
i∈Λ

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

x0(j)(a
∗
i aj)

∣∣∣∣∣∣ < p


≤

∑
i∈Λ

Prob

∣∣∣∣∣∣
∑

j∈Λ,j 6=i

x0(j)(a
∗
i aj)

∣∣∣∣∣∣ > min
i∈Λ

|x0(i)| − p


≤ 2

∑
i∈Λ

exp

(
−(mini∈Λ |x0(i)| − p)2

32
∑

j∈Λ,j 6=i |x0(j)|2|a∗i aj |2

)

≤ 2k exp

(
−(mini∈Λ |x0(i)| − p)2

32k‖x0‖2
∞µ

2
2(Am,n)

)
.
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One step thresholding: average sign pattern (proof, pg. 4)

Balance P1 and P2 by setting p := mini∈Λ |x0(i)|/2:

P1+P2 ≤ 2n exp

(
−(mini∈Λ |x0(i)|)2

128k‖x0‖2
∞µ

2
2(Am,n)

)
≤ 2n exp

(
−ν∞(x0)

2

128kµ2
2(Am,n)

)
.

Setting this bound on the probability of failure equal to ε and
solving for k yields the conclusion of the proof.

I Similar work for matching pursuit by Schnass, `1 by Tropp,
and in Statistical RICs

I Stronger uniform statements we need more than coherence.
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Restricted Isometry Constants

The set of k-sparse vectors

χn(k) := {x ∈ Rn : ‖x‖`0 ≤ k}.

Upper and lower RICs of A, Uk and Lk respectively, are defined as

Uk := min
c≥0

c subject to (1 + c)‖x‖2
2 ≥ ‖Ax‖2

2 ∀x ∈ χn(k).

Lk := min
c≥0

c subject to (1− c)‖x‖2
2 ≤ ‖Ax‖2

2, ∀x ∈ χn(k);

I Pros:
• Easy to use to prove optimal order results
• A general tool for any algorithm (wide usage)

I Cons:
• Don’t know how to calculate it
• A general tool for any algorithm (bad results)

I No known matrix with bounded RICs for k ∼ m ∼ n
I Coherence for k ∼ m2 or random matrices used
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The first RIC bounds (Gaussian): [CaTa05]

Let σmax(B) and σmin(B) be the largest and smallest singular
values of B respectively. Then,

Prob(σmax(Ak) > 1 +
√

k/m + o(1) + t) ≤ exp(−mt2/2)

Prob(σmin(Ak) < 1−
√

k/m + o(1)− t) ≤ exp(−mt2/2),

where o(1) denotes a quantity that tends to zero as m →∞.

Definition
Set δ = m/n and ρ = k/m with (δ, ρ) ∈ (0, 1)2 and define:

UCT (δ, ρ) :=
[
1 +

√
ρ+ (2δ−1H(δρ))1/2

]2
− 1

LCT (δ, ρ) := 1−max

{
0,
[
1−√ρ− (2δ−1H(δρ))1/2

]2}
,

where Shannon Entropy H(p) := −p log p − (1− p) log(1− p)
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RIC bounds (Gaussian): [CaTa05]

Theorem
Am,n entries are drawn i.i.d. from the Gaussian normal N (0, 1/m).
Let δm = m/n and ρm = k/m. For any fixed ε > 0, in the limit as
δm → δ ∈ (0, 1) and ρm → ρ ∈ (0, 1) as m →∞ ,

P(Lk < LCT (δ, ρ)− ε) → 1 and P(Uk < UCT (δ, ρ) + ε) → 1

exponentially in m.

UCT (δ, ρ) (left panel) and LCT (δ, ρ) (right panel).
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RIC bounds (Gaussian): [CaTa05] (proof)

Proof.

Prob
(
maxK⊂Ω,|K |=k σ

max (AK ) > (1 +
√

k/m) + o(1) + t
)

≤
∑

K⊂Ω,|K |=k Prob
(
σmax (AK ) > (1 +

√
k/m) + o(1) + t

)
≤
(n
k

)
exp(−mt2/2) ≤ poly(n) · exp

(
m
[
δ−1H(ρδ)− t2/2

])
,

Use smallest t such that prob goes to zero.
Solve for the zero of the exponent: t = [2δ−1H(ρδ)]1/2.
This corresponds to an upper bound on

Prob
(
maxσmax (AK ) > (1 +

√
k/m) + [2δ−1H(ρδ)]1/2 + ε+ o(1)

)
≤ poly(n) · e−m(ε+o(1))

which converges to zero exponentially with m.
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Iterative Hard Thresholding [Fu10]

Input: y , Am,n and k (number of nonzeros in output vector).
Algorithm: Set x0 = 0 and j = 0.
While ‖y − Am,nx

j‖2 < Tol repeat the following steps:
set v j := x j + A∗m,n(y − Am,nx

j), and x j+1 = Hk(v j).

Output x j .

Theorem
Let y = Am,nx0 + e for x0 k-sparse and Am,n in General Position.
Set µiht := 2 max(L3k ,U3k) and ξiht := 2(1 + U2k)1/2.
With k used for the hard thresholding function, IHT satisfy the
inequality

‖x j − x0‖2 ≤ (µiht)j‖x0‖+
ξiht

1− µiht
‖e‖2.

For µiht < 1 convergence of x j to approximation of x0.
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Iterative Hard Thresholding (proof, pg. 1)

Proof.
Hk(·) returns the k-sparse closest in the `2 norm, for instance

‖v j − Hk(v j)‖2 = ‖v j − x j+1‖2 ≤ ‖v j − x0‖2. (1)

Note that

‖v j − x j+1‖2
2 = ‖(v j − x0) + (x0 − x j+1‖2

2 =

‖v j − x0‖2
2 + ‖x0 − x j+1‖2

2 + 2Re
(
(v j − x0)

∗(x0 − x j+1)
)

where Re(c) denotes the real part of c .
Bounding the above expression using (1) and canceling the
‖v j − x0‖2

2 term yields

‖x j+1 − x0‖2
x ≤ 2Re

(
(v j − x0)

∗(x j+1 − x0)
)
.
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Iterative Hard Thresholding (proof, pg. 2)

Consider the 3k sparse set
Λ = supp(x0) ∪ supp(x j) ∪ supp(x j+1):

‖x j+1 − x0‖2
2 ≤ 2Re

(
(v j − x0)

∗(x j+1 − x0)
)

= 2Re
((

(I − A∗m,nAm,n)(x
j − x0)

)∗
(x j+1 − x0)

)
+ 2Re

(
e∗Am,n(x

j+1 − x0)
)

= 2Re
((

(I − A∗ΛAΛ)(x j − x0)Λ
)∗

(x j+1 − x0)Λ

)
+ 2Re

(
e∗Am,n(x

j+1 − x0)
)

≤ 2‖I − A∗ΛAΛ‖2 · ‖x j − x0‖2 · ‖x j+1 − x0‖2

+ 2‖e‖2 · ‖Am,n(x
j+1 − x0)‖2
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Iterative Hard Thresholding (proof, pg. 3)

RIC bounds ‖I − A∗ΛAΛ‖2 ≤ max(U3k , L3k) and
‖Am,n(x

j+1 − x0)‖2 ≤ (1 + U2k)1/2‖x j+1 − x0‖2 then
dividing by ‖x j+1 − x0‖2 yields

‖x j+1 − x0‖2 ≤ 2 max(L3k ,U3k) · ‖x j − x0‖2 + 2(1 + U2k)1/2‖e‖2

Let µiht := 2 max(L3k ,U3k) and ξiht := 2(1 + U2k)1/2.
Error at step j in terms of initial error ‖x0 − x0‖2 = ‖x0‖2

‖x j − x0‖2 ≤ (µiht)J · ‖x0‖2 + ξiht‖e‖2

j−1∑
`=0

(µiht)`

Replacing final sum with bound 1/(1− µiht) completes the proof.
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`1-regularization [Ca08]

Input: y , Am,n, and tolerance ε.
“Algorithm”: Return x? = argmin‖x‖1 subject to ‖y − Ax‖2 ≤ ε.

