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Sensing: the information acquisition step

» Digital data: x € R"”. Measure vectors by point sensing

<x,e>=x; for i=1,2....n

Same for images and other digital data.
Cannot improve if x; independent of each other.

» Analog data: f(x) € B,. Bandlimited model popular in EE

1 7. ;
f(x)e B, < f(x ::/ f(w)e*™™™ dw
() (=== [ Fw)
where f(w) = 0 for |w| > o. Shannon Sampling Theorem:

f(x)=> f(kT)p(x—kT) if T<1/20
keZ

Can exactly recovery f(x) from its point samples {f(kT)}kez.
“Nyquist sampling rate” is T = 1/20, largest for f € B,.
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After we acquire the data, then we compress

» On a computer all data is stored digital
For vectors x € R” already in digital form.
For f(x) € B, store {f(kT)}z and use Shannon Theorem

» Most vectors have entries that are very dependent and
f(x) € B, are smooth (analytic) with nearby entries related.

» Do we really need to store all of these entries if highly
dependent?
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After we acquire the data, then we compress

» On a computer all data is stored digital
For vectors x € R” already in digital form.
For f(x) € B, store {f(kT)}z and use Shannon Theorem

» Most vectors have entries that are very dependent and
f(x) € B, are smooth (analytic) with nearby entries related.

» Do we really need to store all of these entries if highly
dependent? Certainly not!
Welcome to the wonderful world of approximation theory.

» Smoothness (even piecewise smooth) implies compressibility
The options are endless:
Fourier series, orthogonal polynomials, wavelets, curvelets,
shearlets, and any other “let” you can imagine.
(More on these to come...)
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Compression

» Discrete data:
Let the columns of ® span R” so that x = ®z for some z.
Let Hk(z) be the k-term hard threshold, setting all but the
largest k entries (in magnitude) to zero.
x compressible in representation @ if || x — PH,(2)| < ||x]|-

» Polynomial decay for large problems:
|Ix — PHK(z)|| < Const.k—P

» Analog functions: truncated series in representation {t¢(x)}¢

Polynomial or exponential decay ||f(x) — Syf(x)|| < C.7—=N
» Compression is ubiquitous, essentially always performed.

» Full sensing and then compression is very wasteful

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



The advantages of Compressed Sensing

» If k coefficients are sufficient to accurately approximate the
data, why measure it all in the first place?

» Move compression into acquisition: Compressed Sensing (CS)
» There is a cost associated with CS, use when sensing is costly

» A few applications:
MRI Scanner — length of time in device, through-put
UAV imaging — time of flight over target
Nuclear Medicine (CT/SPECT/PET) — radiation dosage
Genomic sequencing — through-put
Satellite — limited communications and battery
(lets see a few pictures...)
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Single Photo-diode digital camera

» Proof of concept for compressed sensing: Baraniuk and Kelly

Low-cost, fast, sensitive
optical detection

Xmtr

Compressed, encoded
image data sent via RF
for reconstruction

<<(

» 2% measurements compared to number of pixels in recon.

Image encoded by DMD
and random basis

» Savings, measurement time, simple device, power of device, ...

» Multi-spectral variants have been constructed.
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Magnetic Force Resonance Microscopy (A. Hero, M. Ting)

» Non-linear sparsity exploiting reconstruction algorithms:

Figure 5.28: Threc tion of the MAP2 reconstruction of 103D's hydrogen atoms
¢ SNR of 6.02 dB. Different viewing angles are shown. The
- of 103D is apparent

103D DNA Molecule - 272 Hydrogen Atoms

with 2z
helical st
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MRI - Angiography

» Stanford MRI Lab: T. Cuker, M. Lustig, and D. G. Nishimura
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Astronomy applications: Hershel

» CIRM (France): J.L. Starck

HERSCHEL The proposed Herschel compression scheme

This space telescope hs been designed to
observe n the farinfrared and sub-milimeter
Wavelength range.

Its faunchis scheduled for the beginning of 2009,
The shortest wavelength band, 57-210 microns, is
covered by PACS (Photodetector Aray Camera and
Specirometer).

2D Noiselet ‘
Transform

minfols, st. |y- F(Bxda)],, <e

=%
Herschel data ransfer problem:

-no time to do sophisticated data compression on
board.
-a compression rafi of 6 must be achieved.

Projections

 IHERSCIIEL

on board shifted images

(On board)

(On the ground)

==> solufion: averaging of sk successive images 6 consecutive Coding ‘ Decoding Decoded data
CS may offer another aliemaive. \
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Astronomy applications: Hershel

» CIRM (France): J.L. Starck

Resolution: CS versus Mean

Simulated image Simulated noisy image with flat and dark

Mean of six images Compressed sensing reconstructed images

Resolution limit versus SNR

SNR —17.3 —9.35 —3.3 0.21 2.7 4.7 6.2 7.6 8.7

Intensity 900 2250 4500 6750 9000 11250 13500 15750 18000

MO6 3 3 3 3 3 3 3 3 3

Cs 2.33 2.33 2 2 2 2 2 2 2
THE CS-BASED COMPRESSION ENTAILS A RESOLUTION GAIN EQUAL TO A 30% OF THE SPATIAL

RESOLUTION PROVIDED BY MOG6.
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Astronomy applications: Hershel

» CIRM (France): J.L. Starck

JPEG2000 Versus Compressed Sensing
Compression Rate: 25

One observation 10 observations

20 observations

100 observations

Compressed Sensing versus JPEG2000 - Compression Rate : 4%
40

—= JPEG2000
—— Compressed Sensing
35 1
g 30
=
=
% 25 B
g
20
15 20 100

40 60
Number of Observations
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Matrix completion : Inpainting

» Duke: L. Carin lab

80% of RGB Voxels Missing at Random Recovered Image via Beta Process and
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Matrix completion : Inpainting

» Duke: L. Carin lab

80% of RGB Voxels Missing at Random

1054 Pitchers 2008 Piichers
D. Mossi__B. Turley R. Narleski | C. Marmol _G. Balfour B. Morrow
D. Musllor 02829 0.2340 0.2543 0.1472 0.1755 0.1627
: +0.0166  =£0.0171 +0.0176 +0.0192 +0.0217 +£0.0211
1954 S. Burgess 0.2619 0.2277 0.2391 0.1338 0.1550 0.1502
Batters N & 4+0.0147 4+0.0131 4+0.0152 4+0.0163 4+0.0195 +0.0154
B. Skowron 0.2657 0.2141 0.2339 0.1254 0.1530 0.1407
. +0.0135  =£0.0133 +0.0144 +0.0153 +0.0200 -+£0.0193
c.z b 0.2652 0.2215 0.2384 0.1313 0.1566 0.1475
AAmbIano | 100917 £0.0225 +0.0219 +0.0235 +0.0276 -£0.0267
2008 P, Sandoval 0.3570 0.3316 0.3402 0.2612 0.2792 0.2740
Batters - +0.0355  =£0.0400 +0.0386 +0.0529 +0.0500 +£0.0522
R. Furcal 0.2071 0.2599 0.2748 0.1721 0.1948 0.1876
B +0.0140 +0.0141 +0.0144 +0.0158 +0.0187 +0.0189
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Matrix completion : Inpainting

» Duke: L. Carin lab

* Name: HyMapAPHill (NGA)
* Image size: 845 by 512
* Total Channels: 106

Original Scene:
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Duke: L. Carin lab

» 2% of Hyperspectral datacube at random, band 1

100 200 300 400 500 100 200 30 400 500
Original image Restored image
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Duke: L. Carin lab

» 2% of Hyperspectral datacube at random, band 50

100 [

200 " <.

100 200 300 400 506

Original image

1005 25

200 {

A il
200 300 400 500

Restored image
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Matrix Completion, segmentation, video

» Stanford: E. Candes

Candes’s model, noise free, scene2
ofiginel feme Low rarkk component Sperse com ponent

E. J. Candés, X. Li, Y. Ma, and J. Wright, “Robust Principal Component Analysis?”
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Back to compression: Fourier Series

Definition (C*-periodic)
The C*[—m, 7] seminorm is defined as

T Pr——— /

where £(9)(x) denotes the st derivative of f(x). A function is said
to be in C*[—m, 7] if [|f||cs[—r,x] < 00. We refer to a function as
being C*-periodic over [—m, 7] if it is in C()[—m, 7] and

fU)(r) = FU)(—7) for j=0,...,5 — 1.

£(s) (X)‘ dx

Definition (Fourier series)
Let f(x) be in L?[—m, 7] and be C*-periodic over [—m,7]. Then, it
can be represented in the Fourier orthonormal basis as

f(X) = (27T)_1/2 Z ?keikx Wlth lf\—k = (27r)_1/2/ f(X)e_ikde,
kEZ -7
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Fourier Series compression rate

Theorem (Truncated Fourier Approximation)
Let f(x) be in L?[—n, 7] and be C*-periodic for s > 2. Then

o\ 1/2
I = Suflisnm < (2) (6= D Wleonm N0

Proof.
Integrate by parts and triangle inequality

fio = (2m) V2 (—ik) / F9)(x)e " dx,

—Tr

max _|f(x) — Snf(x)| = max Z Fe'
x€[=mm] x€ \k|>N \k\>N

Srensr k5 < [k Sdk for s > 2 O

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Generalized Fourier Series

» Fourier series superb for smooth periodic functions.
» Smooth non-periodic functions via orthogonal polynomials
» Global bases have difficulty for non-smooth functions.
Gibbs' Phenomenon can be overcome through edge detection
and postprocessing, but does not work well for noisy data.
» Localized expansions allow better qualitative understanding
» Haar system is composed of the scaling function

[ 1 xel0,1]
¢(X)_{ 0 x¢[0,1]

and translation and dilations of the mother wavelet

1 xe€]0,1/2]
p(x)={ -1 xe(1/2,1)
0 x&l0,1]

Let 1 k(x) 1= 27/24p(2"x — k).

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Haar Wavelets

Definition (Haar Wavelet)
The Haar system

P(x) U Pk (X) nen 0<k<an

is an orthonormal basis for L2[0, 1]. Define the Haar coefficients as

1 1
fo ::/0 f(x)p(x)dx and o4 ::/0 f(x)Ynk(x)dx

and the truncated Haar approximation of f(x) as

M 2"-1

WMf(X) = fE) + Z Z fn,kwn,k(x)'

n=0 k=0
The truncated Haar expansion converges to the original function in
L2[0, 1],
lim ||[f — Wyf 0.
M—>oo” M HL2[0,1] -
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Wavelet convergence rates: Vanishing moments

» Convergence rate of truncated Wavelet approximations
dictated by the decay rate of coefficients f, , for n large.

» Consider Haar as example. supp(¢n «(x)) =27 "[k, k + 1)
Taylor series f(x) about 27 "(k +1/2)

2-n(k+1)
fok = / Yk (x)[f(x0) + (x — x0)f'(x0) + - - ]dx
2—nk

=273"24f (x0) + O(27°"/?).
> If f(x) piecewise smooth with O(¢) discontinuities then ¢ of
fok ~ 2772 and 2" — O(¥) are of size 273"/2.
» Overall decay rate 2-"/2 dictated by discontinuities.
» Appears exponential, but needs N = 2" coefficients.

» Decay in N is a slow N~1/2 rate if a linear approximation,
but at exponential rate 27"/2 if only large entries kept.
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Other wavelets and higher dimensional “lets”

» Wavelets beyond Haar, are they better?
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Other wavelets and higher dimensional “lets”

» Wavelets beyond Haar, are they better? Yes and No.
Convergence rate of all 1D wavelets can be viewed similarly.
Wavelets that cross discontinuities have “large” O(2-"/2)
coefficients, and other coefficients size dictated by number of
vanishing moments, O(2~(2P+1)1/2) for order p wavelet.

» Higher order wavelets have faster convergence, with * wider”
wavelets and more crossing the discontinuities

» Time-frequency tiling:
Wavelets use translation and dilation
Gabor atoms use translation and modulation
Multi-dimensional variants use other operators
such as rotation and shear

» A few examples to see how they work, discrete case
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The filterbank viewpoint for discrete data

» Convolve discrete vector f € R?" with two vectors
h a “low pass filter" that approximates f and
g a “high pass filter” that captures f — h

» Downsample a= (fxh) [ 2and d = (fxg) | 2,
where (u | 2)[k] = u[2k] to keep 2n entries (same as f)
» If h and g are designed properly then f can be recovered.

Upsample a and d by adding a zero after each entry, (v 1 2)
Convolve upsampled vectors with the reverse order of h and g

f=(@12)«h+(d12)*g

» Example: h=[1 1] and g =[-1 1]
a[l] = f[1] + f[2] and d[1] = —f[1] + f[2]
(a1 2)* h has two entries both equal to a[1]
(d 1 2) x g has first entry —d[1] and second entry d[1]
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Haar example, one step [Peyre]

Signal

[UR= 5 -

0G| -

04l §

0z -

L L L L L L L L
50 100 150 200 250 300 350 400 450 soo0

Transformed

L L L L L L L L L
50 100 150 200 250 300 350 <00 450 so0

» First half if a and second half is d

» Repeat process on a portion
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Haar example, full transform [Peyre]

Original coefficients

-z b1, . .
50 100 150 200 25

I

I

I

I

I

I

I

I l - .

I

! . . . . .
0 300 350 400 450 500

Thresholded coefficients

|
|
|
|
|
|
|
I
|
|
u]

L L L L L L L L
100 150 200 25 300 350 400 450 00
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Haar m term approximation [Peyre]

m=26, SHR=13.9518dB

L
350

L L L
200 250 300
m=51, SHR=19.0492dB

L L
200 250 300
m=102, SHR=27.7362dB

350

L
400

150 200 250 300 350

nner University of Edinburgh

Stochastic Geometry

L
400
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Daubechies4 m term approximation [Peyre|

M=25, SHR=12.8dE

20+

-20

L L L L
200 250 300 450

M=50, SHR=19.7dE

350

40+
20 F

-20

L L
200 250 300
k=100, SHMR=332.9dB

350

40 F T T
20+

d Tanner University of Edinburgh

150 200 250 300 350 400 00
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Searching for simplicity (sparsity)
» Sparse solutions to underdetermined systems of equations
min ||x|lo subjectto |y —Ax| <7
X

e Basis pursuit: find best set of columns of A for y
e design algorithms that find sparse solutions and hope...
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Searching for simplicity (sparsity)
» Sparse solutions to underdetermined systems of equations
min ||x|lo subjectto |y —Ax| <7
X

e Basis pursuit: find best set of columns of A for y
e design algorithms that find sparse solutions and hope...

» Simple solutions to under determined systems of equations
x suchthat y=Ax and «a; <x <pg;

e if enough of x; are equal to «; or §; is it unique?
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Searching for simplicity (sparsity)
» Sparse solutions to underdetermined systems of equations
min ||x|lo subjectto |y —Ax| <7
X

e Basis pursuit: find best set of columns of A for y
e design algorithms that find sparse solutions and hope...

» Simple solutions to under determined systems of equations
x suchthat y=Ax and «a; <x <pg;

e if enough of x; are equal to «; or §; is it unique?

» Low rank matrix approximation (matrix completion)
ml\jln rank(M) subject to |y — AM)| <7

e unknown representation in which M is simple
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Coherence

Let A be the sensing matrix and a; its i*" column

p2(A) := max|aj aj
i#]
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Coherence

Let A be the sensing matrix and a; its i*" column
pi2(A) := max |aj aj]
i#]

» Pros:
e Easy to calculate!
e Easy to use to prove pretty good results
e A general tool for any algorithm (wide usage)
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Coherence

Let A be the sensing matrix and a; its i*" column
pi2(A) := max |aj aj]
i#]

» Pros:
e Easy to calculate!
e Easy to use to prove pretty good results
e A general tool for any algorithm (wide usage)

» Cons:
e A general tool for any algorithm (bad results)
e Worst case results are limited to “sqrt” proportionality
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Coherence

Let A be the sensing matrix and a; its i*" column
pi2(A) := max |aj aj]
i#]

» Pros:
e Easy to calculate!
e Easy to use to prove pretty good results
e A general tool for any algorithm (wide usage)

» Cons:
e A general tool for any algorithm (bad results)
e Worst case results are limited to “sqrt” proportionality

Use coherence analyze: Thresholding, Matching Pursuit,
Orthogonal Matching Pursuit, and ¢!-regularization
x for the moment assume solution is unique
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One step thresholding

Input: y, Ap, , and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |A}, |
Output the n-vector x whose entries are

xp = (AAN) 1ALy and  x(i) =0 for i ¢ A.
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One step thresholding

Input: y, Ap, , and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |A}, |
Output the n-vector x whose entries are

xp = (AAN) 1ALy and  x(i) =0 for i ¢ A.

Theorem
Let y = Am nxo, with the columns of A, , having unit 22 norm, and

1 _
[x0llo < 5 (Voo (x0) - 2(Amn) 1 4+ 1),

then the Thresholding decoder with k = ||xo||o will return xo, with
vp(x) == minjesupp(x) [XU)I/[1xlp-
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One step thresholding (proof)

Proof.
With y = Am nxo, denote w = ALy = AL L Am.nX0.
The it entry in w is equal to w; = >_jesupp(xo) X0()a; aj.
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One step thresholding (proof)

Proof.
With y = Am nxo, denote w = ALy = AL L Am.nX0.

The it entry in w is equal to w; = > jesupp(x) X0() a7 aj.
For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < > ol |afal < kpa(Amn)lxolloc-
jesupp(o)

Stochastic Geometry and Random Matrix Theory in Compressed Sensing
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One step thresholding (proof)

Proof.

With y = Apm.nXo0, denote w = Afn,ny = A;,nAmmxo.

The it entry in w is equal to w; = > jesupp(x) X0() a7 aj.
For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < > ol |afal < kpa(Amn)lxolloc-
jesupp(o)

For i € supp(xp) the magnitude of w; is bounded below as:

lwi| > |xo(i)] = > xl)ara
JESUPP(x0) i
> |xo(i)| — (k — 1)p2(Am,n)l[x0lloo-
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One step thresholding (proof)

Proof.

With y = Apm.nXo0, denote w = Afn,ny = A;,nAmmxo.

The it entry in w is equal to w; = > jesupp(x) X0() a7 aj.
For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < > ol |afal < kpa(Amn)lxolloc-
jesupp(o)

For i € supp(xp) the magnitude of w; is bounded below as:

lwi| > |xo(i)] = > xl)ara
JESUPP(x0) i
> |xo(i)| — (k — 1)p2(Am,n)l[x0lloo-

Recovery |f maXI’%supp(XO) ‘W,’ < miniesupp(XO) ‘W,’ D
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Matching Pursuit [Tr05]

Input: y, Ap, and k (number of nonzeros in output vector).
Algorithm: Let #/ =y — Ax/.

Set X% =0, and let i := argmax,|a;r/| and define

xIT1 = xJ + (afr)e; where ¢; is the it coordinate vector.

Output x/ when a termination criteria is obtained.

Stochastic Geometry and Random Matrix Theory in Compressed Sensing
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Matching Pursuit [Tr05]

Input: y, Ap, and k (number of nonzeros in output vector).
Algorithm: Let #/ =y — Ax/.

Set X% =0, and let i := argmax,|a;r/| and define

xIT1 = xJ + (afr)e; where ¢; is the it coordinate vector.
Output x/ when a termination criteria is obtained.

Theorem
Let y = Am nxo, with the columns of Ay, , having unit 02 norm, and

1 _
olleo < 5 (2(Ama) " + 1)

then Matching Pursuit will have supp(x)) C supp(xo) for all j.
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Matching Pursuit [Tr05]

Input: y, Ap, and k (number of nonzeros in output vector).
Algorithm: Let #/ =y — Ax/.

Set X% =0, and let i := argmax,|a;r/| and define

xIT1 = xJ + (afr)e; where ¢; is the it coordinate vector.
Output x/ when a termination criteria is obtained.

Theorem
Let y = Am nxo, with the columns of A, , having unit 02 norm, and

1 _
olleo < 5 (2(Ama) " + 1)

then Matching Pursuit will have supp(x)) C supp(xo) for all j.

* Preferable over one step thresholding: no dependence on v,(xp).
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Matching Pursuit (proof)

Proof.
Assume supp(x/) C supp(xo) for some j, which is true for j = 0.
Let ¥ =y — Amnx, and wi = 3 icsupp(xe) (X0 — %/)(€) - af ac.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Matching Pursuit (proof)

Proof.

Assume supp(x/) C supp(xo) for some j, which is true for j = 0.
Let /=y — ApnX/, and w; = Zeesupp(xo)(XO —x/)(0) - afay.
For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < Y 100 —x)(O] - |afael < kpio(Amn)l1x0 — X [|oc-
tesupp(xo)
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Matching Pursuit (proof)

Proof.

Assume supp(x/) C supp(xo) for some j, which is true for j = 0.
Let /=y — ApnX/, and w; = Zeesupp(xo)(XO —x/)(0) - afay.
For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < Y 100 —x)(O] - |afael < kpio(Amn)l1x0 — X [|oc-
tesupp(xo)

For i € supp(xp) the magnitude of w; is bounded below as:

wil > (0 = x)(0)] — Y. =X afa

£esupp(xo),t#i
= |00 = X)) = (k = L)p2(Am,n)l[x0 = X || oo-
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Matching Pursuit (proof)

Proof.

Assume supp(x/) C supp(xo) for some j, which is true for j = 0.
Let /=y — ApnX/, and w; = Zeesupp(xo)(XO —x/)(0) - afay.
For i ¢ supp(xp) the magnitude of w; is bounded above as:

wil < Y 100 —x)(O] - |afael < kpio(Amn)l1x0 — X [|oc-
tesupp(xo)

For i € supp(xp) the magnitude of w; is bounded below as:

wil > (0 = x)(0)] — Y. =X afa

£esupp(xo),t#i
= |00 = X)) = (k = L)p2(Am,n)l[x0 = X || oo-

Recovery if maxjcsupp(x) Wil > Maxigsupp(x) [Wil-
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Orthogonal Matching Pursuit [Tr05]

Input: y, An, and k (number of nonzeros in output vector).
Algorlthm Let =y — Ax/.

Set x% = 0 and A° to be the empty set, and set j = 0.

Let W i=y — AxJ, i := argmaxda}‘rj], and N1 = jUN.
Set X% = (At Ayin) TAS Ly

and x)T1(¢) =0 for £ ¢ Nt and set j = + 1.

Output x/ when a termination criteria is obtained.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthogonal Matching Pursuit [Tr05]

Input: y, An, and k (number of nonzeros in output vector).
Algorlthm Let =y — Ax/.

Set x% = 0 and A° to be the empty set, and set j = 0.

Let W i=y — AxJ, i := argmaxda}‘rj], and N1 = jUN.
Set X% = (At Ayin) TAS Ly

and x)T1(¢) =0 for £ ¢ Nt and set j = + 1.

Output x/ when a termination criteria is obtained.

Theorem
Let y = Am nxo, with the columns of An, , having unit 02 norm, and

1 (N2(Am,n)_1 + 1) )

Ixolle < 5

then after ||xo||,0 steps, Orthogonal Matching Pursuit recovers xg.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthogonal Matching Pursuit [Tr05]

Input: y, An, and k (number of nonzeros in output vector).
Algorlthm Let =y — Ax/.

Set x% = 0 and A° to be the empty set, and set j = 0.

Let W i=y — AxJ, i := argmaxda}‘rj], and N1 = jUN.
Set X% = (At Ayin) TAS Ly

and x)T1(¢) =0 for £ ¢ Nt and set j = + 1.

Output x/ when a termination criteria is obtained.

Theorem
Let y = Am nxo, with the columns of An, , having unit 02 norm, and

1 (N2(Am,n)_1 + 1) 5

Ixolle < 5

then after ||xo||,0 steps, Orthogonal Matching Pursuit recovers xg.

* Proof, same as Matching Pursuit. Finite number of steps.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization [Tr05]

Input: y and A, ».
“Algorithm”: Return argmin||x||; subject to y = Ax.

Theorem
Let y = Am nXo, with

1 _
xollo < 5 (#2(Ama) ™ +1).

then the solution of {*-regularization is xg.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization [Tr05]

Input: y and A, ».
“Algorithm”: Return argmin||x||; subject to y = Ax.

Theorem
Let y = Am nXo, with

1 _
xollo < 5 (#2(Ama) ™ +1).

then the solution of {*-regularization is xg.

* Preferable over OMP: faster if use good ¢! solver.
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(*-regularization (proof, page 1)

Proof.