Theorem
Let y = Am,nx0 + e for x0 k-sparse, ‖e‖2 ≤ ε, and Am,n in General
Position.
Set µ`1

:= 2−1/2(U2k + L2k)/(1− L2k) and
ξ`1

:= 23/2(1 + U2k)1/2/(1− L2k)
With x? = argmin‖x‖1

` subject to ‖y − Am,nx‖2 ≤ ε
and µiht < 1 then

‖x0 − x?‖2 <
ξ`1

1− µ`1 · ‖e‖2
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`1-regularization (proof, pg. 1)

Proof.
Let h := x? − x0. The goal is to show ‖h‖2 ≤ Const.‖e‖2

Let Λ0 := supp(x0). Partition the rest of 1, 2, . . . , n into k sets
Let Λ1 be the support of the largest k entries of |hΛc

0
|,

Λ2 the support set of the next largest k entries in |hΛc
0
|, etc...

Show that ‖h‖2 ≤ Const.‖e‖2 small by considering
h(Λ0∪Λ1) and h(Λ0∪Λ1)c

Λ01 := (Λ0 ∪ Λ1) contains support of x0 and where h is largest
Λc

01 contains the rest of the n-vector
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`1-regularization (proof, pg. 2: Show ‖hΛc
01
‖2 “small”)

For vectors satisfying ‖y − Am,nx‖2 ≤ ε, x? has smallest `1 norm

‖x‖1 ≥ ‖x?‖1 = ‖x + h‖1 ≥ ‖xΛ0‖1 − ‖hΛ0‖1 + ‖hΛc
0
‖1

which implies that ‖hΛc
0
‖1 ≤ ‖hΛ0‖1.

By construction , largest entry in hΛj
smaller than average in hΛj−1

‖hΛj
‖2 ≤ k1/2‖hΛj

‖∞ ≤ k1/2
(
k−1‖hΛj−1

‖1

)
= k−1/2‖hΛj−1

‖1

Use above bound and triangle inequality to obtain

‖hΛc
01
‖2 = ‖

∑
j≥2

hΛj
‖2 ≤

∑
j≥2

‖hΛj
‖2 ≤

∑
j≥1

k−1/2‖hΛj
‖1 = k−1/2‖hΛc

0
‖1

With the above, ‖hΛc
0
‖1 ≤ ‖hΛ0‖1, and Cauchy Schwartz

‖hΛc
01
‖2 ≤ k−1/2‖hΛ0‖1 ≤ k−1/2

(
k1/2‖hΛ0‖2

)
= ‖hΛ0‖2 ≤ ‖hΛ01‖2
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`1-regularization (proof, pg. 3: a few notes)

For any j 6= k

|(AhΛj
)∗(AhΛk

)| ≤ U2k + L2k

2
‖hΛj

‖2 · ‖hΛk
‖2

Proof.
Let u and v be unit norm k-sparse with disjoint support I and J
then ‖Au ± Av‖2 = ‖AI∪J(u + v)‖2 and using RIC bounds for 2k

(1− L2k)‖u + v‖2
2 ≤ ‖AI∪J(u + v)‖2

2 ≤ (1 + U2k)‖u + v‖2
2

with u and v disjoint unit norm we have ‖u + v‖2
2 = 2.

Substituting the above upper and lower bounds into the following

|(Au)∗Av | = 1

4

∣∣‖Au + Av‖2
2 − ‖Au − Av‖2

2

∣∣
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`1-regularization (proof, pg. 4: Show ‖hΛ01
‖2“small”)

First note that:

‖Ah‖2 = ‖A(x? − x0)‖2 ≤ ‖Ax? − y‖2 + ‖y − Ax0‖2 ≤ 2‖e‖

Bound ‖hΛ01‖2 through upper and lower bounds on ‖AhΛ01‖2
2

Begin with the upper bound:

‖AhΛ01‖
2
2 = (AhΛ01)

∗

Ah −
∑
j≥2

AhΛj


≤ ‖AhΛ01‖2 · ‖Ah‖2

+
∑
j≥2

[(AhΛ0)
∗AhΛj

+ (AhΛ1)
∗AhΛj

]

≤ (1 + U2k)1/2‖hΛ01‖2 · 2‖e‖

+
U2k + L2k

2
(‖hΛ0‖2 + ‖hΛ1‖2)

∑
j≥2

‖hΛj
‖2
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`1-regularization (proof, pg. 5: Show ‖hΛ01
‖2“small”)

Continue upper bound using ‖hΛ0‖2 + ‖hΛ1‖2 ≤
√

2‖hΛ01‖2

‖AhΛ01‖
2
2 ≤ 2(1 + U2k)1/2‖hΛ01‖2 · ‖e‖

+

√
2

2
(U2k + L2k)‖hΛ01‖2k

−1/2‖hΛc
0
‖1 (2)

Lower bound ‖AhΛ01‖2
2 using simple RIP bound

(1− L2k)‖‖hΛ01‖
2
2 ≤ ‖AhΛ01‖

2
2

Stating lower and upper bound of ‖AhΛ01‖2
2 and divide by ‖hΛ01‖2

(1− L2k)‖‖hΛ01‖2 ≤ 2(1 + U2k)‖e‖2 +

√
2

2
(U2k + L2k)k−1/2‖hΛc

0
‖1
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`1-regularization (proof, pg. 6: Show ‖hΛ01
‖2“small”)

Recall

‖hΛc
0
‖1 ≤ ‖hΛ0‖1 ≤ k1/2‖hΛ0‖2 ≤ k1/2‖hΛ01‖2

and substitute into bound of ‖hΛ01‖2 from prior slide gives

(1− L2k)‖‖hΛ01‖2 ≤ 2(1 + U2k)‖e‖2 +

√
2

2
(U2k + L2k)‖hΛ01‖2

If 1− L2k < (U2k + L2k)2−1/2, solving for ‖hΛ01‖2 gives bound

‖hΛ01‖2 ≤
(
1− µ`1

)−1 2(1 + U2k)1/2

1− L2k
· ‖e‖2

where µ`1
:= 2−1/2(U2k + L2k)/(1− L2k) < 1
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`1-regularization (proof, pg. 7: putting it all together)

The goal was to bound ‖x? − x0‖2
2 = ‖h‖2

2 = ‖hΛ01‖2
2 + ‖hΛc

01
‖2
2

Using ‖hΛc
01
‖2
2 ≤ ‖hΛ01‖2

2 and bound on ‖hΛ01‖2 obtain

‖x? − x0‖2 ≤
√

2
(
1− µ`1

)−1 2(1 + U2k)1/2

1− L2k
· ‖e‖2

Let ξ`1
:= 23/2(1 + U2k)1/2/(1− L2k) and have standard form

‖x? − x0‖2 ≤
ξ`1

1− µ`1 ‖e‖2

recovery guarantee provided µ`1
< 1.
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How to interpret this result, should we be happy?

I Optimal order if L3k ,U3k bounded for k ∼ m and m ∼ n

I There are random matrices what w.h.p. have Lk ,Uk bounded!

I When is µiht := 2 max(L3k ,U3k) < 1

I Many algorithms with bounds of this form, which to use?

I To answer these questions need to have bounds on the RICs.

I Previous CaTa05 bounds insufficient for reasonable k
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RIC bounds for Gaussian N (0, m−1) [BaTa10, BlCaTa09]

(1− L(δ, ρ))‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + U(δ, ρ))‖x‖2
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I Using Wishart Distributions and groupings

I Less than 1.57 times empirically observed values
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RIC bounds for Gaussian N (0, m−1)[BaTa10, BlCaTa09]
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I Empirical draw with n = 400, consistent with n = 200, 800

I Local searches for local extremal singular values: algorithms of
Richtarik (U) and Dossal et al (L).
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RIC bounds for Gaussian N (0, m−1): [BlCaTa09]

Theorem
Am,n entries are drawn i.i.d. from the Gaussian normal N (0, 1/m).
Let δm = m/n and ρm = k/m. For any fixed ε > 0, in the limit as
δm → δ ∈ (0, 1) and ρm → ρ ∈ (0, 1) as m →∞ ,

P(Lk < LBCT (δ, ρ)− ε) → 1 and P(Uk < UBCT (δ, ρ) + ε) → 1

exponentially in m.