Let Ao := supp(xp) and A1 := supp(x1) with

y = Amnxo = Am,nx1, and 3i with i € Ay with i ¢ Ao.
Note that because y = Apyxo = Ap, X1,

Ixllr = [[(Ar,Ane) AR, AroXoll1
= [|(ArAno) AR YL
= [[(An,Ane) " AR, Anixa 1

Establish bounds on (AR An,) A ai.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, page 1)

Proof.

Let Ao := supp(xp) and A1 := supp(x1) with

y = Amnxo = Am,nx1, and 3i with i € Ay with i ¢ Ao.
Note that because y = Apyxo = Ap, X1,

Ixolls = [I(ARAre) ™" ApyAnoxoll1
= [[(ARAne) " Ayl
= (AR Ano) T AR, Anyxa 1.
Establish bounds on (AR An,) A ai.
To establish proof need bounds for i € A and i ¢ A.

For i € Ao [[(AR,Ane) AR, ailla
= [I(ARsAne) 1 AR, Anceills = [leill1 = 1

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, page 2)

Proof.
For any i ¢ Ay we establish the bound in two parts; first,

1AR il < > lafail < kpa(Am,n).
LeNy

Noting A;k\OA/\O = /k,k + B where B,',,' =0 and |B;,j| < [L2(Am7n),

then
(bt B) 1 = i ¥l <> sl = —L < !
B =2 T Bl S 1= (k= D

Therefore, for i ¢ No:

kN2(Am,n)
(1— (k- 1)#2(Am,n))

1(ARgAre) ~ ARpaillr < <1

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, page 3)

Proof.

Proof concludes through triangle inequality and use that:
e For i € Ag: |’(A7\OA/\O)_1A7\03;H1 =1

e For i ¢ Ao: H(A;‘\OA/\O)_lA;‘\Oa;Hl <1

e And Ji with i € Ay and i ¢ Ag.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, page 3)

Proof.

Proof concludes through triangle inequality and use that:
e For i € Ag: |’(A7\OA/\O)_1A7\03;H1 =1

e For i ¢ Ao: H(A;‘\OA/\O)_lA;k\Oa,-Hl <1

e And Ji with i € Ay and i ¢ Ag.

Then,
ol = ||D_(ArAn) " Argaixa(i)
€N 1
= Z|X1 A/\OA/\O) 1A;k\oa"Hl
€N
< > pa@dl = Ipall-
iENg

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



But, is the solution even unique?

The sparsity of the sparsest vector in the nullspace of A,
spark(A) := mzin |lz||;o  subjectto Az =0.
Theorem (Spark and Coherence)
spark(Am.n) > min(m + 1, uo(Amn) "t + 1)
If [[xoll < (112(Am.n)~t + 1)/2 unique satisfying y = Am nxo.

Proof.

Gershgorin disc theorem for AR Ap with |A| = k:

1 on diagonal, off diagonals bounded by pi2(Am.n)-

If k < uz(Amm)_l + 1, smallest singular value of AjAp is >0 [

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



How to interpret these results, is better possible?

» When is ||xo][p0 < % (M2(Am7n)_1 +1)

1/2
Grassman Frames: (i5(Am ) > (ﬁ) ~ m~1/2

“Sqrt bottleneck” [|xgll,0 < /m

~—
~
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How to interpret these results, is better possible?

» When is ||xo][p0 < % (M2(Am7n)_1 +1)

1/2
Grassman Frames: (i5(Am ) > (m”;’"» ~ m~1/2

“Sqrt bottleneck” [|xgll,0 < /m
> Is better possible? (not without more)
Fourier & Dirac: An, p = [F I] for m the square of an integer:
Let A =[v/m, 2y/m, --- ,m], then
Zje/\ & = Zje/\'ﬁ' = spark(Am,n) = 2y/m.

~—
~

~
B
|
-
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How to interpret these results, is better possible?

» When is ||xo][p0 < % (M2(Am7n)_1 +1)

1/2
Grassman Frames: (i5(Am ) > (m”;’"» ~ m~1/2

“Sqrt bottleneck” [|xgll,0 < /m

> Is better possible? (not without more)
Fourier & Dirac: An, p = [F I] for m the square of an integer:
Let A =[v/m, 2y/m, --- ,m], then
>jen€ = 2 jen fj = spark(Amn) = 2y/m.

» Slightly more accurate sometimes with cumulative coherence:
max;cp maxy/ ZjeN a;aj

» To avoid pathological cases introduce randomness

~—
~

~
B
|
-
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One step thresholding: average sign pattern [ScVa07]

Input: y, A, , and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |A}, y|
Output the n-vector x whose entries are

xpn = (ARAN)1Ary  and  x(i) =0 for i ¢ A.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



One step thresholding: average sign pattern [ScVa07]

Input: y, A, , and k (number of nonzeros in output vector).
Algorithm: Set A the index set of the k < m largest in |A}, y|
Output the n-vector x whose entries are

xpn = (ARAN)1Ary  and  x(i) =0 for i ¢ A.

Theorem

Let y = Am.nxo, with the columns of Ap, , having unit 2 norm,
the sign of the nonzeros in xy selected randomly from +1
independent of A, , and

Ixolleo < (128 log(2n/€)) ™ 13 (x0) 3 *(Am,n),

then, with probability greater than 1 — €, the Thresholding decoder
with k = ||xo||,0 will return xp.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



One step thresholding: average sign pattern (proof, pg. 1)

Theorem (Rademacher concentration)
Fix a vector ov. Let € be a Rademacher series, vector with entries

drawn uniformly from £1, of the same length as «, then
—t2
Prob iail >t <2exp| —5
2| > t) <200 (32\a\§>

i
Let A := supp(xp). Thresholding fail to recover xq if

iy| > min|ay|.
rpga/\x]a,y\ rl%|/(1\a,y|

min |a7y| < p) <
ien

Prob Tyl > d
ro <r‘lnga/\x|a,y| p an

Prob > Prob ( min |a;
ro (rp¢an|a,y] p)—i— ro <rly1€|/r\1|a,y]<p)

Stochastic Geometry and Random Matrix Theory in Compressed Sensing

P1+ P>
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One step thresholding: average sign pattern (proof, pg. 2)

Py =

IN

IN

Prob :
ro (rpga/\x|a,y| > p)

> Prob(laiy| > p)

i¢n
> Prob [ > xo(i)(afay)| >
i¢N JEN

2
—p
2
Zex" (32 Sjen ol )|2|araj|2>

2(n — k) exp (

_p2 )
32k||x013 145 (Am,n)

Jared Tanner University of Edinburgh
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One step thresholding: average sign pattern (proof, pg. 3)

P, = Prob <min lafy| < p>
ien
S Prob r]lg/r\] ‘XO(/)‘ - rlneaAX . Z Xo(_/)(a;kaj) < p
JENJFI
< Yo Prob [ | D7 sali)(aia)| > minlxo(i)| — p
Ie/\ JG/\J#I
mlnle/\ |X0( )| — )
< 2) exp
; (32 Djenjzi 1X0()?laf a2

<

_ (—(minien )] — p)?
2k p( 32K [0 2o/ 2 (Amn) )
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One step thresholding: average sign pattern (proof, pg. 4)

Balance P; and P, by setting p := minjep [x0(i)|/2:

—(minjen [xo(7)])? —Voo(X0)?
P1+P> < 2nexp < <2nexp | ———"— .
128k || x0 |20 113(Am,n) 128ku5(Am,n)

Setting this bound on the probability of failure equal to € and
solving for k yields the conclusion of the proof. O

» Similar work for matching pursuit by Schnass, /! by Tropp,
and in Statistical RICs

» Stronger uniform statements we need more than coherence.
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Restricted Isometry Constants
The set of k-sparse vectors

X"(k) == {x € R": |Ix[|po < K}

Upper and lower RICs of A, Ui and Ly respectively, are defined as
U = m>i8 c subject to (14 ¢)|x||3 > ||Ax|3 Vx € x"(k).
c>

Ly := m>i8 c subject to (1 —c)||x||3 < ||Ax|3, Vx € x"(k);
c>

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Restricted Isometry Constants

The set of k-sparse vectors
X"(k) = {x € R": ||x[[0 < k}.

Upper and lower RICs of A, Ui and Ly respectively, are defined as
U = m>i8 c subject to (14 ¢)|x||3 > ||Ax|3 Vx € x"(k).
c>

Ly = m>i8 ¢ subject to (1 —c)||x|I3 < ||Ax|3, Vx € x"(k);
>

» Pros:

e Easy to use to prove optimal order results

e A general tool for any algorithm (wide usage)
» Cons:

e Don't know how to calculate it

e A general tool for any algorithm (bad results)
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Restricted Isometry Constants
The set of k-sparse vectors
X"(k) :={x € R": [|Ix]lp0 < k}.

Upper and lower RICs of A, Ui and Ly respectively, are defined as
U = m>i8 c subject to (14 ¢)|x||3 > ||Ax|3 Vx € x"(k).
c>

Ly = m>i8 ¢ subject to (1 —c)||x|I3 < ||Ax|3, Vx € x"(k);
>

» Pros:
e Easy to use to prove optimal order results
e A general tool for any algorithm (wide usage)
» Cons:
e Don't know how to calculate it
e A general tool for any algorithm (bad results)
» No known matrix with bounded RICs for k ~ m ~ n
» Coherence for k ~ m? or random matrices used

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



The first RIC bounds (Gaussian): [CaTa05]

Let 0™ (B) and ¢™"(B) be the largest and smallest singular
values of B respectively. Then,

Prob(c™(Ax) > 1+ /k/m+o(1) +t) < exp(—mt?/2)
Prob(c™™(Ax) <1 —+vk/m+o(1) —t) < exp(—mt?/2),

where o(1) denotes a quantity that tends to zero as m — oc.

Definition
Set 6 = m/n and p = k/m with (6, p) € (0,1)? and define:

UT(5.p) = [14 o+ (207 HE) ] 1

LCT(é7 p) =1 — max {0, [1 P — (251H(5P))1/2r} )

where Shannon Entropy H(p) := —plogp — (1 — p) log(1 — p)

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds (Gaussian): [CaTa05]

Theorem

Am.n entries are drawn i.i.d. from the Gaussian normal N'(0,1/m).
Let 6, = m/n and pm, = k/m. For any fixed € > 0, in the limit as
dm — 6 €(0,1) and pm — p € (0,1) as m — oo,

P(Lx < L°T(5,p) —€) =1 and P(Ux <UT(8,p)+€) —1

exponentially in m.
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2 w08 los

0
s

938860
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UCT (8, p) (left panel) and L7 (8, p) (right panel).

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds (Gaussian): [CaTa05] (proof)

Proof.

Prob (maXKcQ,\K|=k o™ (Ak) > (1+/k/m) + o(1) + t)
< S kearik Prob (07 (Ax) > (1+ /k/m) + o(1) + t)
< () exp(—mt?/2) < poly(n) - exp (m [0~ H(pd) — £2/2]),

Use smallest t such that prob goes to zero.
Solve for the zero of the exponent: t = [26~2H(pd)]*/2.
This corresponds to an upper bound on

Prob (maxomax (Ak) > (1 + /k/m) +[26" H(pd)]Y/? + e + 0(1))
< poly(n) . e—m(eto(1))

which converges to zero exponentially with m. O

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



lterative Hard Thresholding [Ful0]

Input: y, An, and k (number of nonzeros in output vector).
Algorithm: Set x° = 0 and j = 0.

While ||y — Am.n¥||2 < Tol repeat the following steps:

set v/ = x4+ A% (v — Amnx?), and X T = Hi(v).

Output x/.

Stochastic Geometry and Random Matrix Theory in Compressed Sensing

Jared Tanner University of Edinburgh



lterative Hard Thresholding [Ful0]

Input: y, An, and k (number of nonzeros in output vector).
Algorithm: Set x° = 0 and j = 0.

While ||y — Am.n¥||2 < Tol repeat the following steps:

set v/ = x4+ A% (v — Amnx?), and X T = Hi(v).

Output x/.

Theorem

Let y = AmnXo + e for xo k-sparse and An,  in General Position.
Set Mt := 2 max(Lsy, Usk) and €Mt .= 2(1 + Uqy )Y/

With k used for the hard thresholding function, IHT satisfy the

inequality
. .ht . iht
) = xoll2 < (1™ Y [Ix0ll + mllellz-
For Mt < 1 convergence of x/ to approximation of xg.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Iterative Hard Thresholding (proof, pg. 1)

Proof.
H(+) returns the k-sparse closest in the ¢2 norm, for instance

1V~ Hi(A)llo = ¥ b < W = xolla (1)
Note that

. IV =X THE = [[(V = x0) + (0 — XT3 =
IV = xo0l3 + llxo — I3 + 2Re ((v/ — x0) (30 — /™))
where Re(c) denotes the real part of c.

Bounding the above expression using (1) and canceling the
v/ — xol|3 term yields

¥+ — xo||? < 2Re ((vj — xp)* (¥t — x0)) -

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Iterative Hard Thresholding (proof, pg. 2)

Consider the 3k sparse set
A = supp(xo) U supp(x/) U supp(x/T1):

I = 0[5 < 2Re ((V — x0)* (¥ = x0))
= 2Re (((/ — A A ) = x0)) " (I - xo))
+ 2Re (€"Amn( x”’ —xo))
— 2Re (( (1 = ARAN) (X — o))" (072 = xo)/\)

+ 2Re (e*Amn(x — X))
< 21 = ArAnllz - I¥ = xoll2 - 1! = xoll2
+ 2llellz - [|Ama(x T = x0)|l2

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



lterative Hard Thresholding (proof, pg. 3)

RIC bounds HI — A;k\A/\H2 < max(U3k, L3k) and
1Amn (1 = x0)[[2 < (1 + Uak) 2|3/ — xo|2 then
dividing by |[x/*1 — x| yields

HX‘H_:l — X0||2 S 2 max(L3k, U3k) . ||Xj — XOHZ + 2(1 + U2k)1/2||e||2
Let pu™t := 2 max(Lsk, Usk) and &Mt = 2(1 + Uy )'/2.

Error at step j in terms of initial error [|x° — xo|[2 = ||x0]2

j—1
I = xoll2 < (1) - [Ix0ll2 + €™ lell2 > (™)
(=0

Replacing final sum with bound 1/(1 — 1) completes the proof.

O
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(*-regularization [Ca08]

Input: y, An, ,, and tolerance e.
“Algorithm”: Return x* = argmin||x||1 subject to ||y — Ax||2 <.

Theorem

Let y = Am.nXo + e for xo k-sparse,
Position.

Set pf' = 27Y2(Uax + Lak) /(1 — Lak) and

€0 = 23/2(1 + Up)V2/(1 — Log)

With x* = argmin||x||} subject to ||y — Amnx|l2 <€
and ™ < 1 then

ell2 <€, and Ap n in General

fl

1—pt

X0 = x*l2 < lell2
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(*-regularization (proof, pg. 1)

Proof.
Let h:= x* — xg. The goal is to show ||h||2 < Const.||e||2

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, pg. 1)

Proof.
Let h:= x* — xg. The goal is to show ||h||2 < Const.||e||2

Let Ag := supp(xp). Partition the rest of 1,2,..., n into k sets
Let A1 be the support of the largest k entries of |hxg|,
Ao the support set of the next largest k entries in \h,\(c)|, etc...
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(*-regularization (proof, pg. 1)

Proof.
Let h:= x* — xg. The goal is to show ||h||2 < Const.||e||2

Let Ag := supp(xp). Partition the rest of 1,2,..., n into k sets
Let A1 be the support of the largest k entries of |hxg|,
Ao the support set of the next largest k entries in \h,\(c)|, etc...

Show that || h|l2 < Const.||e||2 small by considering
hinguny) and hagun,)e

MNo1 := (Ao U A1) contains support of xo and where h is largest
1 contains the rest of the n-vector

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, pg. 2: Show ||hxc,

|2 “small”)

For vectors satisfying ||y — Am.nx|l2 < €, x* has smallest £ norm

Ixlle = X" lln = lIx + hllx = [Ixagllr = [hagll1 + [l Aag 1
which implies that [|Aac{l1 < [[hao|1-
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(*-regularization (proof, pg. 2: Show ||hxc,

|2 “small”)

For vectors satisfying ||y — Am.nx|l2 < €, x* has smallest £ norm

[x[[1 = [Ix*lx = lIx + hlls = lIxaollr — [Ihaoll1 + [1Aagl1
which implies that [|Aac{l1 < [[hao|1-
By construction , largest entry in hy, smaller than average in hp,_,

1;ll2 < K2 lloo < K2 (k7H[An,_y 1) = k2 |[Aa,_, 1

Use above bound and triangle inequality to obtain

lang llz = 1> alle <D llbaall <D kY2 p lln = k72|l gl

j=2 e jz1
With the above, ||hagll1 < [|hr,ll1, and Cauchy Schwartz

lng ll2 < K72 gl < k72 (KM2]1ng 12) = ling 2 < 1w I

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, pg. 3: a few notes)
For any j # k

(Al ) (A, )| < 2Tt

[1hnll2 - [[An, 2

Proof.

Let v and v be unit norm k-sparse with disjoint support / and J
then ||Au £ Av|2 = ||Ajus(u + v)||2 and using RIC bounds for 2k

(1= La)llu+ vi3 < [IAs(u+ v)I3 < (1 + Uai)llu+ I3

with u and v disjoint unit norm we have ||u + v||3 = 2.
Substituting the above upper and lower bounds into the following

\ 1
[(Au)*Av| = 2 [ Au + Av|3 — [|Au = Av3]

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



(*-regularization (proof, pg. 4: Show |/hp,, |2 “small”)

First note that:
[Ahll2 = [A(X" — x0)ll2 < [[AX* — yll2 + |ly — Axoll2 < 2]|e]|

Bound | ha,, |2 through upper and lower bounds on ||Aha,, |3
Begin with the upper bound:

HAh/\mH% = (Ah/\m)* Ah—ZAh/\j

j>2
< HAh/\mH2 ' ||AhH2
+ > [(Ahp,)*Abp, + (Ahp,)* Ahp ]
j>2
< (14 Uni) Y2 gy 2 - 21l
@ (1hnollz + 1nsll2) S~ 1w,

j=2
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(*-regularization (proof, pg. 5: Show | Ap,, |2 “small”)

Continue upper bound using [|hp,||2 + ||Aa, |2 < \@Hh/\mHz

”Ah/\m H% < 2

1+ Uni) 2| hngy|l2 - el

—~~

_l’_

iy

(Ui + La) | ll2k 2 gl (2)
Lower bound ||Ahp,, ||3 using simple RIP bound

(1= L2)lllAng, 17 < [1AhA I3
Stating lower and upper bound of ||Ahp, |3 and divide by ||Ax,, [|2

V2 _
(1= La)[llnes ll2 = 2(1 + Uai)llefl2 + - (Uak + Law)k 2| g
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(*-regularization (proof, pg. 6: Show |/Ap,, |2 “small”)

Recall

lhnglls < [lhnllr < K2 (g2 < K2l hngyl2

and substitute into bound of || hp,, ||2 from prior slide gives

V2
(1 = L) [llAne, ll2 = 2(1 + Vi) lell2 + =5~ (Vak + Low)l|Any 12

If 1 — Lox < (Uak + Lgk)2*1/2, solving for || ha,, ||2 gives bound

12(1 4+ Uy 1/2
Inala < (1) " 2L e,

where ;¢ := 272(Uny + Lox) /(1 — Lok) < 1
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(*-regularization (proof, pg. 7: putting it all together)

The goal was to bound ||x* — xo|3 = [|Al|3 = || ha 13 + ||h/\81H%
Using [|hag [13 < |Ihay |3 and bound on ||ha,, [|2 obtain

X 1+ Uyy)/?
[[x* = xoll2 < \@(1— ) (12k) el
Let & = 23/2(1 4 Up)Y/? /(1 — L) and have standard form
el

[[x* = xoll2 < 1_7%”6”2

recovery guarantee provided ,L/l < 1.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



How to interpret this result, should we be happy?

» Optimal order if L3y, Usx bounded for k ~ m and m~ n

» There are random matrices what w.h.p. have L, Uy bounded!

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



How to interpret this result, should we be happy?

» Optimal order if L3y, Usx bounded for k ~ m and m~ n

» There are random matrices what w.h.p. have L, Uy bounded!

» When is p/Mt := 2 max(Lsy, Usi) < 1
» Many algorithms with bounds of this form, which to use?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



How to interpret this result, should we be happy?

v

Optimal order if L3y, Usix bounded for k ~ m and m ~ n

v

There are random matrices what w.h.p. have L, Uy bounded!

v

When is ;" := 2 max(Lsy, Usk) < 1

Many algorithms with bounds of this form, which to use?

v

v

To answer these questions need to have bounds on the RICs.

v

Previous CaTa05 bounds insufficient for reasonable k

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds for Gaussian A/(0, m~!) [BaTa10, BICaTa09]

(1= L8, p))lIxIZ < IAXIIZ < (1 + U8, p))lIx[13
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L(3, p) u(d, p)
» Using Wishart Distributions and groupings

» Less than 1.57 times empirically observed values
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RIC bounds for Gaussian A/(0, m~!)[BaTal0, BICaTa09]
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L(5,p)
» Empirical draw with n = 400, consistent with n = 200, 800

» Local searches for local extremal singular values: algorithms of
Richtarik (U) and Dossal et al (L).

Stochastic Geometry and Random Matrix Theory in Compressed Sensing
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RIC bounds for Gaussian N (0, m™1): [BICaTa09]

Theorem

Am.n entries are drawn i.i.d. from the Gaussian normal N'(0,1/m).
Let 6, = m/n and p, = k/m. For any fixed e > 0, in the limit as
dm — 6 €(0,1) and pm — p € (0,1) as m — oo,

P(Li < LBT(8,p) —€) =1 and P(Uix <UBT(8,p)+¢) — 1

exponentially in m.

0509

o

=== 37 b4

LBCT(§, p) (left panel) and UBCT (5, p) (right panel).

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Definition of BCT bounds

Let H(p) := plog(1/p) + (1 — p) log(1/(1 — p)) denote the usual
Shannon Entropy with base e logarithms, and let

1
Ymin(A, p) == H(p)—|—5[(1—p)log)\—i—l—p—i-plogp—)\],

1
Ymax(A,p) 1= S (1 + p)log A+ 1+ p —plogp — A].

Define A™1(§, p) and A™3(§, p) as the solution to (3) and (4),
respectively:

Umin(AN™1(8, ), p) + H(pd) =0 for  A™(8,p) <1—p (3)

0Vmax(A™(8, p), p) + H(pd) =0 for  A™(4,p) = 1+p. (4)
Define £B7 (6, p) and UBC7 (6, p) as

LET(5,p) == 1-A""(5,p) and UPCT(8,p) = m[in1] A6, v)—1.
velp,

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds for N (0, m™1) (proof, pg. 1: largest)

Begin with behaviour of largest singular value[Edelman88]

Let Ap be a matrix of size m x k whose entries are drawn i.i.d
from NV(0, m™1). Let fax(k, m; \) denote the probability density
function for the largest eigenvalue of the Wishart matrix AKAA of
size k x k. Then fpax(k, m; \) satisfies:

(M H6)/2
el m ) = l(zw)m(m)_w (%) r(k>1r(m>] o
2 2

Large deviation (large k and m) behavior of f,,ax, apply m~—log(")

1 1 2 m
3 [(1+Pm)|0g)\ <pmm> |ngm+m|og2+1+pm)\}

Large m limit gives exponential behaviour 1max (A, p)

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds for N'(0, m™) (proof, pg. 2: smallest)

Smallest singular value [Edelman88] similarly

Let fmin(k, m; ) denote the probability density function for the
smalles eigenvalue of the Wishart matrix A Ap of size k x k.
Then fmin(k, m; ) bounded above by:

T \Y2 mA\ (mR)/2 r(e)
<(zm) e m<2> '[r(’;)r( )

2

Large deviation (large k and m) behavior of f,,i,, apply m~—log(")

1
Ymin(A, pm) = H(pm)+§ [(1 = pm)log A+ pmlog pm + 1 — pm — A].

Large m limit gives foin(k, m; X) < exp[m - Ymin(\, p)]

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds for N (0, m™1) (proof, pg. 3: union bound)

Have bounds on PDFs of largest and smallest eigenvalues:

fmax(k, m; A) < exp[m-¥max(A, p)]  fmin(k, m; A) < exp[m-1min(A, p)]
with
1
Ymin(A, p) == H(p) + 5 [(1—p)logA+1—p+plogp—A],

1
Ymax(A,p) 1= S (1 + p)log A+ 1+ p —plogp — A].

Note: limy|o ¥min(A, p) = —00 and limyjee Ymax(A, p) — —o0

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



RIC bounds for N (0, m™1) (proof, pg. 3: union bound)

Have bounds on PDFs of largest and smallest eigenvalues:

fmax(ka m; )\) < eXp[m'Q/)max(/\v P)] fmin(k7 m; )\) < exp[m'd}min()\a p)]

with

Vmin(A, p) = H(p)+%[(1—p)|ogk+1—p+p|0gp—A]7

1
Ymax(A,p) 1= S (1 + p)log A+ 1+ p —plogp — A].

Note: limy|o ¥min(A, p) = —00 and limyjee Ymax(A, p) — —o0

Apply union bound over (7)) ~ exp(n - H(dp) sets

Solve zero level curve of exponent to get A™"(4, p) and A™3(4, p)
O

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Improve bounds further through grouping

Set r = (Z) (';)_1 and draw u := rn sets M; each of cardinality p,
drawn uniformly at random from the (g) possible p-sets.
Let G be the union of all u groups,

Prob <|G| < (Z)) < C(k/n)nY2en(1-In2)

where C(z) < %(2772(1 — Z))(—1/2).