LBCT (δ, ρ) (left panel) and UBCT (δ, ρ) (right panel).
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Definition of BCT bounds
Let H(p) := p log(1/p) + (1− p) log(1/(1− p)) denote the usual
Shannon Entropy with base e logarithms, and let

ψmin(λ, ρ) := H(ρ) +
1

2
[(1− ρ) log λ+ 1− ρ+ ρ log ρ− λ] ,

ψmax(λ, ρ) :=
1

2
[(1 + ρ) log λ+ 1 + ρ− ρ log ρ− λ] .

Define λmin(δ, ρ) and λmax(δ, ρ) as the solution to (3) and (4),
respectively:

δψmin(λ
min(δ, ρ), ρ) + H(ρδ) = 0 for λmin(δ, ρ) ≤ 1− ρ (3)

δψmax(λ
max(δ, ρ), ρ)+H(ρδ) = 0 for λmax(δ, ρ) ≥ 1+ ρ. (4)

Define LBCT (δ, ρ) and UBCT (δ, ρ) as

LBCT (δ, ρ) := 1−λmin(δ, ρ) and UBCT (δ, ρ) := min
ν∈[ρ,1]

λmax(δ, ν)−1.
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RIC bounds for N (0, m−1) (proof, pg. 1: largest)

Begin with behaviour of largest singular value[Edelman88]
Let AΛ be a matrix of size m × k whose entries are drawn i.i.d
from N (0,m−1). Let fmax(k,m;λ) denote the probability density
function for the largest eigenvalue of the Wishart matrix AT

Λ AΛ of
size k × k. Then fmax(k,m;λ) satisfies:

fmax(k,m;λ) ≤

[
(2π)1/2(mλ)−3/2

(
mλ

2

)(m+k)/2 1

Γ(k
2 )Γ(m

2 )

]
·e−mλ/2

Large deviation (large k and m) behavior of fmax , apply m−1 log(·)

1

2

[
(1 + ρm) log λ−

(
ρm −

1

m

)
log ρm +

2

m
log

m

2
+ 1 + ρm − λ

]
.

Large m limit gives exponential behaviour ψmax(λ, ρ)
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RIC bounds for N (0, m−1) (proof, pg. 2: smallest)

Smallest singular value [Edelman88] similarly
Let fmin(k,m;λ) denote the probability density function for the
smalles eigenvalue of the Wishart matrix AT

Λ AΛ of size k × k.
Then fmin(k,m;λ) bounded above by:

≤
( π

2mλ

)1/2
· e−mλ/2

(
mλ

2

)(m−k)/2

·

[
Γ(m+1

2 )

Γ(k
2 )Γ(m−k+1

2 )Γ(m−k+2
2 )

]

Large deviation (large k and m) behavior of fmin, apply m−1 log(·)

ψmin(λ, ρm) := H(ρm)+
1

2
[(1− ρm) log λ+ ρm log ρm + 1− ρm − λ] .

Large m limit gives fmin(k,m;λ) ≤ exp[m · ψmin(λ, ρ)]

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds for N (0, m−1) (proof, pg. 3: union bound)

Have bounds on PDFs of largest and smallest eigenvalues:

fmax(k,m;λ) ≤ exp[m·ψmax(λ, ρ)] fmin(k,m;λ) ≤ exp[m·ψmin(λ, ρ)]

with

ψmin(λ, ρ) := H(ρ) +
1

2
[(1− ρ) log λ+ 1− ρ+ ρ log ρ− λ] ,

ψmax(λ, ρ) :=
1

2
[(1 + ρ) log λ+ 1 + ρ− ρ log ρ− λ] .

Note: limλ↓0 ψmin(λ, ρ) → −∞ and limλ↑∞ ψmax(λ, ρ) → −∞

Apply union bound over
(n
k

)
∼ exp(n · H(δρ) sets

Solve zero level curve of exponent to get λmin(δ, ρ) and λmax(δ, ρ)
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Improve bounds further through grouping

Set r =
(n
k

)(p
k

)−1
and draw u := rn sets Mi each of cardinality p,

drawn uniformly at random from the
(n
p

)
possible p-sets.

Let G be the union of all u groups,

Prob

(
|G | <

(
n

k

))
< C (k/n)n−1/2e−n(1−ln 2)

where C (z) ≤ 5
4(2πz(1− z))(−1/2).

Proof.
Select one set K ⊂ 1, 2, . . . ,N of cardinality |K | = k, draw of the
sets Mi . The probability that K is not contained in Mi is 1/r .
Probability K is not in any of the u sets Mi is (1− r−1)u ≤ e−u/r .
Applying a union bound over all

(n
k

)
sets K bounds

Prob

(
|G | <

(
n

k

))
<

(
n

k

)
e−u/r .

Stirling’s Inequality:
( n
zn

)
≤ 5

4(2πz(1− z)n)(−1/2)enH(z)

Note that H(z) ≤ ln 2 for z ∈ [0, 1], and substituting u.
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Algorithms for Sparse Approximation

Input: A, y , and possibly tuning parameters

I `q-regularization (for q ∈ (0, 1]):

min
x
‖x‖`q subject to ‖Ax − y‖2 ≤ τ

I Simple Iterated Thresholding:

x t+1 = Hk(x t + κAT (y − Ax t))

I Two-Stage Thresholding (Subspace Pursuit, CoSaMP):

v t+1 = x t+1 = Hαk(x t + κAT (y − Ax t))

It = supp(v t) ∪ supp(x t) Join supp. sets

wIt = (AT
It AIt )

−1AT
It y Least squares fit

x t+1 = Hβk(w t) Second threshold

When does RIP guarantee they work?
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Phase transition (lower bounds) implied by RIP

Theorem: Let y = Ax + e for any k-sparse x and with A
N (0,m−1) iid. Define ρalg

S (δ) as the solution to µalg (δ, ρ) = 1.

For any ε > 0, as (k,m, n) →∞ with m/n → δ ∈ (0, 1) and

k/m → ρ < (1− ε)ρalg
S (δ), there is an exponentially high

probability on the draw of A that after l iterations, the algorithm
output x̂ approximates x within the bound

‖x − x̂‖2 ≤
[
µalg (δ, ρ)

]l
‖x‖2 +

ξalg (δ, ρ)

1− µalg (δ, ρ)
‖e‖2.

Moreover, if e = 0, algorithm recovers x exactly in no more than

`algmax(x) :=

⌈
log ν∞(x)

logµalg (δ, ρ)
+ 1

⌉
iterates.
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Lemma to show, naive replacement of bounds is ok

For some τ < 1, define the set Z := (0, τ)p × (0,∞)q and let F : Z → R
be continuously differentiable on Z. Let A be m× n with aRIP constants
L(·,m, n),U(·,m, n) and let L(δ, ·),U(δ, ·) be their bounds. Define 1 to
be the vector of all ones, and
z(k,m, n) := [L(k,m, n), . . . , L(pk,m, n),U(k,m, n), . . . ,U(qk,m, n)]

z(δ, ρ) := [L(δ, ρ), . . . , L(δ, pρ),U(δ, ρ), . . . ,U(δ, qρ)].

Suppose, for all t ∈ Z, (∇F [t])i ≥ 0 for all i = 1, . . . , p + q and for any
v ∈ Z we have ∇F [t] · v > 0. Then for any cε > 0, as (k,m, n) →∞
with m/n → δ, k/n → ρ, there is an exponentially high probability on the
draw of the matrix A that

Prob (F [z(k,m, n)] < F [z(δ, ρ) + 1cε]) → 1 as n →∞.

I Let F be µ or µ
1−ξ

I Can replace (k,m, n) by (δ, ρ) bound and O(ε)
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and so there is an exponentially high probability on the draw of A that

Prob (F [z(k, n,N)] < F [z(δ, (1 + ε)ρ)]) → 1 as n →∞.

I Can absorb the O(ε) inside ρ component.
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Iterated Hard Thresholding
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I Success can only be guaranteed below µ(δ, ρ) < 1.

Bounding stability and complexity gives yet lower thresholds.
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CoSaMP
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Bounding stability and complexity gives yet lower thresholds.
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`q-regularization, µ/(1− ξ)
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Best known bounds implied by RIP [BlCaTaTh09]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

δ

ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

δ

ρ

I Lower bounds on the Strong exact recovery phase transition
for Gaussian random matrices for the algorithms
`1-regularization, IHT, SP, and CoSaMP (black).
• Unfortunately recovery thresholds are impractically low.
m > 317k, m > 907k, m > 3124k, m > 4925k

I Coherence and RICs of structured encoders go to zero.

I Targeted techniques give more precise results, m > 5.9k.
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Best known bounds implied by RIP, asymptotic [BaTa11]
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I Lower bounds on the Strong exact recovery phase transition
for Gaussian random matrices for the algorithms
`1-regularization, IHT, SP, and CoSaMP (black).
• Asymptotic recovery condition for m > γk log(n/m)
γ = 36, γ = 93, γ = 272, γ = 365

I RIP analysis of OMP yields m > 6k2 log(n/k), seems sharp.

I Targeted techniques give more precise results, γ = 2e for `1.
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Theory inadequate for many algorithms, experiment!

I Experimental testing of universality for ρW (δ,C ) and
ρW (δ,T ) via embarrassingly parallel on 1400 node cluster.

I HPC specific GPUs are a major advance in computing power,
c2050 1 TeraFlop/s, top UK computer in 2002 was 2TF/s

I Many core, 448 on c2050, requires careful use of parallelism

I NIHT experimental setup:

I Single precision, matrix-vector multiplication via DCT
I Fast support set detection via linear binning

Not all bins counted in initial steps, effective k smaller initially
Avoid counting bins for small values to avoid long queues
Avoid rebinning when support set couldn’t have changed.
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Computing environment

CPU:

I Intel Xeon 5650 (released March 2010)

I 6 core, 2.66 GHz

I 12 GB of DDR2 PC3-1066, 6.4 GT/s

I Matlab 2010a, 64 bit (inherent multi-core threading)

GPU:

I NVIDIA Tesla c2050 (release April 2010)

I 448 Cores, peak performance 1.03 Tflop/s

I 3GB GDDR5 (on device memory)

I Error-correction
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Check that NIHT still performs similarly

I GPU: GPU NIHT

I CPU1: same as used on GPU, but on CPU in matlab

I CPU2: standard CPU matlab implementation
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Timings of NIHT

I GPU: GPU NIHT

I CPU1: same as used on GPU, but on CPU in matlab

I CPU2: standard CPU matlab implementation
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Acceleration of NIHT

I GPU workstation (4 card) equivalent to ≈ 1000 node cluster

I Computing resources allows large scale testing of algorithms

I Empirical investigation of phase transition and other properties
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Empirical analysis of NIHT, δ = 0.25

I Logit fit, exp(β0+β1k)
1+exp(β0+β1k) , of data collected of about 105 tests

I ρniht
W (1/4) ≈ 0.25967

I Transition width proportional to m−1/2

I Can also extract iterations, time, convergence rate...
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The polytope model and face survival

There are three high dimensional regular polytopes.
Each can be used to model compressed sensing questions

I Crosspolytope Cn := ‖x‖1 ≤ 1
models `1-regularization

I Simplex T n−1 :=
∑n

i=1 xi ≤ 1 with xi ≥ 0 for all i
models `1-regularization with sign prior

I Hypercube Hn := ‖x‖∞ ≤ 1
models bound constraints, different notion of simplicity

Lemma
F a k-face of the polytope or polyhedral cone Q and x0 a vector in
relint(F ). For m × n matrix A the following are equivalent:

(Survive(A,F ,Q)): AF is a k-face of AQ,
(Transverse(A, x0,Q)): N (A) ∩ Feasx0(Q) = {0}.
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Explaining the models

I Crosspolytope Cn := ‖x‖1

If x0 ∈ Rn is on a k-face of Cn and N (A) ∩ Feasx0(C
n) = {0}

then x0 has the minimum `1 norm and y = Ax0.

I Simplex T n−1 :=
∑n

i=1 xi ≤ 1 with xi ≥ 0 for all i
If If x0 ∈ Rn

+ is on a k-face of T n−1 and
N (A) ∩ Feasx0(T

n−1) = {0} then x0 has the minimum `1

norm with nonnegative prior and y = Ax0.

I Hypercube Hn := ‖x‖∞ ≤ 1
If x0 ∈ Rn is on a k-face of Hn and N (A) ∩ Feasx0(H

n) = {0}
then x0 has the minimum `∞ norm, and is the unique vector
satisfying Hn bounds and y = Ax0.

Graphical representation for `1-regularization and Crosspolytope
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Geometry of `1-regularization, Rn

I Sparsity: x0 ∈ Rn with k < m nonzeros on k − 1 face of Cn.

I Null space of A intersects Cn at only x0, or pierces Cn

`1 ball ∈ Rn x0 +N (A) ‖A(x − h)‖ ≤ η

I If {x0 +N (A)}
⋂

Cn = x0, `
1 minimization recovers x0

I Faces pierced by x0 +N (A) do not recover k sparse x0
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Geometry of `1-regularization, Rm

I Sparsity: x0 ∈ Rn with k < m nonzeros on k − 1 face of Cn.

I Matrix A projects face of `1 ball either onto or into conv(±A).

`1 ball ∈ Rn edge onto ACn edge into ACn

I Survived faces are sparsity patterns in x where `1 → `0

I Faces which fall inside ACn are not solutions to `1

I Neighborliness of random polytopes [Affentranger & Schneider]

I Exact recoverability of k sparse signals by “counting faces”
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Stochastic geometry and uniform recovery

I Convex hull of n points in m dimensions

I ai ∈ Rm: i = 1, 2, . . . n

I P = conv(A)

I Definition of A being k−neighborly:

I Every ai is a vertex of conv(A)
I Every pair (ai , aj) span an edge of conv(A)
I Every k−tuple of A span a k − 1 face of conv(A)

I Cyclic Polytopes are maximally bm/2c−neighborly,
Vandermonde

I Gale (1956) suggested most polytopes are neighborly
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Classical Result - m fixed

I Convex hull of n points in m dimensions

I ai ∈ Rm: i = 1, 2, . . . n

I P = conv(A)

I Classically: ai i.i.d. Gaussian N(0,Σ), m fixed

# vert(P) ∼ cm log(m−1)/2 n, n →∞.

I Not even 0−neighborly
I Renyi-Sulanke (1963), Efron (1965),

Raynaud (1971), Hueter (1998)

I Is this the typical structure for a random polytope?
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Proportional growth

I Modern high-dimensional setting:
ai ∈ Rn iid Gaussian N(0,Σ)
δ = m/n ∈ (0, 1), m and n large

I Surprise - neighborliness proportional to m is typical

Prob{conv(A) is k − neighborly} → 1, as m, n →∞

for k < ρS(m/n;T ) ·m, [DoTa05].

I What is ρS(m/n;T )?