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Improve bounds further through grouping

Set r = (Z) (';)_1 and draw u := rn sets M; each of cardinality p,
drawn uniformly at random from the (g) possible p-sets.
Let G be the union of all u groups,

Prob <|G| < (Z)) < C(k/n)nY2en(1-In2)

where C(z) < 2(2mz(1 — z))(=1/2) Proof.

Select one set K C 1,2,..., N of cardinality |K| = k, draw of the
sets M;. The probability that K is not contained in M; is 1/r.
Probability K is not in any of the u sets M; is (1 — r—1)“ < e u/r,
Applying a union bound over all (Z) sets K bounds

o (1< (1)) < (e

Stirling’s Inequality: () < 2(2mz(1 — z)n)(=1/2) gnH(2)

zn

Note that H(z) < In2 for z € [0, 1], and substituting wu. O

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Algorithms for Sparse Approximation
Input: A, y, and possibly tuning parameters

» (9-regularization (for g € (0,1]):
min||x|[ea  subject to |[Ax —y|2<T
X

» Simple Iterated Thresholding:
X = Hi(x! + kAT (y — AxY))
» Two-Stage Thresholding (Subspace Pursuit, CoSaMP):

t+1 Xt+1 — Hak(Xt + K,AT(y _ Axt))

v
I = supp(v*) U supp(x®)  Join supp. sets
w, = (AL A,)'Aly  Least squares fit
x™1 = Hg(w')  Second threshold

When does RIP guarantee they work?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Phase transition (lower bounds) implied by RIP

Theorem: Let y = Ax + e for any k-sparse x and with A
N(0,m™1) iid. Define p2%(6) as the solution to 1*8(d, p) = 1.

For any € > 0, as (k, m,n) — oo with m/n — § € (0,1) and
k/m— p < (1 —¢)pZE(), there is an exponentially high
probability on the draw of A that after / iterations, the algorithm
output X approximates x within the bound

£°%(4, p)
1 — p2le(9,p)

Moreover, if e = 0, algorithm recovers x exactly in no more than

6,00 1= | poEisbd ]

/
e = %ll2 < [178(8,0)] lxll2 + § ez

log 1128 (9, p)

iterates.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Lemma to show, naive replacement of bounds is ok

For some 7 < 1, define the set Z := (0,7)P x (0,00)9 and let F: Z — R
be continuously differentiable on Z. Let A be m x n with aRIP constants
L(-,m,n), U(-,m,n) and let L(4,-), U(J,-) be their bounds. Define 1 to
be the vector of all ones, and

z(k,m,n) := [L(k,m,n),...,L(pk,m,n), U(k,m,n),... U(gk, m,n)]

(6, p) := [L(3,p), - -, L(J, pp), U(S, p), - .., U(6, gp)]-

Suppose, for all t € Z, (VF[t]); >0 forall i=1,...,p+ g and for any
v € Z we have VF[t] - v > 0. Then for any ce > 0, as (k, m,n) — o0
with m/n — &, k/n — p, there is an exponentially high probability on the
draw of the matrix A that

Prob (F[z(k, m, n)] < F[z(6, p) + 1ce]) — 1 as n — 0.

> Let F be por {#¢ “F
» Can replace (k, m, n) by (9, p) bound and O(e)

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Lemma to show, naive replacement of bounds is ok

For some 7 < 1, define the set Z := (0,7)P x (0,00)? and let F : Z - R
be continuously differentiable on Z. Let A be m x n with aRIP constants
L(-,m,n), U(-,m,n) and let L(4,-), U(J, ") be their bounds. Define 1 to
be the vector of all ones, and

z(k,m,n) :=[L(k,m,n),...,L(pk,m,n), U(k,m,n),...,U(gk, m,n)]
z(0, p) == [L(3,p), - - -, L(S, pp), U(0, p), - - -, U(J, qp)]-

Suppose, for all t € Z, (VF[t]); >0 forall i=1,...,p+ g and there
exists j € {1,..., p} such that (VF[t]); > 0. Then there exists c € (0, 1)
depending only on F,§,and p such that for any e € (0,1)

Flz(6,p) + Llce] < F[z(8, (1 + €)p)],

and so there is an exponentially high probability on the draw of A that

Prob (F[z(k,n, N)] < F[z(d, (1 +€)p)]) — 1 as n — oo.

» Can absorb the O(¢) inside p component.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Iterated Hard Thresholding
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» Success can only be guaranteed below (4, p) < 1.

Bounding stability and complexity gives yet lower thresholds.
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» Success can only be guaranteed below (9, p) < 1.

Bounding stability and complexity gives yet lower thresholds.
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(9-regularization, u/(1 — &)

nner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Best known bounds implied by RIP [BICaTaTh09]

» Lower bounds on the Strong exact recovery phase transition
for Gaussian random matrices for the algorithms
¢*-regularization, IHT, SP, and CoSaMP (black).

e Unfortunately recovery thresholds are impractically low.
m > 317k, m > 907k, m > 3124k, m > 4925k
» Coherence and RICs of structured encoders go to zero.

» Targeted techniques give more precise results, m > 5.9k.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Best known bounds implied by RIP, asymptotic [BaTall]

» Lower bounds on the Strong exact recovery phase transition
for Gaussian random matrices for the algorithms
¢*-regularization, IHT, SP, and CoSaMP (black).

e Asymptotic recovery condition for m > vk log(n/m)
v =136, vy =93, vy =272, v =365
> RIP analysis of OMP yields m > 6k log(n/k), seems sharp.

» Targeted techniques give more precise results, v = 2e for /1.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Theory inadequate for many algorithms, experiment!

» Experimental testing of universality for py/(d, C) and
pw/(0, T) via embarrassingly parallel on 1400 node cluster.

» HPC specific GPUs are a major advance in computing power,
c2050 1 TeraFlop/s, top UK computer in 2002 was 2TF /s

» Many core, 448 on c2050, requires careful use of parallelism

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Theory inadequate for many algorithms, experiment!

» Experimental testing of universality for py/(d, C) and
pw/(0, T) via embarrassingly parallel on 1400 node cluster.

» HPC specific GPUs are a major advance in computing power,
c2050 1 TeraFlop/s, top UK computer in 2002 was 2TF /s

» Many core, 448 on c2050, requires careful use of parallelism

» NIHT experimental setup:

» Single precision, matrix-vector multiplication via DCT

» Fast support set detection via linear binning
Not all bins counted in initial steps, effective k smaller initially
Avoid counting bins for small values to avoid long queues
Avoid rebinning when support set couldn't have changed.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Computing environment

CPU:

> Intel Xeon 5650 (released March 2010)

» 6 core, 2.66 GHz

» 12 GB of DDR2 PC3-1066, 6.4 GT/s

» Matlab 2010a, 64 bit (inherent multi-core threading)
GPU:

» NVIDIA Tesla c2050 (release April 2010)

» 448 Cores, peak performance 1.03 Tflop/s

» 3GB GDDRS5 (on device memory)

» Error-correction

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Check that NIHT still performs similarly

Sparsity | GPU | CPU1 | CPU2
k iters iters iters
512 54 54 54
1024 56 56 56
2048 60 60 60
4096 66 66 66
8192 75 75 75
16384 106 106 106
32768 382 374 377
65536 1000 1000 1000

Table: lterations: N = 1,048, 576 and n = 262, 144, i.e. 4 = .25.

» GPU: GPU NIHT
» CPU1: same as used on GPU, but on CPU in matlab

» CPU2: standard CPU matlab implementation

Stochastic Geometry and Random Matrix Theory in Compressed Sensing

Jared Tanner University of Edinburgh



Timings of NIHT

Sparsity GPU CPU1 CPU2
k time (s) | time (s) time (s)
512 0.6790 28.4154 25.9532
1024 0.6963 29.9603 25.1112
2048 0.7481 33.0999 28.3294
4096 0.8272 36.5142 33.7068
8192 0.9120 41.3536 37.2952
16384 1.2025 48.0748 46.3941
32768 3.4911 198.5140 | 183.1571
65536 9.7955 548.3572 | 475.3499

Table: Timings: NV = 1,048, 576 and n = 262, 144, i.e. 4 = .25.

» GPU: GPU NIHT
» CPU1: same as used on GPU, but on CPU in matlab
» CPU2: standard CPU matlab implementation

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Acceleration of NIHT

Sparsity | CPUL/GPU | CPU2/GPU

k acceleration | acceleration
512 41.8460 38.2200
1024 43.0305 36.0660
2048 44.2444 37.8677
4096 44.1419 40.7480
8192 45.3417 40.8919
16384 39.9789 38.5813
32768 56.8625 52.4637
65536 55.9806 48.5274

Table: Acceleration: W = 1,048,576 and n = 262, 144, i.e. 4 = .25,

» GPU workstation (4 card) equivalent to ~ 1000 node cluster
» Computing resources allows large scale testing of algorithms

» Empirical investigation of phase transition and other properties

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Empirical analysis of NIHT, 6 = 0.25

8=1/4, n=2' for j=8...19

1 —— — —

o5l

probability of recovery

L L e —
0.24 0.26 0.28 0.3 0.32 0.34

k/n

L L
0.18 0.2 0.22

» Logit fit, %, of data collected of about 10° tests

> p’\}\’}’t(l/4) ~ 0.25967
» Transition width proportional to m—1/2

» Can also extract iterations, time, convergence rate...

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



The polytope model and face survival

There are three high dimensional regular polytopes.
Each can be used to model compressed sensing questions
» Crosspolytope C" :=[|x|1 <1
models ¢1-regularization
> Simplex 771 :=3""  x; <1 with x; >0 for all i
models ¢*-regularization with sign prior
» Hypercube H" := ||x[|co <1
models bound constraints, different notion of simplicity

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



The polytope model and face survival

There are three high dimensional regular polytopes.
Each can be used to model compressed sensing questions

» Crosspolytope C" :=[|x|1 <1
models ¢1-regularization

> Simplex 771 :=3""  x; <1 with x; >0 for all i
models ¢*-regularization with sign prior

» Hypercube H" := ||x[|co <1
models bound constraints, different notion of simplicity

Lemma
F a k-face of the polytope or polyhedral cone Q and xog a vector in
relint(F). For m x n matrix A the following are equivalent:

(Survive(A, F,Q)): AF is a k-face of AQ,
(Transverse(A, x0, Q)):  N(A) N Feas,,(Q) = {0}.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Explaining the models

» Crosspolytope C" := ||x||1
If xo € R" is on a k-face of C" and N(A) N Feas,,(C") = {0}
then xg has the minimum ¢! norm and y = Axg.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Explaining the models

» Crosspolytope C" := ||x||1
If xo € R™ is on a k-face of C" and N(A) N Feas,,(C") = {0}
then xp has the minimum ¢! norm and y = Axo.

> Simplex T"71:=3"" _ x; <1 with x; > 0 for all i
If If xo € R’} is on a k-face of 771 and
N(A) N Feas,,(T"1) = {0} then xp has the minimum ¢!
norm with nonnegative prior and y = Axp.
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Explaining the models

» Crosspolytope C" := ||x||1
If xo € R" is on a k-face of C" and N(A) N Feas,,(C") = {0}
then xg has the minimum ¢! norm and y = Axg.