I Similarly for Cn (central neighborliness) and Hn (zonotope)

I For Cn known that ρS(m/n;C ) ≤ 1/3, unknown construction

I Nice model, but how do we calculate ρS(m/n;Q)?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing
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Expected number of faces, random ortho-projector

fk(Q)− Efk(AQ) = 2
∑
s≥0

∑
F∈Fk (Q)

∑
G∈Fm+1+2s(Q)

β(F ,G )γ(G ,Q)

where β and γ are internal and external angles respectively
[Affentranger, Schneider]
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I Hypercube is easily to calculate angles, others less so

γ(T `,Tm−1) =

√
`+ 1

π

∫ ∞

0
e−(`+1)x2

(
2√
π

∫ x

0
e−y2

dy

)n−`−1

dx .
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Hypercube angles and face counting [DoTa08]

I Faces of Hn are all hypercubes

I β(Hk ,H`) = 2−(`−k) for all Hk ∈ H`

I γ(H`,Hn) = 2−(n−`) for all H` ∈ Hn

I For a given Hk , the number of Hk ∈ H` ∈ Hn is
(n−k

`−k

)
.

fk(Hn)−Efk(AHn) = 2
∑
s≥0

∑
F∈Fk (Hn)

2−(n−k)

(
n − k

m + 1 + 2s − k

)

I There are 2n−k
(n
k

)
different k-faces of Hn

fk(Hn)− Efk(AHn) = 2

(
n

k

)∑
s≥0

(
n − k

m + 1 + 2s − k

)
I Compare s = 0 with fk(Hn) = 2n−k

(n
k

)
, most faces survive
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Hypercube weak and strong phase transitions [DoTa08]

I Weak phase transitions separate when most k-faces survive

fk(Hn)− Efk(AHn)

fk(Hn)
= 2−(n−k−1)

∑
s≥0

(
n − k

m + 1 + 2s − k

)
I Main effect from s = 0 (bound by n times s = 0 factor)

I When is 2−(n−k)
(n−k
m−k

)
exponentially small?

Combinatorial term largest at m − k = n−k
2 , then = 2(n−k)

I Weak phase transitions ρW (δ;H) := max(0, 2− δ−1)

I No strong phase transition (proof to come)

I Hypercube is sufficiently simple we can say much more, later
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Large k ∼ m ∼ n behavior of C n and T n−1 angles

Exemplify through one angle, the external angle between simplices

γ(T `,Tm−1) =

√
`+ 1

π

∫ ∞

0
e−(`+1)x2

(
2√
π

∫ x

0
e−y2

dy

)n−`−1

dx .

Define internal (dy) integral as Φ(x) := 2√
π

∫ x
0 e−y2

dy , then(
2√
π

∫ x

0
e−y2

dy

)n−`−1

= exp[(n − `− 1) ln(Φ(x))]

Full integral then given by

γ(T `,Tm−1) =

√
`+ 1

π

∫ ∞

0
e−(`+1)x2+(n−`−1) ln(Φ(x))dx

Integrand maximized at −2`x + (n − `)Φx(x)/Φ(x) = 0
Let ν := `/n and xν satisfies 2xν = (ν−1 − 1)Φx(xν)/Φ(xν)
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Large deviation exponent of external simplex angle

I Bound using dominant exponential behavior

γ(T `,Tm−1) =

√
`+ 1

π
e−n[νx2

ν+(1−ν) ln(Φ(xν))]

∫ ∞

0
e−x2−ln(Φ(x))dx

I
√

(`+ 1)/π and remaining integral have small effect,

I Dominant effect in sum given at ν = ρ

I Large deviation exponent Ψext(ρ) := νx2
ν + (1− ν) ln(Φ(xν))
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I Other angles and combinatorial terms similarly
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Probability exponents for C n and T n−1

fk(Q)− Efk(AQ) = 2
∑
s≥0

∑
F∈Fk (Q)

∑
G∈Fm+1+2s(Q)

β(F ,G )γ(G ,Q)
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Figure 6.1. Panel (a): Contours of ∂
∂ρ (Ψnet − Ψface)(δ, ρ; T ).

Panel (b): Level sets of − ∂2

∂ρ2 (Ψnet − Ψface)(δ, ρ; T )) (log10 scale).

The magenta curve in Panel (b) indicates the location (δ, ρ) of
minimum value attained in each constant-δ section. Both panels
include overlays of ρW (δ; C) (blue) and ρW (δ; T ) (black).

and

(7.3)
d2

dγ2
yγ =

−1

4
γ−3/2 (1 + r4(γ)) , with |r4(γ)| < 79γ.

These results are developed below in the following order. Expansion (7.1) is
obtained in Section 7.1 from properties of Laplace’s asymptotic series. Once (7.1)
has been established, we invoke the exact expressions for ṡγ and ẏγ :

ẏγ =
sγ(1 − γ) + γṡγ

(1 − γ)2
with ṡγ = (γsγ − (1 − γ)s−1

γ )−1.

(These follow from the definitions of sγ and yγ in (5.3)). We obtain the bound (7.2)
by simply combining (7.1) and bounds for (1− γ)−α with these expressions.

The bounds for (7.3), (5.8), and (5.9) are arrived at similarly. We made no effort
to carefully control the size of the constants in remainder terms in Lemmas 7.1 and
5.3. We have observed numerically that setting the remainder terms to zero yields
approximations which are surprisingly accurate over ranges of γ much larger than
might be expected for such asymptotic approximations.

7.1. Proof of (7.1). We develop (7.1) in two stages. Initially, we develop the
asymptotic behavior of sγ as γ → 0; then we substitute it into equation (5.3). Our
approximation of sγ uses the asymptotic series for R(s)

R(s) := ses2/2

∫ ∞

s
e−y2/2dy = 1 −

1

s2
+

1 · 3
s4

−
1 · 3 · 5

s6
+

1 · 3 · 5 · 7
s8

+ · · · ;

appropriate for the regime of s large. To obtain this series, note that R(s) =
s·Mills(s) for s > 0, where Mills(s) is the usual Mills’ ratio for the standard normal
distribution. The corresponding asymptotic series for Mills’ ratio is developed in
[14, Secs 5.37,5.38]; H. Ruben [16] credits this series to Laplace. In [14, Eq. (5.106)]

I Strong Phase transitions (uniform bounds)

fk(Q)− Efk(AQ) ≤ poly(m, n) · exp(−nΨnet(δ, ρ;Q))

I Weak Phase transitions (average performance)

fk(Q)− Efk(AQ)

fk(Q)
≤ poly(m, n)·exp(−n(Ψnet−Ψface)(δ, ρ;Q))

I Widths of phase transitions: Strong m−1 and Weak m−1/2
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Phase Transition: `1 ball, C n [Do05]
I With overwhelming probability on measurements Am,n:

for any ε > 0, as (k,m, n) →∞
• All k-sparse signals if k/m ≤ ρS(m/n,Cn)(1− ε)
• Most k-sparse signals if k/m ≤ ρW (m/n,Cn)(1− ε)
• Failure typical if k/m ≥ ρW (m/n,Cn)(1 + ε)
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I Finite n sampling theorems proven, empirical agreement

I For m � n requires m > 2(e)k · log(n/m)
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Phase Transition: Simplex, T n−1, x ≥ 0 [DoTa05]

I With overwhelming probability on measurements Am,n:
for any ε > 0, x ≥ 0, as (k,m, n) →∞
• All k-sparse signals if k/m ≤ ρS(m/n,T n−1)(1− ε)
• Most k-sparse signals if k/m ≤ ρW (m/n,T n−1)(1− ε)
• Failure typical if k/m ≥ ρW (m/n,T n−1)(1 + ε)
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Weak Phase Transitions: Observed Universality [DoTa09]

I Black: Weak phase transition: x ≥ 0 (top), x signed (bot.)

I Empirical evidence of 50% success rate, n = 1600,
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I Rigorous statistical testing of non-Gaussian vs. Gaussian

I Over 7 cpu years of data collected
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Bulk Z -scores: signed
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I n = 200, n = 400 and n = 1600

I Linear trend with δ = m/n, decays at rate m−1/2
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Bulk Z -scores: nonnegative
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Hypercube: universality result [DoTa09]

Theorem
Let A be an m × n matrix in general position. Then

fk(AHn) = (1− Pn−m,n−k)fk(Hn)

where

Pq,Q = 2−Q+1
q−1∑
`=0

(
Q − 1

`

)
.