> Simplex T"71:=3"" _ x; <1 with x; > 0 for all i
If If xo € R’} is on a k-face of 771 and
N(A) N Feas,,(T"1) = {0} then xp has the minimum ¢!
norm with nonnegative prior and y = Axp.

» Hypercube H" := ||x]|o0 < 1
If xo € R" is on a k-face of H" and N(A) N Feas,,(H") = {0}
then xg has the minimum £°° norm, and is the unique vector
satisfying H" bounds and y = Axp.

Graphical representation for /!-regularization and Crosspolytope

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Geometry of /!-regularization, R”

» Sparsity: xg € R” with kK < m nonzeros on k — 1 face of C".

» Null space of A intersects C" at only xg, or pierces C"
P y P

R A4

/! ball € R” xo + N (A) [A(x = h)[| <n

> If {xo + N(A)} () C" = xo, £} minimization recovers xg
» Faces pierced by xp + N(A) do not recover k sparse xg

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Geometry of /!-regularization, R™

> Sparsity: xg € R” with kK < m nonzeros on k — 1 face of C".

» Matrix A projects face of £! ball either onto or into conv(+A).

¢ ball € R" edge onto AC" edge into AC"
» Survived faces are sparsity patterns in x where ¢* — (9

» Faces which fall inside AC" are not solutions to ¢}

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Geometry of /!-regularization, R™

> Sparsity: xg € R” with kK < m nonzeros on k — 1 face of C".

» Matrix A projects face of £! ball either onto or into conv(+A).

¢ ball € R" edge onto AC" edge into AC"
» Survived faces are sparsity patterns in x where ¢* — (9
» Faces which fall inside AC" are not solutions to ¢*
» Neighborliness of random polytopes [Affentranger & Schneider]

» Exact recoverability of k sparse signals by “counting faces”

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Stochastic geometry and uniform recovery

» Convex hull of n points in m dimensions
> 3, e R™ [=1,2,...n

» P = conv(A) .

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Stochastic geometry and uniform recovery

v

Convex hull of n points in m dimensions
a,eR™ i=1,2,...n

P = conv(A) .

Definition of A being k—neighborly:

v

v

v

» Every a; is a vertex of conv(A)
» Every pair (aj, aj) span an edge of conv(A)
» Every k—tuple of A span a k — 1 face of conv(A)

v

Cyclic Polytopes are maximally [ m/2]—neighborly,
Vandermonde

v

Gale (1956) suggested most polytopes are neighborly
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Classical Result - m fixed

v

Convex hull of n points in m dimensions
a,eR™ i=1,2,...n

P = conv(A) | .
Classically: a; i.i.d. Gaussian N(0,X), m fixed -

# vert(P) ~ cmlog(™ /2 n,  n— .

v

v

v

> Not even 0—neighborly
» Renyi-Sulanke (1963), Efron (1965),
Raynaud (1971), Hueter (1998)

v

Is this the typical structure for a random polytope?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Proportional growth

» Modern high-dimensional setting:
a; € R" iid Gaussian N(0,X)
d=m/ne€(0,1), mand n large

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Proportional growth

» Modern high-dimensional setting:
a; € R" iid Gaussian N(0,X)
d=m/ne€(0,1), mand n large

» Surprise - neighborliness proportional to m is typical
Prob{conv(A) is k — neighborly} — 1, as m,n — oo

for k < ps(m/n; T) - m, [DoTa05].
What is ps(m/n; T)?
Similarly for C" (central neighborliness) and H" (zonotope)

For C" known that ps(m/n; C) < 1/3, unknown construction

vV v v Vv

Nice model, but how do we calculate ps(m/n; Q)?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Expected number of faces, random ortho-projector
(@) —ER(AQ) =2 > > B(F,G)(G,Q)
520 FEFK(Q) GEFmi1125(Q)

where 3 and ~ are internal and external angles respectively
[Affentranger, Schneider]
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Expected number of faces, random ortho-projector
(@) —ER(AQ) =2 > > B(F,G)(G,Q)
520 FEFK(Q) GEFmi1125(Q)

where 3 and ~ are internal and external angles respectively
[Affentranger, Schneider]

» Hypercube is easily to calculate angles, others less so

o0 X n—_(—1
,V(Tf’ Tm—l) _ 12 +1 / e—(€+1)x2 < 2 / e_y2dy> dx.
V. 7 Jo VT Jo

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube angles and face counting [DoTa08|

» Faces of H" are all hypercubes
> B(H*, HY) = 2=(¢=K) for all Hk € H’
> y(H¢ HP) = 2770 for all HY € H"

» For a given HX, the number of HX € H' ¢ H" is (Z:,l:)

n—k
f(HM—Efi(AH") = 2
(H7)=&h 2. > 2 <m+1+2s—k>

s>0 FEFK(H")

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube angles and face counting [DoTa08|

» Faces of H" are all hypercubes

> B(H*, HY) = 2=(¢=K) for all Hk € H’
> y(H¢ HP) = 2770 for all HY € H"
>

For a given HX, the number of HK € H' € H"is (7).

n—k
f(HM—Efi(AH") = 2
(H7)=&h 2. > 2 <m+1+2s—k>

s>0 FEFK(H")

v

There are 2"~ k( ) different k-faces of H”

wom e =2() 5, 175

» Compare s = 0 with fi(H") = 2"7k(]), most faces survive

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube weak and strong phase transitions [DoTa08|

» Weak phase transitions separate when most k-faces survive

f(H") — Ef(AH") — p—(n—k-1) Z ( n—k )

f(H™) = m+1+2s—k

» Main effect from s = 0 (bound by n times s = 0 factor)

» When is 2_("_")(,':_i) exponentially small?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube weak and strong phase transitions [DoTa08|

v

Weak phase transitions separate when most k-faces survive

f(H") — Ef(AH") — p—(n—k-1) Z < n—k )

f(H™) Sy\m+1+2s—k

v

Main effect from s = 0 (bound by n times s = 0 factor)

When is 2_("_")(,':_5() exponentially small?

v

Combinatorial term largest at m — k = "gk, then = 2(n—k)
Weak phase transitions pyy(9; H) := max(0,2 — 6~1)

No strong phase transition (proof to come)

v

v

v

Hypercube is sufficiently simple we can say much more, later

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Large k ~ m ~ n behavior of C" and T"~! angles

Exemplify through one angle, the external angle between simplices

£4+1 [ 2 2 x 2 n—t-1
¢ +m-1 —(+1)x -y
~(T, T —\// e < /e dy) dx.
( ) Y 0 ﬁ 0

Define internal (dy) integral as ®(x) f Is e ¥’ dy, then

(\; /OX e—y2dy> e = exp[(n — £ — 1) In(®(x))]

Full integral then given by

TZ Tm— 1 /54' / —(+1)x+(n—£=1) In(®(x)) 4,

Integrand maximized at —2¢x + (n — )P (x)/P(x) =0
Let v := £/n and x, satisfies 2x, = (11 — 1), (x,)/P(x,)

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Large deviation exponent of external simplex angle

» Bound using dominant exponential behavior

,Y(TZ’ Tm—l) _ [{+1 e—n[uxl%—&-(l—u)ln(‘b(xu))] /OO e_x2_|n(d>(x))dx
Q 0

» /(¢4 1)/m and remaining integral have small effect,
» Dominant effect in sum given at v = p

> Large deviation exponent We,:(p) := vx2 + (1 — v) In(®(x,))

W)

» Other angles and combinatorial terms similarly

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Probability exponents for C” and 7”1
i(Q - ER(AQ) =2) > > BF.61(G.Q)

520 FEFK(Q) GEFni1+425(Q)

o
o

» Strong Phase transitions (uniform bounds)
fi(Q) — Ef(AQ) < poly(m, n) - exp(—nVnet (4, p; Q))

» Weak Phase transitions (average performance)

(Q) — Ef(AQ)
fi(Q)

» Widths of phase transitions: Strong m~—! and Weak m~1/2

< pOIY(my n)'exp(_n(wnet_wface)((Sa P Q))

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Phase Transition: ¢! ball, C" [Do05]

» With overwhelming probability on measurements A, ,:
for any € > 0, as (k, m, n) — o0
e All k-sparse signals if k/m < ps(m/n, C")(1 — ¢)
e Most k-sparse signals if k/m < pyw(m/n, C")(1 — ¢€)
e Failure typical if k/m > pw(m/n, C")(1 + ¢€)

3>

Recovery: most signals

Recovery: all signals

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Phase Transition: ¢! ball, C" [Do05]

» With overwhelming probability on measurements A, ,:
for any € > 0, as (k, m, n) — o0
e All k-sparse signals if k/m < ps(m/n, C")(1 — ¢)
e Most k-sparse signals if k/m < pyw(m/n, C")(1 — ¢€)
e Failure typical if k/m > pw(m/n, C")(1 + ¢€)

3>

Recovery: most signals

Recovery: all signals

9 0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.8 0.9

d=m/n
» Finite n sampling theorems proven, empirical agreement
» For m < n requires m > 2(e)k - log(n/m)

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Phase Transition: Simplex, 7", x > 0 [DoTa05]

» With overwhelming probability on measurements A, ,:
for any € > 0, x > 0, as (k, m,n) — oo
e All k-sparse signals if k/m < ps(m/n, T""1)(1 —¢)
e Most k-sparse signals if k/m < pw(m/n, T""1)(1 —¢)
e Failure typical if k/m > py(m/n, T"71)(1 + ¢)

3>

d=m/n
» Finite n sampling theorems proven, empirical agreement
» For m < n requires m > 2(e)k - log(n/m)

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Weak Phase Transitions: Observed Universality [DoTa09]

» Black: Weak phase transition: x > 0 (top), x signed (bot.)

» Empirical evidence of 50% success rate, n = 1600,

Gaussian
Bernoulli
0.9 Fourier
Ternary p=2/3
Ternary p=2/5
0.8 Ternary p=1/10 7
Hadamard
o7 Expander p=1/5 i
. Rademacher
p(3.Q)
o6 = -
=k | i
o4l // B
0.3 B
0.2 -
0.1 -
o . . . . . . . .
o 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

0.5
3=n/N
» Rigorous statistical testing of non-Gaussian vs. Gaussian

» Over 7 cpu years of data collected

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Bulk Z-scores: signed

(a) Bernoull

Fourier

- (b.,)4
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(¢) Tern:'awry (1/3) (d) Rademacher
» n =200, n =400 and n = 1600

» Linear trend with 6 = m/n, decays at rate m~1/2

Jared Tanner University of Edinburgh

Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Bulk Z-scores: nonnegative

(a) Bernoulli (b) Fourier

(¢) Tern:'awry (1/3) (d) Rademacher
» n =200, n =400 and n = 1600

» Linear trend with 6 = m/n, decays at rate m~1/2

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube: universality result [DoTa09]

Theorem
Let A be an m x n matrix in general position. Then

fk(AH") = (1 — Pp_mn—k ) f(H™)
where

q—1
_ Q-1
Peg =29 :
q,Q yrd ( Y )

» Universal: for every general position matrix (worse if not g.p.)

» Finite dimensional and exact

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube: universality result [DoTa09]

Theorem
Let A be an m x n matrix in general position. Then

fk(AH") = (1 — Pp_mn—k ) f(H™)

where .
q—

_ Q-1

Pg.q =2 QHZ( / )
=0

» Universal: for every general position matrix (worse if not g.p.)

» Finite dimensional and exact

Theorem (Cover & Winder)
A set of Q hyperplanes in general position in R9, all passing
through a common point, divides the space into 2QPC,’Q regions.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube: universality result (proof)

» Consider a k-set A. For each k-face whose entries are not at
bounds on A, translate (without rotation) Feasg(a)(H") so
that its “spine” is at the origin.

> The union of these Feasp(p)(H") is a covering of R" with
n — k hyperplanes used to partition it

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube: universality result (proof)

» Consider a k-set A. For each k-face whose entries are not at
bounds on A, translate (without rotation) Feasg(a)(H") so
that its “spine” is at the origin.

> The union of these Feasp(p)(H") is a covering of R" with
n — k hyperplanes used to partition it

» There are (Z) of these A coverings

» The N(A) is n — m dimensional passing through the origin
and is bisected by the n — k planes (}) times

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Hypercube: universality result (proof)

» Consider a k-set A. For each k-face whose entries are not at
bounds on A, translate (without rotation) Feasg(a)(H") so
that its “spine” is at the origin.