I Universal: for every general position matrix (worse if not g.p.)

I Finite dimensional and exact

Theorem (Cover & Winder)
A set of Q hyperplanes in general position in Rq, all passing
through a common point, divides the space into 2QPq,Q regions.
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Hypercube: universality result (proof)

I Consider a k-set Λ. For each k-face whose entries are not at
bounds on Λ, translate (without rotation) FeasF (Λ)(H

n) so
that its “spine” is at the origin.

I The union of these FeasF (Λ)(H
n) is a covering of Rn with

n − k hyperplanes used to partition it

I There are
(n
k

)
of these Λ coverings

I The N (A) is n −m dimensional passing through the origin
and is bisected by the n − k planes

(n
k

)
times

I Each region of N (A) corresponds to a k-face where
FeasF (Λ)(H

n)
⋂
N (A) 6= 0, a lost k-face

fk(Hn)− fk(AHn) =

(
n

k

)
2n−kPn−m,n−k = fk(Hn)Pn−m,n−k
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bounds on Λ, translate (without rotation) FeasF (Λ)(H

n) so
that its “spine” is at the origin.

I The union of these FeasF (Λ)(H
n) is a covering of Rn with

n − k hyperplanes used to partition it

I There are
(n
k

)
of these Λ coverings

I The N (A) is n −m dimensional passing through the origin
and is bisected by the n − k planes
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Phase Transition [DoTa09]: Hypercube, Hn

I Let −1 ≤ x ≤ 1 have k entries 6= −1, 1 and form y = Ax .

I Are there other z ∈ Hn[−1, 1] such that Az = y , z 6= x?

I As m, n →∞, Typically No provided k/m < ρW (δ;H)
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Unique: most signals

!
W

I Unlike R, T and C : no strong phase transition, fk(Hn) large

I Universal: A need only be in general position

I Simplicity beyond sparsity: Hypercube k-faces correspond to
vectors with only k entries away from bounds (not -1 or 1).
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Orthant: centro-symmetric result

Theorem
Let A be an m × n matrix in general position with a
centro-symmetric nullspace and exchangeable columns. Then

Efk(ARn
+) = (1− Pn−m,n−k)fk(Rn

+)

I Similar to hypercube, but in expectation

Theorem (Wendel)
Let Q points in Rq be drawn i.i.d. from a centro-symmetric
distribution such that the points are in general position, then the
probability that all the points fall in some half space is Pq,Q .
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Orthant: centro-symmetric result (proof)

I Let x ≥ 0 have k entries xi > 0 and form y = Ax ;
xΛc > 0 for |Λc | = k, xΛ = 0.

I Not unique if ∃ z ∈ N (A) with zΛ ≥ 0

I Let B ∈ Rn,n−k be a basis for N (A), then z = Bc for some c .

I Not unique if (BT c)Λ ≥ 0 where |Λ| = n − k.

I Geometrically, not unique if n − k row of BT fall in
some half-space of Rn−m.

I For rows of B drawn iid from centro-symmetric, row
exchangeable, in general position: Wendel’s Theorem

I Probability of failure is

2−n+k+1
n−m−1∑

`=0

(
n − k − 1

`

)
I Probability of failure → 0 if n −m − 1 < (n − k − 1)/2.
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Projected Orthant [DoTa09]

I Let x ≥ 0 be k-sparse and form y = Ax .

I Are there other z ∈ Rn such that Az = y , z ≥ 0, z 6= x?

I As m, n →∞, Typically No provided k/m < ρW (δ; R+)
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all signals

Unique: most signals

!
S

!
W

I Universal: A an ortho-complement of B ∈ Rn−m×n with
entries selected i.i.d. from a symmetric distribution

I For k/m < ρW (δ,Hn) := [2− 1/δ]+ and x ≥ 0,
any “feasible” method will work.
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Projected Orthant, matrix design [DoTa09]

I Let x ≥ 0 be k-sparse and form y = Ax .

I Are there other z ∈ Rn such that Az = y , z ≥ 0, z 6= x?

I As m, n →∞, Typically No provided k/m < ρW (δ; R+)
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Unique: all signals

Unique: most signals

!
W

!
S

I Gaussian and measuring the mean (row of ones):
ρW (m/n; R+) → ρW (m/n;T )

I Simple modification of A makes profound difference
Unique even for m/n → 0 with m > 2(e)k log(n/m)
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Orthant matrix design, it’s really true

I Let x ≥ 0 be k-sparse and form y = Ax .

I Not `1, but: maxy ‖x − z‖ subject to Az = Ax and z ≥ 0

I Good empirical agreement for n = 200.
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Simplicity as low rank

I Sparse approximation considers sparsity or bound simplicity

I Matrix completion considers low rank simplicity

I Main innovation isn’t low rank simplicity, but unknown space

I Matrices that have low rank representation in a known basis
Definition. A matrix M has a k-sparse representation in the
matrix dictionary Ψ := {Ψj}n

j=1 if

M =
∑

j

x0(j)Ψj with ‖x0‖`0 = k.

I How should we sense M?

I Let M model a channel and h a known “pilot vector”

I Sense channel M by sending h, recover M from Mh and h
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Matrices with known sparse representation [PfRaTa08]

I Sense channel M by sending h, recover M from Mh and h

Mh =
( N∑

j=1

x0(j)Ψj

)
h =

n∑
j=1

x0(j)
(
Ψjh

)
= (Ψ1h |Ψ2h | . . . |Ψnh) x =: (Ψh)x0

where (Ψh) = (Ψ1h |Ψ2h | . . . |Ψnh).

I Let y = Mh and A = Ψh and we are back to usual CS

I Exemplar applications: wireless communication and sonar
Seeking channel for detection or repair channel corruption
Model channel as a few dominant translations (delays) and
modulations (reflections/dopler) and let Ψnh be Gabor
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Matrix completion oracle recovery

I Sensing of matrices M ∈ Rn1×n2 with rank(M) = r .

I Then M = UΣV T for U ∈ Rn1×r with orthonormal columns,
Σ ∈ Rr×r diagonal, and V ∈ Rn2×r with orthonormal columns

I What is the dimensionality of a rank r matrix?
There are n1r + n2r + r values in U, Σ, and V
Orthogonality of columns in U and V impose r2 + r
constraints

I Dimensionality of rank r matrices is r(n1 + n2 − r), not n1n2

I If r(n1 + n2 − r) � n1n2 then maybe can exploit low
dimensionality for a form of compressed sensing

I Need at least m ≥ min(r(n1 + n2 − r), n1n2) measurements

I How can we sense and recover matrices with optimal order?
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Sensing in matrix completion

I Sensing in compressed sensing via inner products (vectors):
• good idea - vectors that do not have sparse representation
in the same basis as the vector being sensed
• bad idea - point sensing a k-sparse vector

I Matrix completion is no different, inner products (matrices):
• good idea - matrices that do not have low rank
representation in the same U and V column and row space
• bad idea - point sensing a matrix that is sparse, low rank in
point entries

I Designate A the linear sensing operator from Rn1×n2 → Rm

I Measurements y = A(M) where yp =
∑

i ,j A(p)i ,jMi ,j

I Standard choices for A(p): point sensing via one nonzero or
dense sensing via i.i.d. centro-symmetric distribution
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Algorithms for matrix completion

I Given A and y = A(M0), how to recover M0

I Convex relaxation notion
• Compressed sensing replaced min ‖x‖0 s.t. y = Ax with
smallest convex relaxation min ‖x‖1 s.t. y = Ax .
• Matrix completion uses the obvious same replacement of
min rank(M) s.t. y = A(M) with smallest convex relaxation
min ‖M‖∗ s.t. y = A(M).

I Iterative hard thresholding
• CS used steepest descent on ‖y − Ax‖2, restrict ‖x‖0 = k
• Matrix completion uses steepest descent on ‖y −A(M)‖F

then restrict to rank(M) = r

I Any of the algorithmic ideas from CS can be extended to
Matrix completion using the obvious related property
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Analysis of matrix completion algorithms: coherence

I Coherence µ if all three satisfied [Candés and Recht]
(let n := max(n1, n2))

max
i

r∑
j=1

U2
i ,j ≤ µ

r

n

max
i

r∑
j=1

V 2
i ,j ≤ µ

r

n

max
i ,k

∣∣∣∣∣∣
r∑

j=1

Ui ,jVk,j

∣∣∣∣∣∣ ≤ µ
r

n

Theorem
If given p ≥ c · µrn6/5 log n entries of M then with high
probability on M, nuclear (Schatten) norm recovers M.
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Analysis of matrix completion algorithms: RICs

I Matrix completion version of RICs, for all M with rank(M) = r

(1− Rr (A))‖M‖F ≤ ‖A(M)‖2 ≤ (1 + Rr (A))‖M‖F

Theorem
Let rank(M0) ≤ r , y = A(M0), and R2r (A) < 1, then M0 is
the matrix of minimum rank satisfying y = A(M), and is the
minimizer of the minimum rank decoder.

Theorem (Recht, Fazel, Parrilo)
Let rank(M0) = r , y = A(M0), and R5r (A) < 1/10, then

M0 = argminM‖M‖∗ subject to y = A(M).
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Nuclear norm recovery guarantee via RIC (proof, pg. 1)

I Follow proof for `1-regularization, but with matrices
I Need to decompose null-space matrix

Lemma
Let A and B be matrices with the same dimensions. There exist
matrices B1 and B2 with B = B1 + B2, AB∗

2 = 0 and A∗B2 = 0,
and < B1,B2 >= 0, and rank(B1) ≤ 2rank(A).

Proof. Let A have a full SVD A = UΣV ∗. Let B̂ = U∗BV and
partition it into blocks

B̂ =

[
B̂11 B̂12

B̂21 B̂22

]
with B̂11 square of size rank(A), then

B1 := U

[
B̂11 B̂12

B̂21 0

]
V ∗ and B2 := U

[
0 0

0 B̂22

]
V ∗
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Nuclear norm recovery guarantee via RIC (proof, pg. 2)

Let X ? = argminX‖X‖∗ s.t. y = A(X )
Let R = X ? − X0. By X ? being the argmin:

‖X0‖∗ ≥ ‖X0+R‖∗ ≥ ‖X0+Rc‖∗−‖R0‖∗ = ‖X0‖∗+‖Rc‖∗−‖R0‖∗

which yields ‖R0‖∗ ≥ ‖Rc‖∗. (analogous to NSP)
Partition Rc into matrices of rank R1, R2, . . ., with R1 having the
largest 3r singular values of Rc , R2 the next largest 3r singular
values...
Compare largest singular value in set i + 1 with average in set i

max(σ(Ri+1)) ≤
1

3r

∑
σ(Ri ) =⇒ ‖Ri+1‖2

F ≤
1

3r
‖Ri‖2

∗.
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Nuclear norm recovery guarantee via RIC (proof, pg. 3)

Use norm relations and rank(R0) ≤ 2r to derive bound

∑
j≥2

‖Rj‖F ≤
1√
3r

∑
j≥1

‖Rj‖∗ =
1√
3r
‖Rc‖∗ ≤

1√
3r
‖R0‖∗ ≤

√
2r√
3r
‖R0‖F

Use RICs with bound from below

‖A(R)‖2 ≥ ‖A(R0 + R1)‖2 −
∑
j≥2

‖A(Rj)‖

≥ (1− R5r )‖R0 + R1‖F − (1 + R3r )
∑
j≥2

‖Rj‖F

≥ ((1− R5r )−
√

2

3
(1 + R3r ))‖R0‖F (5)

If the factor multiplying ‖R0‖F is positive, and by construction
A(R) = 0 we must have R = 0.
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Matrices having bounded RICs

Concentration of measure bounds analogous to before
If the entries in A is a map from Rn1×n1 → Rp with entries drawn
from a distribution that is mean zero and has a finite fourth
moment then for all 0 < ε < 1

Prob(|‖A(M)‖2
2 − ‖M‖2

F | ≥ ε‖M‖2
F ) ≤ 2 exp(−p(ε2/2− ε3/3)/2).

Theorem. If A is a near isometry, then for every 1 ≤ r ≤ m, there
exists constants c such that with exponentially high probability the
RICs remain bounded whenever p ≥ cr(m + n) log(mn).

I The story of matrix completion parallels that of compressed
sensing, but with fewer quantitate statements and more open
problems.

I There is also a “polytope” style analysis for the convex
relaxation, nuclear norm, algorithm for matrix completion
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Structured sparsity

I Standard CS model: Σk(n) := {x | ‖x‖0 ≤ k}
The union of

(n
k

)
subspaces.

I A reasonable model due to the prevalence of compressibility

I Wavelet transforms convert piecewise smooth signal to
coefficients that decay at rate, j th coefficient ∼ j−p or τ−j

I Decay of wavelet coefficients indicate k largest coefficients
gives faithful approximation

I Randomly permute where the k largest coefficients, compute
inverse wavelet transform, looks like noise not piecewise
smooth.

I k term wavelet approximation to find has structure.
Not all

(n
k

)
of the k-sparse vectors likely, don’t look for them.
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Structured sparsity model and RIC [BaCeDuHe08]

I Need not specify structure of the model yet, just number p
Definition. [Model sparsity] For any p distinct support sets Λj

with |Λj | = k ∀j , let

Mk := {x | supp(x) ∈ Λj for some j}.

We refer to Mk as a model based sparsity space.

I Need a method of analysis, no gain for coherence, use RICs
Definition. [Model RICs] Given matrix A ∈ Rm×n, let RMk

be
the smallest constant that satisfies

(1− RMk
)‖x‖2

2 ≤ ‖Ax‖2
2 ≤ (1 + RMk

)‖x‖2
2 ∀ x ∈Mk

I Letting p =
(n
k

)
recovers the usual Σk(n) and RICs

I Could improve results if RMk
replaced with asymmetric

I The essential improvement: select p such that p ∼ eα·k

without any n dependence. (Normal case p ∼ en·H(k/n).)
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A subtle point

I If x , y ∈ Σk(n) then x + y ∈ Σ2k(n), use RICs of order 2k

I If x , y ∈Mk then x + y may be 2k sparse, but model changes
Definition. [Union of model sparsity] Define Mr

k as the union
of r possibly different model sparsity sets:

Mr
k := {x |

r∑
`=1

x (`) where x (`) ∈Mk}.

I Mr
k can be thought of as Mrk with p modified to ∼ pr

I Same algorithms work, with restriction to Mk at each step

I Analysis for IHT as example
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Iterative Hard Model Thresholding

Input: y , Am,n and k (number of nonzeros in output vector).
Algorithm: Set x0 = 0 and j = 0.
While ‖y − Am,nx

j‖2 < Tol repeat the following steps:
set v j := x j + A∗m,n(y − Am,nx

j), and

x j+1 = Hk(v j) where Hk(·) thresholds to best Mk .
Output x j .

Theorem
Let y = Am,nx0 + e for x0 ∈Mk and Am,n in General Position.
Set µiht := 2RM3

k
and ξiht := 2(1 + RM2

k
)1/2.

With k used for the hard thresholding function, IHT satisfy the
inequality

‖x j − x0‖2 ≤ (µiht)j‖x0‖+
ξiht

1− µiht
‖e‖2.

For µiht < 1 convergence of x j to approximation of x0.
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Iterative Hard Model Thresholding (proof, pg. 1)

Proof.
Hk(·) returns the vector in Mk closest in the `2 norm, for instance

‖v j − Hk(v j)‖2 = ‖v j − x j+1‖2 ≤ ‖v j − x0‖2. (6)

Note that

‖v j − x j+1‖2
2 = ‖(v j − x0) + (x0 − x j+1‖2

2 =

‖v j − x0‖2
2 + ‖x0 − x j+1‖2

2 + 2Re
(
(v j − x0)

∗(x0 − x j+1)
)

where Re(c) denotes the real part of c .
Bounding the above expression using (6) and canceling the
‖v j − x0‖2

2 term yields

‖x j+1 − x0‖2
x ≤ 2Re

(
(v j − x0)

∗(x j+1 − x0)
)
.
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Iterative Hard Model Thresholding (proof, pg. 2)

Consider M3
k model set from joining models for x0, xj and xj+1.