> The union of these Feasp(p)(H") is a covering of R" with
n — k hyperplanes used to partition it

» There are (Z) of these A coverings

» The N(A) is n — m dimensional passing through the origin
and is bisected by the n — k planes (}) times

» Each region of NV(A) corresponds to a k-face where
Feasg(p)(H") N (A) # 0, a lost k-face

n
fil(H") = fil(AH") = < k)z"—kPn_m,n_k = fi(H")Po—m.n—k

O

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Phase Transition [DoTa09]: Hypercube, H"

» Let —1 < x <1 have k entries # —1,1 and form y = Ax.
> Are there other z € H"[—1,1] such that Az =y, z # x?
» As m,n — oo, Typically No provided k/m < pw/(6; H)

o..
o.e
©-s P

o.a

Unique: most signals

o.2

o
S o= o= o= o's ce ©7 o= oo

» Unlike R, T and C: no strong phase transition, fx(H") large
» Universal: A need only be in general position

» Simplicity beyond sparsity: Hypercube k-faces correspond to
vectors with only k entries away from bounds (not -1 or 1).

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant: centro-symmetric result

Theorem
Let A be an m x n matrix in general position with a
centro-symmetric nullspace and exchangeable columns. Then

gfk(ARl) = (1 - Pnfm,nfk)fk(Ri)

» Similar to hypercube, but in expectation

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant: centro-symmetric result

Theorem
Let A be an m x n matrix in general position with a
centro-symmetric nullspace and exchangeable columns. Then

gfk(ARl) = (1 - Pnfm,nfk)fk(Ri)

» Similar to hypercube, but in expectation

Theorem (Wendel)

Let @ points in R be drawn i.i.d. from a centro-symmetric
distribution such that the points are in general position, then the
probability that all the points fall in some half space is Py q.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant: centro-symmetric result (proof)

» Let x > 0 have k entries x; > 0 and form y = Ax;
xpe > 0 for ‘/\C‘ =k, xp = 0.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant: centro-symmetric result (proof)

» Let x > 0 have k entries x; > 0 and form y = Ax;
xpe > 0 for ‘/\C‘ =k, xp = 0.
» Not unique if 3z € N(A) with z >0

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant: centro-symmetric result (proof)

» Let x > 0 have k entries x; > 0 and form y = Ax;
xpe > 0 for |[A€] = k, xp = 0.
» Not unique if 3z € N(A) with z >0
> Let B € R™™ K be a basis for A(A), then z = Bc for some c.
» Not unique if (BTc)p > 0 where |A| = n — k.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant: centro-symmetric result (proof)

» Let x > 0 have k entries x; > 0 and form y = Ax;

xpe > 0 for |[A€] = k, xp = 0.

Not unique if 3z € N (A) with zy >0

Let B € R™"k be a basis for N'(A), then z = Bc for some c.
Not unique if (BTc)p > 0 where |A| = n — k.

Geometrically, not unique if n — k row of BT fall in

some half-space of R"~"".

vV v.Vvyy

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant: centro-symmetric result (proof)

» Let x > 0 have k entries x; > 0 and form y = Ax;

xpe > 0 for |[A€] = k, xp = 0.

Not unique if 3z € N (A) with zy >0

Let B € R™"k be a basis for N'(A), then z = Bc for some c.
Not unique if (BTc)p > 0 where |A| = n — k.

Geometrically, not unique if n — k row of BT fall in

some half-space of R"~"".

vV v.Vvyy

» For rows of B drawn iid from centro-symmetric, row
exchangeable, in general position: Wendel's Theorem

» Probability of failure is

n—m—1
o—n+k+1 Z <” —k— 1)
14

=0

» Probability of failure - 0if n—m—1<(n—k—1)/2.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Projected Orthant [DoTa09]

> Let x > 0 be k-sparse and form y = Ax.
> Are there other z € R” such that Az =y, z > 0, z # x?
» As m,n — oo, Typically No provided k/m < pw/(0; Ry)

o.s
o.e
o.s O
o.a

- Unique: most signals

o.2

s ail signals

o

o o= =) o= o5 S.e ©.7 o.e o.o

» Universal: A an ortho-complement of B € R"™™*" with
entries selected i.i.d. from a symmetric distribution

» For k/m < pw(d,H") :=[2—1/6]4+ and x >0,
any “feasible” method will work.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Projected Orthant, matrix design [DoTa09]

> Let x > 0 be k-sparse and form y = Ax.
> Are there other z € R” such that Az =y, z > 0, z # x?
» As m,n — oo, Typically No provided k/m < pw/(d; Ry)

o.e

o.e

o.a

o.z

Unique: all signals

° —
©.1 o.= o= o.a o.5 o.e o7 o8 o.o

» Gaussian and measuring the mean (row of ones):
pw(m/nRy) — pw(m/n; T)

» Simple modification of A makes profound difference
Unique even for m/n — 0 with m > 2(e)k log(n/m)

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Orthant matrix design, it's really true

> Let x > 0 be k-sparse and form y = Ax.
» Not ¢}, but: max, ||x — z|| subject to Az= Ax and z >0

» Good empirical agreement for n = 200.

05506 085 07 075 08 08 09 0% o1 02 03 04 05 06 07 08

Rademacher Rademacher and row of ones

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Simplicity as low rank

» Sparse approximation considers sparsity or bound simplicity
» Matrix completion considers low rank simplicity

» Main innovation isn't low rank simplicity, but unknown space

red Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Simplicity as low rank

Sparse approximation considers sparsity or bound simplicity
Matrix completion considers low rank simplicity

Main innovation isn't low rank simplicity, but unknown space

vV v v Y

Matrices that have low rank representation in a known basis
Definition. A matrix M has a k-sparse representation in the
matrix dictionary W := {W;}7_, if

M=> x()¥; with |[xofp = k.
j

» How should we sense M?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Simplicity as low rank

Sparse approximation considers sparsity or bound simplicity
Matrix completion considers low rank simplicity

Main innovation isn't low rank simplicity, but unknown space

vV v v Y

Matrices that have low rank representation in a known basis
Definition. A matrix M has a k-sparse representation in the
matrix dictionary W := {W;}7_, if

M=> x()¥; with |[xofp = k.
j

» How should we sense M?
» Let M model a channel and h a known “pilot vector”

» Sense channel M by sending h, recover M from Mh and h

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Matrices with known sparse representation [PfRaTa08]

» Sense channel M by sending h, recover M from Mh and h

N n
Mh = (D x00)¥;)h =" xl)(¥;h)
j=1 J=1
= (Vih|Wsh| ... |V,h)x =: (Wh)xo

where (Wh) = (W1h|Wah| ... |W,h).
» Let y = Mh and A = Wh and we are back to usual CS

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Matrices with known sparse representation [PfRaTa08]

» Sense channel M by sending h, recover M from Mh and h

N

Mh = (D x00)¥;)h =" xl)(¥;h)
j=1 J=1
= (Vih|Wsh| ... |V,h)x =: (Wh)xo

where (Wh) = (W1h|Wah| ... |W,h).

» Let y = Mh and A = Wh and we are back to usual CS

» Exemplar applications: wireless communication and sonar
Seeking channel for detection or repair channel corruption
Model channel as a few dominant translations (delays) and
modulations (reflections/dopler) and let W,h be Gabor

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Matrix completion oracle recovery

> Sensing of matrices M € R™*"™ with rank(M) = r.

» Then M = ULV for U € R™*" with orthonormal columns,
Y € R™*" diagonal, and V € R™*" with orthonormal columns

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Matrix completion oracle recovery

> Sensing of matrices M € R™*"™ with rank(M) = r.

» Then M = ULV for U € R™*" with orthonormal columns,
Y € R™*" diagonal, and V € R™*" with orthonormal columns

» What is the dimensionality of a rank r matrix?
There are nir + nor + r values in U, ¥, and V
Orthogonality of columns in U and V impose r? + r
constraints

» Dimensionality of rank r matrices is r(n; + ny — r), not nyny

> If r(ny + ny — r) < nyny then maybe can exploit low
dimensionality for a form of compressed sensing

» Need at least m > min(r(ny 4+ n2 — r), n1ny) measurements

» How can we sense and recover matrices with optimal order?

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Sensing in matrix completion

» Sensing in compressed sensing via inner products (vectors):
e good idea - vectors that do not have sparse representation
in the same basis as the vector being sensed
e bad idea - point sensing a k-sparse vector

Jared Tanner University of Edinburgh

Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Sensing in matrix completion

» Sensing in compressed sensing via inner products (vectors):
e good idea - vectors that do not have sparse representation
in the same basis as the vector being sensed
e bad idea - point sensing a k-sparse vector

» Matrix completion is no different, inner products (matrices):
e good idea - matrices that do not have low rank
representation in the same U and V column and row space
e bad idea - point sensing a matrix that is sparse, low rank in
point entries

» Designate A the linear sensing operator from R™*"2 — R™

> Measurements y = A(M) where y, =3, - A(p)iiM;;

» Standard choices for A(p): point sensing via one nonzero or
dense sensing via i.i.d. centro-symmetric distribution

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Algorithms for matrix completion

» Given A and y = A(Mp), how to recover My

» Convex relaxation notion
e Compressed sensing replaced min ||x||o s.t. y = Ax with
smallest convex relaxation min ||x||; s.t. y = Ax.
e Matrix completion uses the obvious same replacement of
min rank(M) s.t. y = A(M) with smallest convex relaxation
min [|[M|« s.t. y = A(M).

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Algorithms for matrix completion

» Given A and y = A(Mp), how to recover My

» Convex relaxation notion
e Compressed sensing replaced min ||x||o s.t. y = Ax with
smallest convex relaxation min ||x||; s.t. y = Ax.
e Matrix completion uses the obvious same replacement of
minrank(M) s.t. y = A(M) with smallest convex relaxation
min ||M||, s.t. y = A(M).

» lterative hard thresholding
e CS used steepest descent on ||y — Ax||, restrict ||x|o = k
e Matrix completion uses steepest descent on ||y — A(M)||g
then restrict to rank(M) = r

» Any of the algorithmic ideas from CS can be extended to
Matrix completion using the obvious related property

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Analysis of matrix completion algorithms: coherence

» Coherence p if all three satisfied [Candés and Recht]
(let n := max(n1, n2))

maxg Uu—
maxE ,J_

max ZU’JV"J <,uf

Theorem
If given p > c - urn®/> log n entries of M then with high
probability on M, nuclear (Schatten) norm recovers M.

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Analysis of matrix completion algorithms: RICs

» Matrix completion version of RICs, for all M with rank(M) = r

(1 = R(A)IMI[F < AM)]l2 < (1 + R(A))[IM]|F

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Analysis of matrix completion algorithms: RICs

» Matrix completion version of RICs, for all M with rank(M) = r
(1 = R(A)IMI[F < AM)]l2 < (1 + R(A))[IM]|F

Theorem

Let rank(Mo) < r, y = A(Mo), and Rx(A) < 1, then My is
the matrix of minimum rank satisfying y = A(M), and is the
minimizer of the minimum rank decoder.

Jared Tanner University of Edinburgh

Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Analysis of matrix completion algorithms: RICs

» Matrix completion version of RICs, for all M with rank(M) = r

(1 = R(A)IMI[F < AM)]l2 < (1 + R(A))[IM]|F

Theorem

Let rank(Mo) < r, y = A(Mo), and Rx(A) < 1, then My is
the matrix of minimum rank satisfying y = A(M), and is the
minimizer of the minimum rank decoder.

Theorem (Recht, Fazel, Parrilo)
Let rank(Mo) = r, y = A(My), and Rs.(A) < 1/10, then

Mo = argminy||M||.  subject to y = A(M).

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Nuclear norm recovery guarantee via RIC (proof, pg. 1)

» Follow proof for ¢1-regularization, but with matrices
» Need to decompose null-space matrix

Lemma
Let A and B be matrices with the same dimensions. There exist
matrices By and By with B = By + B>, AB; =0 and A*B; =0,
and < By, By >= 0, and rank(Bi) < 2rank(A).
Proof. Let A have a full SVD A= UXV*. Let B = U*BV and
partition it into blocks

A éll EA312 ]

B=| % ~

[ By B

with By square of size rank(A), then

By := [?11 Bl?}v* and Bg::U[g Bzz]v*

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Nuclear norm recovery guarantee via RIC (proof, pg. 2)

Let X* = argminy||X|[. st. y=A(X)
Let R = X* — Xp. By X* being the argmin:

1 Xoll+ = [[Xo+RIl« = [[Xo+Rell«=[|Roll« = I Xoll«+ [ Rell« = [[Roll«

which yields ||Ro|l« > ||Rc||« (analogous to NSP)

Partition R; into matrices of rank Ry, R, ..., with Ry having the
largest 3r singular values of R., R> the next largest 3r singular
values...

Compare largest singular value in set / 4+ 1 with average in set /

1 1
max(o(Rit1)) < EZJ(R,') — |Rial# < gHRiHi-

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Nuclear norm recovery guarantee via RIC (proof, pg. 3)

Use norm relations and rank(Ry) < 2r to derive bound

;||R||F<f§j|m|| IR < IRl < ?nRouF

Use RICs with bound from below

AR 2 > [lA(Ro + R1)lla = D> [LA(R))]

jz2
> (1= Rs)|[Ro+ RullF — (1+ Rsr) Y |IRllF
Jj=2
2
= ((1=Rsr) =/ 3(1+ Rar))l| RollF (5)
If the factor multiplying ||Ro||f is positive, and by construction
A(R) = 0 we must have R = 0. O
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Matrices having bounded RICs

Concentration of measure bounds analogous to before

If the entries in A is a map from R™>*™ — RP with entries drawn
from a distribution that is mean zero and has a finite fourth
moment then for all 0 < e <1

Prob(|[ A(M)IIZ — [MIIF] > €l M|[F) < 2exp(—p(e*/2 — €°/3)/2).

Theorem. If A is a near isometry, then for every 1 < r < m, there
exists constants ¢ such that with exponentially high probability the
RICs remain bounded whenever p > cr(m + n)log(mn).

» The story of matrix completion parallels that of compressed
sensing, but with fewer quantitate statements and more open
problems.

» There is also a “polytope” style analysis for the convex
relaxation, nuclear norm, algorithm for matrix completion
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Structured sparsity

» Standard CS model: X4(n) := {x | ||x|lo < k}
The union of (}) subspaces.

» A reasonable model due to the prevalence of compressibility
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Structured sparsity

» Standard CS model: X4(n) := {x | ||x|lo < k}
The union of (}) subspaces.

» A reasonable model due to the prevalence of compressibility

» Wavelet transforms convert piecewise smooth signal to
coefficients that decay at rate, ;' coefficient ~ j~P or 774

» Decay of wavelet coefficients indicate k largest coefficients
gives faithful approximation
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Structured sparsity

» Standard CS model: X4(n) := {x | ||x|lo < k}
The union of (}) subspaces.

» A reasonable model due to the prevalence of compressibility

» Wavelet transforms convert piecewise smooth signal to
coefficients that decay at rate, ;' coefficient ~ j~P or 774

» Decay of wavelet coefficients indicate k largest coefficients
gives faithful approximation

» Randomly permute where the k largest coefficients, compute
inverse wavelet transform, looks like noise not piecewise
smooth.

» k term wavelet approximation to find has structure.
Not all (Z) of the k-sparse vectors likely, don’t look for them.
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Structured sparsity model and RIC [BaCeDuHe08]

» Need not specify structure of the model yet, just number p
Definition. [Model sparsity] For any p distinct support sets A;
with |Aj| = k Vj, let

My = {x | supp(x) € \; for some j}.

We refer to M as a model based sparsity space.
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Structured sparsity model and RIC [BaCeDuHe08]

» Need not specify structure of the model yet, just number p
Definition. [Model sparsity] For any p distinct support sets A;
with |Aj| = k Vj, let

My = {x | supp(x) € \; for some j}.

We refer to M as a model based sparsity space.

» Need a method of analysis, no gain for coherence, use RICs
Definition. [Model RICs| Given matrix A € R™*", let Ry, be
the smallest constant that satisfies

(1= R )lIx[13 < AX[13 < (1 + Rug,)lIxllz ¥ x € M

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



Structured sparsity model and RIC [BaCeDuHe08]

» Need not specify structure of the model yet, just number p
Definition. [Model sparsity] For any p distinct support sets A;
with |Aj| = k Vj, let

My = {x | supp(x) € \; for some j}.

We refer to M as a model based sparsity space.

» Need a method of analysis, no gain for coherence, use RICs
Definition. [Model RICs| Given matrix A € R™*", let Ry, be
the smallest constant that satisfies

(1= R )lIx[13 < AX[13 < (1 + Rug,)lIxllz ¥ x € M

n

> Letting p = (}}) recovers the usual ¥ (n) and RICs

» Could improve results if Ryq, replaced with asymmetric

» The essential improvement: select p such that p ~ e®*¥

without any n dependence. (Normal case p ~ e™H(k/n) )
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A subtle point

> If x,y € £(n) then x + y € Xx(n), use RICs of order 2k

> If x,y € My then x+ y may be 2k sparse, but model changes
Definition. [Union of model sparsity] Define M as the union
of r possibly different model sparsity sets:

M = {x| ZX(Z) where  x) € M,}.
/=1

> M can be thought of as M, with p modified to ~ p"
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A subtle point

v

If x,y € Xk(n) then x + y € Xok(n), use RICs of order 2k

If x,y € My then x4+ y may be 2k sparse, but model changes
Definition. [Union of model sparsity] Define M as the union
of r possibly different model sparsity sets:

v

M = {x| ZX(Z) where  x) € M,}.
/=1

v

M, can be thought of as M, with p modified to ~ p"

v

Same algorithms work, with restriction to M at each step

v

Analysis for IHT as example
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Iterative Hard Model Thresholding

Input: y, Ap , and k (number of nonzeros in output vector).
Algorithm: Set x° = 0 and j = 0.

While |ly — Am.nx |2 < Tol repeat the following steps:

set v/ :=x/ + A (v — AmnxX!), and

xI*t1 = H, (V) where H,(-) thresholds to best M.

Output x/.
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Iterative Hard Model Thresholding

Input: y, Ap , and k (number of nonzeros in output vector).
Algorithm: Set x° = 0 and j = 0.

While |ly — Am.nx |2 < Tol repeat the following steps:

set v :=x/ + A% (v — Anax!), and

X = Hi (V) where Hi(-) thresholds to best M.

Output x/.

Theorem

Let y = AmnXxo + e for xo € My and Ap, , in General Position.
Set " = 2R3 and £ = 2(1 + Ry )2

With k used for the hard thresholding function, IHT satisfy the

inequality
. " é—iht
ty
¥ = xoll2 < (1™ Y ||xol + WIIEIIz-
For "t < 1 convergence of x/ to approximation of xg.
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lterative Hard Model Thresholding (proof, pg. 1)

Proof.
H(+) returns the vector in M closest in the ¢2 norm, for instance

1~ Hi(A)llo = [0 b < [V = xolla (6)
Note that

. IV =X THE = [[(V = x0) + (0 — XT3 =
IV = xo0l3 + llxo — I3 + 2Re ((v/ — x0) (30 — /™))
where Re(c) denotes the real part of c.

Bounding the above expression using (6) and canceling the
v/ — xol|3 term yields

¥+ — xo||? < 2Re ((vj — xp)* (¥t — x0)) -

Jared Tanner University of Edinburgh Stochastic Geometry and Random Matrix Theory in Compressed Sensing



lterative Hard Model Thresholding (proof, pg. 2)

Consider ./\/li model set from joining models for xp, x; and Xj;1.

I = ol 13

IN

+

IN +

+

( — Xp) xf+1 — xo))
2Re (((/ — A A ) = 50))” (0 = x0) )
Re (e*Am for:l - xo))
(( (1= A Arg ) = %0)) (1 = x))
2Re (e"‘Am,,,(xJJrl — xo))
211 = A Angll2 - X = xoll2 - X/ = xoll2

2lellz - [[Ama( = x0)ll2

Jared Tanner University of Edinburgh

Stochastic Geometry and Random Matrix Theory in Compressed Sensing



lterative Hard Model Thresholding (proof, pg. 3)

Model RIC bounds ||/ — A% ;A\ izll2 < Ry and
. MM _ My
AmnXJ+1—X0 2 <(14+R 21/2 XJ+1—X0 > then
k) . Mk
dividing by ||x/*1 — xp]|2 yields

It = xoll2 < 2Rugs - X = x0ll2 + 2(1 + Ryg2) el

Let 1" := 2R3 and €7 1= 2(1 + Ry)'/2.
Error at step j in terms of initial error [|x° — xo[[2 = ||x0]2
' ihtj ght
Ix" = xoll2 < (u™) - lIxoll2 + 7= llell2
—u
O

» It looks like nothing has changed, but when is RMi <1/2?
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Wavelet tree model

» Piecewise smooth functions (and their vector samples) is likely
the most encompassing versatile model for signals and images.

» Wavelets have (rapid) polynomial decay in smooth regions,
only lack decay for wavelets that interact with discontinuity.
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Wavelet tree model

» Piecewise smooth functions (and their vector samples) is likely
the most encompassing versatile model for signals and images.

» Wavelets have (rapid) polynomial decay in smooth regions,
only lack decay for wavelets that interact with discontinuity.

» Convention of narrower wavelets as scale (label i) increases,
coef. (/,) large suggests coefficient (i — 1, |j/2]) also large.

» Connected subtree model: if (i, ) coefficient is kept, then so
is (i —1,|j/2]) up to top scale
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Wavelet tree model

» Piecewise smooth functions (and their vector samples) is likely
the most encompassing versatile model for signals and images.

» Wavelets have (rapid) polynomial decay in smooth regions,
only lack decay for wavelets that interact with discontinuity.

» Convention of narrower wavelets as scale (label i) increases,
coef. (1,)) large suggests coefficient (i — 1, |j/2]) also large.

» Connected subtree model: if (i, ) coefficient is kept, then so
is (i —1,|j/2]) up to top scale
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Wavelet tree model

> Piecewise smooth functions (and their vector samples) is likely
the most encompassing versatile model for signals and images.

» Wavelets have (rapid) polynomial decay in smooth regions,
only lack decay for wavelets that interact with discontinuity.

» Convention of narrower wavelets as scale (label i) increases,
coef. (1,)) large suggests coefficient (i — 1, |j/2]) also large.

» Connected subtree model: if (7, /) coefficient is kept, then so
is (i —1,[j/2]) up to top scale

» If there are k nonzeros kept in a subtree, there are
p = const. (2e) different subtrees to consider

» This helps in controlling the size of the Model RICs for m < n
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Wavelet model RIC bounds

» Use basic concentration of measure bound

Prob(c™(Ax) > 1+ v/k/m+ o(1) + t)
Prob(c™™(Ax) <1 — /k/m+ o(1) — t)

exp(—mt?/2)
exp(—mt?/2),

and union bound over p = const. (2e)* sets

Prob (Kmizl( oM (Ak) > 1+ /p+ t) < c-exp(mlplog(2e)—t2/2])
e My

» To have probability going to zero solve zero level curve,

t* = 4/2plog(2e)

Note, only depends on p, not §

R, (p) :==[1+ /p+ /2plog(2e)]* — 1

For any «, there is a p such that Ry, < o is satisfied

vV v.yvyy

RMi < 1/2 corresponds to m > 43k, independent of n.
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The impact of including a model [BaCeDuHe08]

AVaY,

(a) test signal (b) CoSaMP (RMSE = 1.123)

AVaY,

(¢) ¢1-optimization (RMSE = 0.751) (d) model-based recovery (RMSE = 0.037)

Fig. 1. Example performance of model-based signal recovery. (a) Piecewise-smooth HeaviSine test signal of length

tree model. recovered from M = 80 random

£y linear programming

on V. In all figures, root mean-squared error (RMSE) values

» Comes with a cost. Parallel IHT has about 40% time cost for
H () when using fast matrix vector products. Use dynamic
programming to find model greatly increases the
computational burden.

» If using model based, use more sophisticated (costly) decoder
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Summary

» Most signals/data that we are interested in in practise has
some underlying simplicity such as: compressibility, known
bounds, inherent lower dimensionality

» Can move knowledge of this simplicity into the acquisition step

» Simple linear measurement processes have optimal rate, with
reasonable constants, no need for learning

» Most of the contributions are on design and analysis for
algorithms to recover vectors/matrices from their compressed
measurements

» Methods of analysis: coherence, RICs, convex geometry

» Much is known, and there is much to be done
e accurate understanding of average case performance
e effect of imposing more prior information
e extensions to other models of simplicity such as low rank

Thank you for your time and attention
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