‖x j+1 − x0‖2
2 ≤ 2Re

(
(v j − x0)

∗(x j+1 − x0)
)

= 2Re
((

(I − A∗m,nAm,n)(x
j − x0)

)∗
(x j+1 − x0)

)
+ 2Re

(
e∗Am,n(x

j+1 − x0)
)

= 2Re
((

(I − A∗M3
k
AM3

k
)(x j − x0)

)∗
(x j+1 − x0)

)
+ 2Re

(
e∗Am,n(x

j+1 − x0)
)

≤ 2‖I − A∗M3
k
AM3

k
‖2 · ‖x j − x0‖2 · ‖x j+1 − x0‖2

+ 2‖e‖2 · ‖Am,n(x
j+1 − x0)‖2
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Iterative Hard Model Thresholding (proof, pg. 3)

Model RIC bounds ‖I − A∗M3
k
AM3

k
‖2 ≤ RM3

k
and

‖Am,n(x
j+1 − x0)‖2 ≤ (1 + RM2

k
)1/2‖x j+1 − x0‖2 then

dividing by ‖x j+1 − x0‖2 yields

‖x j+1 − x0‖2 ≤ 2RM3
k
· ‖x j − x0‖2 + 2(1 + RM2

k
)1/2‖e‖2

Let µiht := 2RM3
k

and ξiht := 2(1 + RM2
k
)1/2.

Error at step j in terms of initial error ‖x0 − x0‖2 = ‖x0‖2

‖x j − x0‖2 ≤ (µiht)j · ‖x0‖2 +
ξiht

1− µiht
‖e‖2

I It looks like nothing has changed, but when is RM3
k
< 1/2?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Wavelet tree model

I Piecewise smooth functions (and their vector samples) is likely
the most encompassing versatile model for signals and images.

I Wavelets have (rapid) polynomial decay in smooth regions,
only lack decay for wavelets that interact with discontinuity.

I Convention of narrower wavelets as scale (label i) increases,
coef. (I , j) large suggests coefficient (i − 1, bj/2c) also large.

I Connected subtree model: if (i , j) coefficient is kept, then so
is (i − 1, bj/2c) up to top scale
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Fig. 2. Binary wavelet tree for a one-dimensional signal. The squares denote the large wavelet coefficients that arise

from the discontinuities in the piecewise smooth signal drawn below; the support of the large coefficients forms a

rooted, connected tree.

of x is given by

x = v0ν +
I−1∑

i=0

2i−1∑

j=0

wi,jψi,j ,

where ν is the scaling function and ψi,j is the wavelet function at scale i and offset j. The

wavelet transform consists of the scaling coefficient v0 and wavelet coefficients wi,j at scale i,

0 ≤ i ≤ I − 1, and position j, 0 ≤ j ≤ 2i − 1. In terms of our earlier matrix notation, x has

the representation x = Ψα, where Ψ is a matrix containing the scaling and wavelet functions as

columns, and α = [v0 w0,0 w1,0 w1,1 w2,0 . . .]T is the vector of scaling and wavelet coefficients.

We are, of course, interested in sparse and compressible α.

The nested supports of the wavelets at different scales create a parent/child relationship

between wavelet coefficients at different scales. We say that wi−1,"j/2# is the parent of wi,j

and that wi+1,2j and wi+1,2j+1 are the children of wi,j. These relationships can be expressed

graphically by the wavelet coefficient tree in Figure 2.

Wavelet functions act as local discontinuity detectors, and using the nested support property

of wavelets at different scales, it is straightforward to see that a signal discontinuity will give

rise to a chain of large wavelet coefficients along a branch of the wavelet tree from a leaf to

the root. Moreover, smooth signal regions will give rise to regions of small wavelet coefficients.

This “connected tree” property has been well-exploited in a number of wavelet-based processing
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Wavelet tree model

I Piecewise smooth functions (and their vector samples) is likely
the most encompassing versatile model for signals and images.

I Wavelets have (rapid) polynomial decay in smooth regions,
only lack decay for wavelets that interact with discontinuity.

I Convention of narrower wavelets as scale (label i) increases,
coef. (I , j) large suggests coefficient (i − 1, bj/2c) also large.

I Connected subtree model: if (i , j) coefficient is kept, then so
is (i − 1, bj/2c) up to top scale

I If there are k nonzeros kept in a subtree, there are
p = const. (2e)k different subtrees to consider

I This helps in controlling the size of the Model RICs for m � n
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Wavelet model RIC bounds

I Use basic concentration of measure bound

Prob(σmax(Ak) > 1 +
√

k/m + o(1) + t) ≤ exp(−mt2/2)

Prob(σmin(Ak) < 1−
√

k/m + o(1)− t) ≤ exp(−mt2/2),

and union bound over p = const. (2e)k sets

Prob

(
max

K∈Mk

σmax(AK ) > 1 +
√
ρ+ t

)
≤ c ·exp(m[ρ log(2e)−t2/2])

I To have probability going to zero solve zero level curve,
t? :=

√
2ρ log(2e)

I Note, only depends on ρ, not δ

I RMk
(ρ) := [1 +

√
ρ+

√
2ρ log(2e)]2 − 1

I For any α, there is a ρ such that RMk
< α is satisfied

I RM3
k
< 1/2 corresponds to m ≥ 43k, independent of n.
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The impact of including a model [BaCeDuHe08]

(a) test signal (b) CoSaMP (RMSE = 1.123)

(c) !1-optimization (RMSE = 0.751) (d) model-based recovery (RMSE = 0.037)

Fig. 1. Example performance of model-based signal recovery. (a) Piecewise-smooth HeaviSine test signal of length

N = 1024. This signal is compressible under a connected wavelet tree model. Signal recovered fromM = 80 random

Gaussian measurements using (b) the iterative recovery algorithm CoSaMP, (c) standard !1 linear programming, and

(d) the wavelet tree-based CoSaMP algorithm from Section V. In all figures, root mean-squared error (RMSE) values

are normalized with respect to the !2 norm of the signal.

ter together [7, 8]. Such a so-called block sparse model is equivalent to a joint sparsity model for

an ensemble of J , length-N signals [9], where the supports of the signals’ large coefficients are

shared across the ensemble. Using the fact that the number of clustered supports is much smaller

than
(

JN
K

)
, we prove that a block-based CoSaMP algorithm needs onlyM = O

(
K + K

J log(JN
K )

)

measurements to robustly recover block-sparse and block-compressible signals. Moreover, as the

number of signals J grows large, the number of measurements approaches M = O (K).

Our new theory and methods relate to a small body of previous work aimed at integrating

signal models with CS. Several groups have developed model-specific signal recovery algorithms

[5–8, 13–16]; however, their approach has either been ad hoc or focused on a single model

5

I Comes with a cost. Parallel IHT has about 40% time cost for
Hk(·) when using fast matrix vector products. Use dynamic
programming to find model greatly increases the
computational burden.

I If using model based, use more sophisticated (costly) decoder

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Summary

I Most signals/data that we are interested in in practise has
some underlying simplicity such as: compressibility, known
bounds, inherent lower dimensionality

I Can move knowledge of this simplicity into the acquisition step

I Simple linear measurement processes have optimal rate, with
reasonable constants, no need for learning

I Most of the contributions are on design and analysis for
algorithms to recover vectors/matrices from their compressed
measurements

I Methods of analysis: coherence, RICs, convex geometry

I Much is known, and there is much to be done
• accurate understanding of average case performance
• effect of imposing more prior information
• extensions to other models of simplicity such as low rank

Thank you for your time and attention
Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing


