
A PANORAMA OF HUNGARIAN MATHEMATICS

IN THE TWENTIETH CENTURY:

EXTREMAL PROPERTIES OF POLYNOMIALS

Tamás Erdélyi

This article focuses on those problems about extremal properties of polynomials that
were considered by the Hungarian mathematicians Lipót Fejér, Mihály Fekete, Marcel
Riesz, Alfréd Rényi, György Pólya, Gábor Szegő, Pál Erdős, Pál Turán, Géza Freud,
Gábor Somorjai, and their associates, who died and lived mostly in the twentieth century.
It reflects my personal taste and is far from complete even within the subdomains we
focus on most, namely inequalities for polynomials with constraints, Müntz polynomials,
and the geometry of polynomials. There are separate chapters of this book devoted to
orthogonal polynomials, interpolation, and function series, so here we touch this issues
only marginally. The numbers in square brackets refer to the bibliography at the end of
the volume and the letters and abbreviated year numbers in square brackets refer to the
list at the end of the article.

1. Markov- and Bernstein-Type Inequalities

Let ‖f‖A denote the supremum norm of a function f on A. The Markov inequality
asserts that

‖p′‖[−1,1] ≤ n2‖p‖[−1,1]

holds for every polynomial p of degree at most n with complex coefficients. The inequality

|p′(y)| ≤ n√
1− y2

‖p‖[−1,1]

holds for every polynomial p of degree at most n with complex coefficients and for every
y ∈ (−1, 1), and is known as Bernstein inequality. Various analogues of the above two
inequalities are known in which the underlying intervals, the maximum norms, and the
family of functions are replaced by more general sets, norms, and families of functions,
respectively. These inequalities are called Markov- and Bernstein-type inequalities. If the
norms are the same in both sides, the inequality is called Markov-type, otherwise it is called
Bernstein-type (this distinction is not completely standard). Markov- and Bernstein-type
inequalities are known on various regions of the complex plane and the n-dimensional
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Euclidean space, for various norms such as weighted Lp norms, and for many classes of
functions such as polynomials with various constraints, exponential sums of n terms, just to
mention a few. Markov- and Bernstein-type inequalities have their own intrinsic interest.
In addition, they play a fundamental role in approximation theory.

The inequality
‖p(m)‖[−1,1] ≤ T (m)

n (1) · ‖p‖[−1,1]

for every (algebraic) polynomial p of degree at most n with complex coefficients was first
proved by V.A. Markov in 1892. Here, and in the sequel Tn denotes the Čebyshov poly-
nomial of degree n defined by

Tn(x) :=
1
2

((
x +

√
x2 − 1

)n

+
(
x−

√
x2 − 1

)n)
(equivalently, Tn(cos θ) := cos(nθ) , θ ∈ R). V.A. Markov was the brother of the more
famous A.A. Markov who proved the above inequality for m = 1 in 1889 by answering a
question raised by the prominent Russian chemist, D.I. Mendeleev. Sergei N. Bernstein
presented a shorter variational proof of V.A. Markov’s inequality in 1938. The simplest
known proof of Markov’s inequality for higher derivatives is due to Duffin and Schaeffer
[DS41], who gave various extensions as well.

Let T := R (mod 2π) . The inequality

‖t′‖T ≤ n‖t‖T

for all (real or complex) trigonometric polynomials of order n is also called Bernstein
inequality. It was proved by Bernstein in 1912 with 2n in place of n. See also [Fej30].
The sharp inequality appears first in a paper of Fekete in 1916 who attributes the proof
to Fejér. Bernstein attributes the proof to Edmund Landau. Its clever proof based on
zero-counting may be found in many books dealing with approximation theory. In books
Markov’s inequality for the first derivative is then deduced as a combination of Bernstein’s
inequality and an inequality due to Issai Schur:

‖p‖[−1,1] ≤ (n + 1) max
x∈[−1,1]

∣∣∣p(x)
√

1− x2
∣∣∣

for every polynomial polynomial p of degree at most n with real coefficients.

Bernstein used his inequality to prove inverse theorems of approximation. Bernstein’s
method is presented in the proof of the next theorem, which is one of the simplest cases.
However, several other inverse theorems of approximation can be proved by straightfor-
ward modifications of the proof of this result. That is why Bernstein- and Markov-type
inequalities play a significant role in approximation theory. Direct and inverse theorems of
approximation and related matters may be found in many books on approximation theory,
including [Lo86], [DL93], and [LGM96].
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Let Tn be the collection of all trigonometric polynomials of order at most n with real
coefficients. Let Lipα, α ∈ (0, 1], denote the family of all real-valued functions g defined
on T satisfying

sup
{
|g(x)− g(y)|
|x− y|α : x 6= y ∈ T

}
< ∞ .

For f ∈ C(T), let
En(f) := inf{‖t− f‖T : t ∈ Tn}.

An example for a direct theorem of approximation is the following. Suppose f is m times
differentiable on T and f (m) ∈ Lipα for some α ∈ (0, 1]. Then there is a constant C
depending only on f so that

En(f) ≤ Cn−(m+α), n = 1, 2, . . . .

A proof may be found in [Lo86], for example. The inverse theorem of the above result can
be formulated as follows. Suppose m ≥ 1 is an integer, α ∈ (0, 1), and f ∈ C(T). Suppose
there is a constant C > 0 depending only on f such that

En(f) ≤ Cn−(m+α), n = 1, 2, . . . .

Then f is m times continuously differentiable on T and f (m) ∈ Lipα.

We outline the proof of the above inverse theorem. We show only that f is m times
continuously differentiable on T. The rest can be proved similarly, but its proof requires
more technical details. See, for example, George G. Lorentz’s book [Lo86]. For each k ∈ N ,
let Q2k ∈ T2k be chosen so that

‖Q2k − f‖T ≤ C 2−k(m+α) .

Then
‖Q2k+1 −Q2k‖T ≤ 2C 2−k(m+α) .

Now

f(θ) = Q20(θ) +
∞∑

k=1

(Q2k+1 −Q2k)(θ) , θ ∈ T ,

and by Bernstein’s inequality

|Q(j)
20 |+

∞∑
k=0

|(Q2k+1 −Q2k)(j)(θ)|

≤ ‖Q1‖T+
∞∑

k=0

(
2k+1

)j‖Q2k+1 −Q2k‖T

≤ ‖Q1‖T+
∞∑

k=0

(
2k+1

)j2C 2−k(m+α)

≤ ‖Q1‖T+ 2j+1C
∞∑

k=0

(2j−m−α)k < ∞
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for every θ ∈ T and j = 0, 1, . . . , m, since α > 0. Now we can conclude that f (j)(θ) exists
and

f (j)(θ) = Q
(j)
1 (θ) +

∞∑
k=0

(Q2k+1 −Q2k)(j)(θ)

for every θ ∈ T and j = 0, 1, . . . , m. The fact that f (m) ∈ C(T) can be seen by the
Weierstrass M -test. This finishes the proof.

For Erdős, Markov- and Bernstein-type inequalities had their own intrinsic interest and
he explored what happens when the polynomials are restricted in certain ways. It had been
observed by Bernstein that Markov’s inequality for monotone polynomials is not essentially
better than for arbitrary polynomials. Bernstein proved that if n is odd, then

sup
p

‖p′‖[−1,1]

‖p‖[−1,1]
=
(

n + 1
2

)2

,

where the supremum is taken over all polynomials p of degree at most n with real coeffi-
cients which are monotone on [−1, 1]. This is surprising, since one would expect that if a
polynomial is this far away from the “equioscillating” property of the Čebyshov polynomial
Tn, then there should be a more significant improvement in the Markov inequality. In the
short paper [E40.2], Erdős gave a class of restricted polynomials for which the Markov
factor n2 improves to cn. He proved that there is an absolute constant c such that

|p′(y)| ≤ min

{
c
√

n

(1− y2)2
,

en

2

}
‖p‖[−1,1] , y ∈ (−1, 1) ,

for every polynomial of degree at most n that has all its zeros in R \ (−1, 1). This result
motivated several people to study Markov- and Bernstein-type inequalities for polynomials
with restricted zeros and under some other constraints. Generalizations of the above
Markov- and Bernstein-type inequality of Erdős have been extended in many directions
by many people including G.G. Lorentz, John T. Scheick, József Szabados, Arun Kumar
Varma, Attila Máté, Quazi Ibadur Rahman, and Narendra K. Govil. Many of these results
are contained in the following essentially sharp result, due to Peter Borwein and Tamás
Erdélyi [BE94]: there is an absolute constant c such that

|p′(y)| ≤ c min

{√
n(k + 1)
1− y2

, n(k + 1)

}
‖p‖[−1,1] , y ∈ (−1, 1) ,

for every polynomial p of degree at most n with real coefficients that has at most k zeros
in the open unit disk.

Let Kα be the open diamond of the complex plane with diagonals [−1, 1] and [−ia, ia]
such that the angle between [ia, 1] and [1,−ia] is απ. A challenging question of Erdős,
that Gábor Halász [H96] answered in 1996, is: how large can the quantity

‖p′‖[−1,1]

‖p‖[−1,1]
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be, assuming that p is a polynomial of degree at most n which has no zeros in a diamond
Kα , α ∈ [0, 2)? He proved that if α ∈ [0, 1) then there are constants c1 > 0 and c2 > 0
depending only on α such that

c1n
2−α ≤ sup

p

|p′(1)|
‖p‖[−1,1]

≤ sup
p

‖p′‖[−1,1]

‖p‖[−1,1]
≤ c2n

2−α ,

where the supremum is taken for all polynomials p of degree at most n (with either real
or complex coefficients) having no zeros in Kα. He also showed that there is an absolute
constant c2 > 0 such that

‖p′‖[−1,1] ≤ c2n logn‖p‖[−1,1]

holds for all polynomials p of degree at most n with complex coefficients having no zeros
in K1, while for every α ∈ (1, 2) there is a constant c2 depending on α such that

‖p′‖[−1,1] ≤ c2n‖p‖[−1,1]

for all polynomials p of degree at most n with complex coefficients having no zeros in Kα.

Halász reduced the proof to the following result of Szegő [Sze25]: the inequality

|p′(0)| ≤ cαn2α‖p‖Dα

holds for every polynomial p of degree at most n with complex coefficients, where cα is a
constant depending only on α, and

Dα := {z ∈ C : |z| ≤ 1, | arg(z)| ≤ π(1− α)} , α ∈ (0, 1] .

The identity

t′(θ) =
2n∑

ν=1

(−1)ν+1λνt(θ + θν)

with
λν :=

1
n

1(
2 sin( 1

2
θν)
)2 , θν :=

2ν − 1
2n

π , ν = 1, 2, . . . , 2n ,

for all trigonometric polynomials tn of order at most n has been established by M. Riesz
[Ri14] and it is called as the Riesz Interpolation Formula. Here, choosing t(θ) := sin(nθ)
and the point θ = 0, we obtain that

∑2n
ν=1 λν = n. The above identity can be used to prove

not only Bernstein’s inequality, but an Lp version of it for all p ≥ 1. Namely, combining
the triangle inequality and Hölder’s inequality in the Riesz Interpolation Formula, and
then integrating both sides, we obtain∫ 2π

0

|t′(θ)|p dθ ≤ np

∫ 2π

0

|t(θ)|p dθ
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for all trigonometric polynomials t of order at most n. It is interesting to note that the
sharp Lp version of Bernstein’s inequality with Bernstein factor n for all 0 < p < 1 was
established only much later, in 1981, by V.V. Arestov [A81]. It followed the paper [MN80]
by Máté and Nevai, where the 111/pn Bernstein factor was proved . A short and elegant
proof of Arestov’s result due to Manfred Golitschek and G.G. Lorenz is presented in [DL93,
pages 104 – 109].

For real trigonometric polynomials t the inequality

t′(θ)2 + n2t(θ)2 ≤ n2‖t‖2
R

, θ ∈ R ,

holds and is known as the Bernstein-Szegő inequality. Various extensions and generaliza-
tions of this have been established throughout the century.

There is a Bernstein inequality on the unit circle ∂D of the complex plane. It states
that

‖p′‖∂D ≤ n ‖p‖∂D

for all polynomial p of degree at most n with complex coefficients.

It was conjectured by Erdős and proved by Péter Lax [Lax44] in 1944 that

‖p′‖∂D ≤ n

2
‖p‖∂D

for every polynomial p of degree at most n with complex coefficients having no zeros in D.

The question about the right Bernstein factor on the unit circle (between n/2 and n) is
unsettled in the case when we know that there are k zeros inside the open unit disk and
n− k zeros are outside it.

A technical detail related to the proof of the Bernstein-Szegő inequality is known as
the Riesz Lemma after Marcel Riesz, see [BE95], for instance. It states that if t is a real
trigonometric polynomial of order n and for an α ∈ R t(α) = ‖t‖R = 1, then

t(θ) ≥ cos(n(θ − α)), θ ∈
[
α− π

2n
, α +

π

2n

]
.

In particular t does not vanish in
(
α− π

2n , α + π
2n

)
.

Géza Freud paid serious attention to Markov- Bernstein type inequalities on the real
line associated with wα(x) := exp(−|x|α), α > 0 in Lp norm. After Freud the name
Freud weight has become common to refer to the weights wα and their generalizations.
Freud handled the Hermite weight, case α = 2, coupled with the assumption 1 ≤ p ≤ ∞.
However, it was his student Paul Nevai, together with Eli Levin, Doron S. Lubinsky, and
Vilmos Totik who put the right pieces together to obtain

‖Q′wα‖p ≤ Cn1−1/α‖Qwα‖p , α > 1 ,

‖Q′wα‖p ≤ C log n‖Qwα‖p , α = 1 ,

and ‖Q′wα‖p ≤ C‖Qwα‖p , 0 < α < 1 ,
6



for every polynomial Q of degree at most n with real coefficients and for every 0 < p ≤ ∞,
where C = C(α, p) is a constant depending only on α and p, and

‖f‖p
p :=

∫
R

|f(t)|p dt and ‖f‖∞ := ‖f‖R .

In their proof the idea of an infinite-finite range inequality has played a significant role.
This also goes back to Freud who has observed that

‖Q(x) exp(−x2)‖R ≤ Cn1/2‖Q(x) exp(−x2)‖In

for every polynomial Q of degree at most n with real coefficients, where

In :=
[
−(3/2)n1/2, (3/2)n1/2

]
,

and C is an absolute constant.

There is an elementary paper of Szegő [Sze64] dealing with weighted Markov- and
Bernstein-type inequalities on [0,∞) with respect to the Laguerre weight e−x on [0,∞),
which proves

‖p′(x)e−x‖[0,∞) ≤ (8n + 2)‖p(x)e−x‖[0,∞)

for every polynomial p of degree at most n with real coefficients. A sharp L2 version of the
above inequality was the topic of Turán’s paper [Tu60]. Turán has also found the extremal
polynomials in this L2 case.

An interesting inequality of Turán [Tu39]) states that

‖p′‖[−1,1]

‖p‖[−1,1]
>

1
6
√

n

for every polynomial p of degree n having all its zeros in [−1, 1]. He also showed that

‖p′‖D ≥ n

2
‖p‖D

if p has each of its zeros in the closed unit disk D of the complex plane.

Turán posed some problems about bounding the derivative of a polynomial if its modulus
is bounded by a certain curve. One of his problems asked for the right upper bound for
‖p′‖[−1,1] for polynomials p of degree at most n with real coefficients satisfying |p(x)| ≤
(1 − x2)1/2 for every x ∈ [−1, 1]. This problem has been solved by Q.I. Rahman [Ra72]
who established the inequality ‖p′‖[−1,1] ≤ 2(n− 1) for all such polynomials.
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2. Müntz Polynomials and Exponential Sums

James A. Clarkson and Erdős wrote a seminal paper on the density of Müntz polyno-
mials. C.K. Müntz’s classical theorem characterizes sequences Λ := (λj)∞j=0 with

(1) 0 = λ0 < λ1 < λ2 < · · ·

for which the Müntz space M(Λ) := span{xλ0 , xλ1 , . . . } is dense in C[0, 1]. Here the span
denotes the collection of all finite linear combinations of the functions xλ0 , xλ1 , . . . with
real coefficients, and C(A) is the space of all real-valued continuous functions on A ⊂ [0,∞)
equipped with the uniform norm. If A := [a, b] is a finite closed interval, then the notation
C[a, b] := C([a, b]) is used.

Müntz’s Theorem. Suppose Λ := (λj)∞i=0 is a sequence satisfying (1). Then M(Λ) is
dense in C[0, 1] if and only if

∑∞
j=1 1/λj = ∞.

The original Müntz Theorem proved by C. Müntz [M14] in 1914, by Ottó Szász [Szá16]
in 1916, and anticipated by Bernstein was only for sequences of exponents tending to
infinity. Szász proved more than Müntz. He did not assume (1). He assumed only that the
numbers λk are arbitrary complex with λ0 = 1, Reλk > 0, k = 1, 2, . . . , and the exponents
λk are distinct. He gave a necessary and sufficient conditions which characterize denseness
in the case when Reλk ≥ c > 0 k = 1, 2, . . . .

The point 0 is special in the study of Müntz spaces. Even replacing [0, 1] by an interval
[a, b] ⊂ [0,∞) in Müntz’s Theorem is a non-trivial issue. Such an extension is, in large
measure, due to James A. Clarkson and Erdős [CE43] and Laurent Schwartz [Sch59]. In
[CE43], Clarkson and Erdős showed that Müntz’s Theorem holds on any interval [a, b] with
a ≥ 0. That is, for any increasing positive sequence Λ := (λj)∞j=0 and any 0 < a < b, M(Λ)
is dense in C[a, b] if and only if

∑∞
j=1 1/λj = ∞. Moreover, they showed that under the

assumption
∑∞

j=1 1/λj < ∞ and

inf{λj+1 − λj : j = 0, 1, 2, . . .} > 0

every function f ∈ C[a, b] from the uniform closure of M(Λ) on [a, b] is of the form

(2) f(x) =
∞∑

j=0

ajx
λj , x ∈ [a, b) .

In particular, f can be extended analytically throughout the open disk centered at 0 with
radius b.

Erdős considered this result his best contribution to complex analysis. Later, by different
methods, L. Schwartz extended some of the Clarkson-Erdős results to the case when the
exponents λi are arbitrary distinct positive real numbers. For example, in that case, under
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the assumption
∑∞

j=1 1/λj < ∞ every function f ∈ C[a, b] from the uniform closure of
M(Λ) on [a, b] can still be extended analytically throughout the region

{z ∈ C \ (−∞, 0] : |z| < b} ,

although such an analytic extension does not necessarily have a representation given by (2).
The Clarkson-Erdős results were further extended by P. Borwein and T. Erdélyi [BE97.1]
from the interval [0, 1] to compact subsets of [0,∞) with positive Lebesgue measure. That
is, if Λ := (λj)∞j=0 is an increasing sequence of positive real numbers with λ0 = 0 and
A ⊂ [0,∞) is a compact set with positive Lebesgue measure, then M(Λ) is dense in C(A)
if and only if

∑∞
j=1 1/λj = ∞. This result had been expected by Erdős and others for a

long time.

Somorjai [S76] and Joseph Bak and Donald J. Newman [BN78] proved that

R(Λ) := {p/q : p, q ∈ M(Λ)}

is always dense in C[0, 1]. This surprising result says that while the set M(Λ) of Müntz
polynomials may be far from dense, the set R(Λ) of Müntz rationals is always dense
in C[0, 1] no matter what the underlying sequence Λ. Newman was truly impressed by
Somorjai’s result. In the light of Somorjai’s theorem, Newman, in 1978 [N78, p. 50] raises
“the very sane, if very prosaic question”: are the functions

k∏
j=1

(
nj∑
i=0

ai,jx
i2

)
, ai,j ∈ R , nj ∈ N ,

dense in C[0, 1] for some fixed k ≥ 2 ? In other words does the “extra multiplication”
have the same power that the “extra division” has in the Bak-Newman-Somorjai result?
Newman speculated that it did not. P. Borwein and T. Erdélyi proved this conjecture in
[BE96] in a generalized form.

Müntz-Jackson type theorems via interpolation have been considered in [MS77] by
László Márki, Somorjai, and Szabados.

The main results of [BE95, Section 4.2] and [EJ01] are the following.

Full Müntz Theorem in C[0, 1]. Suppose (λj)∞j=1 is a sequence of distinct real numbers
greater than 0. Then span{1, xλ1 , xλ2 , . . .} is dense in C[0, 1] if and only if

∞∑
j=1

λj

λ2
j + 1

= ∞ .

Moreover, if
∞∑

j=1

λj

λ2
j + 1

< ∞ ,

then every function from the C[0, 1] closure of span{1, xλ1 , xλ2 , . . .} is infinitely many
times differentiable on (0, 1).
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Full Müntz Theorem in Lp(A). Let A ⊂ [0, 1] be a compact set with positive lower
density at 0. Let p ∈ (0,∞). Suppose (λj)∞j=1 is a sequence of distinct real numbers
greater than −(1/p) . Then span{xλ1 , xλ2 , . . .} is dense in Lp(A) if and only if

∞∑
j=1

λj + (1/p)
(λj + (1/p))2 + 1

= ∞ .

Moreover, if
∞∑

j=1

λj + (1/p)
(λj + (1/p))2 + 1

< ∞ ,

then every function from the Lp(A) closure of span{xλ1 , xλ2 , . . .} can be represented as an
analytic function on {z ∈ C \ (−∞, 0] : |z| < rA} restricted to A ∩ (0, rA), where

rA := sup{y ∈ R : m(A ∩ [y,∞)) > 0}

(m(·) denotes the one-dimensional Lebesgue measure).

These improve and extend earlier results of Müntz [M14], Szász [Szá16], and Clarkson
and Erdős [CE43]. Related issues about the denseness of span{xλ1 , xλ2 , . . .} are also
considered.

Based on the work of Edmond Laguerre [Lag82] and Pólya [P13] the following is known.

Let A1 denote the class of entire functions f of the form

f(z) = Czme−c2z2+az
∞∏

k=1

(1 + αkz)e−αkz , z ∈ C ,

where C, c, a, αk ∈ R, m is a nonnegative integer, and
∑∞

k=1 α2
k < ∞. Then A1 is the

collection of the analytic extensions of those functions defined on R which may be obtained
as the uniform limit, on every compact subset of R, of polynomials having only real zeros.

Let A2 denote the class of entire functions f of the form

f(z) = Czme−az
∞∏

k=1

(1− αkz) , z ∈ C ,

where C ∈ R, a > 0, m is a nonnegative integer, αk ≥ 0, and
∑∞

k=1 αk < ∞. Then A2

is the collection of the analytic extensions of those functions defined on R which may be
obtained as the uniform limit, on every compact subset of R, of polynomials having only
positive zeros.

The functions of the classes A1 and A2 are sometimes called the Pólya-Laguerre func-
tions.

10



In [P31] Pólya posed the question: for which sequences 0 < β1 < β2 < · · · are the linear
combinations of the functions

cos(βkt), sin(βkt), k = 1, 2, . . . ,

complete in C[0, 2π]? Pólya himself conjectured that

lim sup
k→∞

βk

k
< 1

is sufficient. Szász [Szá34] proved Pólya’s conjecture.

The following pretty results of Fejér may be found in [BE95] (see also [Fej08]): Let

p(z) :=
n∑

k=0

akzλk , ak ∈ C , a0a1 6= 0 .

Then p has at least one zero z0 ∈ C so that

|z0| ≤
(

λ2λ3 · · ·λn

(λ2 − λ1)(λ3 − λ1) · · · (λn − λ1)

)1/λ1
∣∣∣∣a0

a1

∣∣∣∣1/λ1

.

From the above result the following beautiful consequence follows easily: Suppose

f(z) =
∞∑

k=0

akzλk , ak ∈ C

is an entire function so that
∑∞

k=1 1/λk < ∞, that is, the entire function f satisfies the
Fejér gap condition. Then there is a z0 ∈ C so that f(z0) = 0. Hence for every a ∈ C

there is a z0 such that f(z0) = a, that is f has no Picard exceptional value.

Important results of Turán’s are based on the following observations: Let

g(ν) :=
n∑

j=1

bjz
ν
j , bj , zj ∈ C .

Suppose
min

1≤j≤n
|zj | ≥ 1 , j = 1, 2, . . . , n .

Then

max
ν=m+1,... ,m+n

|g(ν)| ≥
(

n

2e(m + n)

)n

|b1 + b2 + · · ·+ bn|

for every positive integer m.
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A consequence of the preceding is the famous Turán Lemma: if

f(t) :=
n∑

j=1

bje
λjt , bj , λj ∈ C .

and
min

1≤j≤n
Re(λj) ≥ 0 ,

then

|f(0)| ≤
(

2e(a + d)
d

)n

‖f‖[a,a+d]

for every a > 0 and d > 0.

Another consequence of this is the fact that if

p(z) :=
n∑

j=1

bjz
λj , bj ∈ C , λj ∈ R , z = eiθ ,

then

max
|z|=1

|p(z)| ≤
(

4eπ

δ

)n

max
|z|=1

α≤arg(z)≤α+δ

|p(z)|

for every 0 ≤ α < α + δ ≤ 2π.

Turán’s inequalities above and their variants play a central role in the book of Turán
[Tu83], where many applications are also presented. The main point in these inequalities
is that the exponent on the right-hand side is only the number of terms n, and so it is
independent of the numbers λj . An inequality of type

max
|z|=1

|p(z)| ≤ c(δ)λn max
|z|=1

α≤arg(z)≤α+δ

|p(z)| ,

where 0 ≤ λ1 < λ2 < · · · < λn are integers and c(δ) depends only on δ, could be obtained
by a simple direct argument, but it is much less useful than Turán’s inequality. Fedor
Nazarov has a paper [Na93] devoted to Turán-type inequalities for exponential sums, and
their applications to various uniqueness theorems in harmonic analysis of the uncertainty
principle type. The author derives an estimate for the maximum modulus of an exponential
sum

n∑
k=1

ckeλkt , ck, λk ∈ C ,

on an interval I ⊂ R in terms of its maximum modulus on a measurable set E ⊂ I of
positive Lebesgue measure:

sup
t∈I

|p(t)| ≤ emax |Reλk|m(I)

(
Am(I)
m(E)

)n−1

sup
t∈E

|p(t)|.
12



In [BE96] a subtle Bernstein-type extremal problem related to Turán’s result is solved
by establishing the equality

sup
0 6=f∈ eE2n

|f ′(0)|
‖f‖[−1,1]

= 2n− 1 ,

where

Ẽ2n :=

{
f : f(t) = a0 +

n∑
j=1

(
aje

λjt + bje
−λjt

)
, aj , bj, λj ∈ R

}
.

This settles a conjecture of G.G. Lorentz and others and it is surprising to be able to
provide a sharp solution. It follows fairly simply from the above that

1
e− 1

n− 1
min{y − a, b− y} ≤ sup

0 6=f∈En

|f ′(y)|
‖f‖[a,b]

≤ 2n− 1
min{y − a, b− y}

for every y ∈ (a, b), where

En :=

{
f : f(t) = a0 +

n∑
j=1

aje
λjt , aj , λj ∈ R

}
.

3. Geometric Properties of Polynomials

There is a number of contributions by Hungarian mathematicians exploring the relation
between the coefficients of a polynomial and the number of its zeros in certain regions of
the complex domain. I find the following result of Erdős and Turán [ET50] especially
attractive. It states that if p(z) =

∑n
j=0 ajz

j has m positive real zeros, then

m2 ≤ 2n log

(
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

)
.

This result was originally due to I. Schur. Erdős and Turán rediscovered it with a short
proof that we outline now:

Step 1. We utilize the following observation due to Szász, see page 173 of [BE95]. Let
γ, λ0, λ1, . . . , λn be distinct real numbers greater than −1/2. Then the L2[0, 1] distance dn

from xγ to span{xλ0 , xλ1 , . . . , xλn} is given by

dn =
1√

2γ + 1

n∏
j=0

∣∣∣∣ γ − λj

γ + λj + 1

∣∣∣∣ .

Step 2. Let

p(z) = an

n∏
k=1

(z − rkeiθk )

13



and

q(z) :=
n∏

k=1

(z − eiθk) .

Note that for |z| = 1,
|z − reiθ|2

r
≥ |z − eiθ|2 .

Use this to deduce that

|q(z)|2 ≤ |p(z)|2
|a0an|

≤
(
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

)2

whenever |z| = 1.

Step 3. Let ∂D be the unit circle of the complex plane. Since p has m positive real roots,
q has m roots at 1. Use the change of variables x := z + z−1 applied to znq(z−1)q(z) to
show that

‖q‖2∂D ≥ min
{bk}

‖(z − 1)m(zn−m + bn−m−1z
n−m−1 + · · ·+ b1z + b0)‖2∂D

≥ min
{ck}

‖xm(xn−m + cn−m−1x
n−m−1 + · · ·+ c1x + c0)‖[0,4]

= 4n min
{dk}

‖xm(xn−m + dn−m−1x
n−m−1 + · · ·+ d1x + d0)‖[0,1]

≥ 4n

√
2n + 1

(
2n

n+m

) ,

where the last inequality follows from Step 1.

Step 4. Now one can easily show that

log

(
4n

√
2n + 1

(
2n

n+m

)) ≥ m2/n

for 1 < m < n, and the proof of Erdős and Turán is finished.

Another beautiful result of Erdős and Turán [ET50] states that if the zeros of p(z) =∑n
j=0 ajz

j are denoted by

zk = rkeiϕk , k = 1, 2, . . . , n ,

then for every 0 < α < β ≤ 2π we have∣∣∣∣∣∣
∑

k∈I(α,β)

1− β − α

2π
n

∣∣∣∣∣∣ ≤ 16
√

n logR ,

14



where

R :=
|a0|+ |a1|+ · · ·+ |an|√

|a0an|

and
I(α, β) := {k ∈ {1, 2, . . . , n} : ϕk ∈ [α, β]} .

André Bloch and Pólya [P32] proved that the average number of real zeros of a polyno-
mial from

Fn :=

{
p : p(z) =

n∑
k=0

akzk, ak ∈ {−1, 0, 1}
}

.

is at most c
√

n. They also prove that a polynomial from Fn cannot have more than

cn log log n

log n

real zeros. This quite weak result appears to be the first on this subject. Schur [Sch33] and
by different methods Szegő [Sze34] and Erdős and Turán [ET50] improve this to c

√
n logn

(see also [BE95]). Their results are more general, but in this specialization not sharp. In
[BEK99] the right upper bound of c

√
n is found for the number of real zeros of polynomials

from a much larger class, namely for all polynomials of the form

p(x) =
n∑

j=0

ajx
j , |aj| ≤ 1 , |a0| = |an| = 1 , aj ∈ C .

In fact our method is able to give c
√

n as an upper bound for the number of zeros of a
polynomial p of degree at most n with |a0| = 1, |aj| ≤ 1, inside any polygon with vertices
on the unit circle (of course, c depends on the polygon). This is discussed in [BE97.2].

Bloch and Pólya [BP32] also prove that there are polynomials p ∈ Fn with

cn1/4

√
log n

distinct real zeros of odd multiplicity. (Schur [Sch33] claims they do it for polynomials
with coefficients only from {−1, 1}, but this appears to be incorrect.)

A surprising theorem of Szegő [Sze22b] states that if

f(x) :=
n∑

k=0

ak

(
n

k

)
xk , an 6= 0 ,

g(x) :=
n∑

k=0

bk

(
n

k

)
xk , bn 6= 0 ,

15



and

h(x) :=
n∑

k=0

akbk

(
n

k

)
xk ,

f has all its zeros in a closed disk D, and g has zeros β1, . . . , βn, then all the zeros of h
are of the form −βjγj with γj ∈ D. An interesting consequence of this is the fact that if a

polynomial p of degree n has all its zeros in D1 := {z ∈ C : |z| ≤ 1}, then the polynomial
q defined by q(x) :=

∫ x

0
p(t) dt has all its zeros in D2 := {z ∈ C : |z| ≤ 2}.

In [E39], Erdős proved that the arc length from 0 to 2π of a real trigonometric polynomial
f of order at most n satisfying ‖f‖R ≤ 1 is maximal for cosnθ. An interesting question he
posed quite often is the following: Let 0 < a < b < 2π. Is it still true that the variation
and arc-length of a real trigonometric polynomial with ‖f‖R ≤ 1 in [a, b] is maximal for
cos(nθ + α) for a suitable α? The following related conjecture of Erdős was open for quite
a long time: Is it true that the arc length from −1 to 1 of a real algebraic polynomial p
of degree at most n with ‖p‖[−1,1] is maximal for the Čebyshov polynomial Tn? This was
proved independently by Gundorph K. Kristiansen [Kr79] and by Borislav Bojanov [B82].

A well-known theorem of Piotr L. Čebyshov states that if p is a real algebraic polynomial
of degree at most n and z0 ∈ R \ [−1, 1], then |p(z0)| ≤ |Tn(z0)| · ‖p‖[−1,1], where Tn is the

Čebyshov polynomial of degree n. The standard proof of this is based on zero counting
which can no longer be applied if z0 is not real. By letting z0 ∈ C tend to a point in
(−1, 1), it is fairly obvious that this result cannot be extended to all z0 ∈ C . However, a
surprising result of Erdős [E47] shows that Čebyshov’s inequality can be extended to all
z0 ∈ C outside the open unit disk.

Erdős and Turán were probably the first to discover the power and applicability of an
almost forgotten result of Evgenii Ja. Remez. The so-called Remez inequality is not only
attractive and interesting in its own right, but it also plays a fundamental role in proving
various other things about polynomials. Let Pn be the set of all algebraic polynomials of
degree at most n with real coefficients. For a fixed s ∈ (0, 2), let

Pn(s) := {p ∈ Pn : m({x ∈ [−1, 1] : |p(x)| ≤ 1}) ≥ 2− s} ,

where m(·) denotes linear Lebesgue measure. The Remez inequality concerns the problem
of bounding the uniform norm of a polynomial p of degree n on [−1, 1] given that its
modulus is bounded by 1 on a subset of [−1, 1] of Lebesgue measure at least 2− s. That
is, how large can ‖p‖[−1,1] (the uniform norm of p on [−1, 1]) be if p ∈ Pn(s)? The answer
is given in terms of the Čebyshov polynomials Tn. We have

‖p‖[−1,1] ≤ Tn

(
2− s

2 + s

)
for all p ∈ Pn(s), and the extremal polynomials for the above problem are the Čebyshov
polynomials ±Tn(h(x)), where h is a linear function which maps [−1, 1− s] or [−1 + s, 1]
onto [−1, 1]. See page 228 of [BE95].
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One of the applications of the Remez inequality by Erdős and Turán [ET40.2] deals
with orthogonal polynomials. Let w be an integrable weight function on [−1, 1] that is
strictly positive almost everywhere. Denote the sequence of the associated orthonormal
polynomials by (pn)∞n=0. The leading coefficient of pn is denoted by γn > 0. Then a
theorem of Erdős and Turán [ET40.2] states that

lim
n→∞ [pn(z)]1/n = z +

√
z2 − 1

holds uniformly on every closed subset of C \ [−1, 1].

Erdős and Turán [ET38] established a number of results on the spacing of zeros of
orthogonal polynomials. One of these is the following. Let w be an integrable weight

function on [−1, 1] with
∫ 1

−1
(w(x))−1 dx =: M < ∞ , and let

(1 >) x1,n > x2,n > · · · > xn,n (> −1)

be the zeros of the associated orthonormal polynomials pn in decreasing order. Let

xν,n = cos θν,n , 0 < θν,n < π , ν = 1, 2, . . . , n .

Let θ0,n := 0 and θn+1,n := π . Then there is a constant K depending only on M such that

θν+1,n − θν,n <
K log n

n
, ν = 0, 1, . . . , n .

Pólya [P28] proved that if

p(x) =
n∑

k=0

akxk ,

then

|an| ≤
1
2

(
4

m(E)

)n

sup
x∈E

|p(x)|

for every measurable set E ⊂ R, 0 < m(E) < ∞. Equality holds if and only if E is an
interval [a, a + λ] and P (x) = ATn(2(x − a)/λ − 1), where a, A ∈ R and λ > 0. Here, as
before, Tn denotes the Čebyshov polynomial of degree n.

Let H ⊂ C be a compact set. Let

µn = inf
(

max
z∈H

|p(z)|
)

,

where the infimum is taken for all monic polynomials p of degree n with complex coeffi-
cients. Let

µ̃n = inf
(

max
z∈H

|p(z)|
)

,
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where the infimum is taken for all monic polynomials p of degree n with complex coefficients
and with all zeros in H. The numbers

µ := µ(H) = lim
n→∞µ1/n

n and µ̃ := µ̃(H) = lim
n→∞ µ̃1/n

n

exist and are called the Čebyshov constant and modified Čebyshov constant, respectively.

Let
d(z1, z2, . . . , zn) =

∏
1≤k<j≤n

|zk − zj |

and
dn := sup (d(z1, z2, . . . , zn))

2
n(n−1) ,

where the supremum is taken for all z1, z2, . . . , zn ∈ H. The points z1, z2, . . . , zn for which
the above supremum is achieved are called nth Fekete points. Then the value

d(H) := lim
n→∞ dn

exists and is called the transfinite diameter (Fekete constant) of H.

The logarithmic energy I(µ) of a µ ∈ M(H) is defined as

I(µ) :=
∫

H

∫
H

log
1

|z − t| dµ(z) dµ(t) ,

and the energy V of H by

V := inf{I(µ) : µ ∈M(H)} ,

where M(H) is the collection of all positive Borel measures with µ(H) = 1 and with
support in H. Then V turns out to be finite or +∞ and in the finite case there is a unique
measure µ = µH ∈M(H) for which the infimum defining V is attained. This µH is called
the equilibrium distribution or measure of a compact set H. The quantity cap(H) := e−V

is called the logarithmic capacity of H.

Fekete [Fek23] and Szegő [Sze24] proved that the the Čebyshov constants, the transfinite
diameter and the logarithmic capacity of a compact set H ⊂ C are equal, that is,

µ(H) = µ̃(H) = d(H) = cap(H)

for every compact subset H of the complex plane.

Tamás Kövári has two papers, [KP68] (written jointly with Pommerenke) and [K71],
on the distribution of Fekete points.

Another important result of Fekete [Fek23] is an extension of a result of David Hilbert
related to the so-called Integer Chebyshev Problem. An integer Chebyshev polynomial Qn
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for a compact subset E ⊂ C is a polynomial Qn of degree at most n with integer coefficients
such that ‖Qn‖E = infPn

‖Pn‖E , where the infimum is taken for all not identically zero
polynomials Pn of degree at most n with integer coefficients (it is easy to see that at
least one such Qn exists). The integer Chebyshev constant for a compact subset E ⊂ C

is defined by tZ(E) := limn→∞ ‖Qn‖1/n
E (it is a routine argument to show that the limit

exists). In the above notation Fekete’s result simply reads as

tZ(E) ≤
√

cap(E) ,

and contains Hilbert’s result as a special case when the set E is a closed interval of the
real line. The Integer Chebyshev Problem has continued to attract a large number of well
known mathematicians later in the century. Yet, there are many unanswered questions
about it posed in papers appearing in general mathematics journals in the XXI-st century.
Peter Borwein may have been the most determined to implement extensive computations
to discover a number of hidden properties about the structure of the integer Chebyshev
polynomials, with special interest in their factorizations. He formulated conjectures which
would have been completely unconceivable before the advance of computers with high
performance.

Approximation of functions f ∈ C(H) by polynomials with integer coefficients on a
compact set H ⊂ C has been considered by Fekete. Several papers appeared on the subject,
the two most important of them are [Fek23] and [Fek54]. His typical results include that
a function f ∈ C[a, b], b− a ≥ 4, is approximable from the collection of polynomials with
integer coefficients if and only if f is a polynomial with integer coefficients. Also, a function
f ∈ C[0, 1] is approximable from the collection of polynomials with integer coefficients if
and only if f(0) and f(1) are both integers.

For a prime p, the polynomials

fp(z) :=
p−1∑
k=1

(
k

p

)
zk

are named after Fekete and have a variety of remarkable properties (the coefficients are
Legendre symbols). To my question “are the Fekete polynomials named after Mihály
Fekete, the transfinite diameter = capacity guy?”, Peter Borwein replied “I had assumed
that it was this Fekete, but I do not know who gave them the name”. Stephen Choi has
confirmed this by referring to a paper [FP12] by Fekete and Pólya. In particular, the
behavior of Fekete polynomials on the unit circle of the complex plane has been studied by
several prominent mathematicians worldwide including Brian Conrey, Andrew Granville,
Hugh L. Montgomery, and Bjorn Poonen. Peter Borwein devotes a chapter to these special
polynomials in his latest book [B02], while he thanks Stephen Choi for Appendix C focusing
on “Explicit Merit Factor Formulae” arising from shifted Fekete polynomials.

Erdős and Freud [EF74] worked together on orthogonal polynomials with regularly
distributed zeros. Let α be a positive measure on (−∞,∞) for which all the moments

µm :=
∫ ∞

−∞
xm dα(x) , m = 0, 1, . . . ,
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exist and are finite. Denote the sequence of the associated orthonormal polynomials by
(pn)∞n=0. Let x1,n > x2,n > · · · > xn,n be the zeros of of pn in decreasing order. Let
Nn(α, t) denote the number of positive integers k for which

xk,n − xn,n ≥ t(x1,n − xn,n) .

The distribution function β of the zeros is defined, when it exists, as

β(t) = lim
n→∞n−1Nn(α, t) , 0 ≤ t ≤ 1 .

Let
β0(t) =

1
2
− 1

π
arcsin(2t− 1) .

A positive measure α for which the array xk,n has the distribution function β0(t) is called
an arc-sine measure. If dα(x) = w(x) dx is absolutely continuous and α is an arc-sine
measure, then w is called an arc-sine weight. One of the theorems of Erdős and Freud
[EF74] states that the condition

lim sup
n→∞

(γn−1)1/(n−1)(x1,n − xn,n) ≤ 4

implies that α is arc-sine and

(3) lim
n→∞ (γn−1)1/(n−1)(x1,n − xn,n) = 4 ,

where, as before, γn−1 is the leading coefficient of pn−1.

They also show that the weights wα(x) := exp(−|x|α), α > 0, are not arc-sine. It is
further proved by a counter-example that even the stronger sufficient condition (3) in the
above-quoted result is not necessary in general to characterize arc-sine measures. As the
next result of their paper shows, the case is different if w has compact support. Namely
they show that a weight w, the support of which is contained in [−1, 1], is arc-sine on
[−1, 1] if and only if

lim sup
n→∞

(γn)1/n ≤ 2 .

A set A ⊂ [−1, 1] is called a determining set if all weights w, the restricted support
{x : w(x) > 0} of which contain A, are arc-sine on [−1, 1]. A set A ⊂ [−1, 1] is said to
have minimal capacity c if for every ε > 0 there exists a δ(ε) > 0 such that for every
B ⊂ [−1, 1] having Lebesgue measure less than δ(ε) we have cap(A \B) > c− ε . Another
remarkable result of this paper by Erdős and Freud is that a measurable set A ⊂ [−1, 1] is
a determining set if and only if it has minimal capacity 1/2.

Erdős’ paper [EH58] with Fritz Herzog and George Piranian on the geometry of poly-
nomials is seminal. In this paper, they proved a number of interesting results and raised
many challenging questions. Although quite a few of these have been solved by Christian
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Pommerenke and others, many of them are still open. Erdős liked this paper very much.
In his talks about polynomials, he often revisited these topics and mentioned the unsolved
problems again and again. A taste of this paper is given by the following results and still
unsolved problems from it. As before, associated with a monic polynomial

(4) f(z) =
n∏

j=1

(z − zj) , zj ∈ C ,

let
E = E(f) = En(f) := {z ∈ C : |f(z)| ≤ 1} .

One of the results of Erdős, Herzog, and Piranian tells us that the infimum of m(E(f)) is
0, where the infimum is taken over all polynomials f of the form (4) with all their zeros
in the closed unit disk (n varies and m denotes the two-dimensional Lebesgue measure).
Another result is the following. Let F be a closed set of transfinite diameter less than
1. Then there exists a positive number ρ(F ) such that, for every polynomial of the form
(4) whose zeros lie in F , the set E(f) contains a disk of radius ρ(F ). There are results
on the number of components of E, the sum of the diameters of the components of E,
some implications of the connectedness of E, some necessary assumptions that imply the
convexity of E. An interesting conjecture of Erdős states that the length of the boundary
of En(f) for a polynomial f of the form (4) is 2n + O(1). This problem seems almost
impossible to settle. The best result in this direction is O(n) by P. Borwein [B95] that
improves an earlier upper bound 74n2 given by Pommerenke.

One of the papers where Erdős revisits this topic is [EN73] written jointly with Elisha
Netanyahu. The result of this paper states that if the zeros zj ∈ C are in a bounded, closed,
and connected set whose transfinite diameter is 1 − c (0 < c < 1), then E(f) contains a
disk of positive radius ρ depending only on c.

I have a postcard from Erdős asking for a proof of the fact that the diameter of E(f)
is always at least 2 for monic polynomials f (of the form (4)). “This ought to be trivial,
but I do not have a proof” is commented by Erdős on the card. Based on a result of
Pommerenke, a proof is presented in [BE95, p. 354].

János Erőd [Er39] attributes the following interesting result to Erdős and Turán and
presents its proof in his paper. If

(5) f(x) = ±
n∏

j=1

(x− xj) , −1 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 ,

and f is convex between xk−1 and xk for an index k, then

xk − xk−1 ≤
16√
n

.

It is not clear to me whether or not Erdős and Turán published this result. In any case,
Eröd proves more, namely he shows that in the Erdös-Turán inequality the constant 16
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can be replaced by

cn = 2
√

n

2n− 3
if n is even, and cn =

2n

n− 1

√
n− 2
n− 3

if n is odd

(so limn→∞ cn =
√

2 in both cases).

An elementary paper of Erdős and Tibor Grünwald (Gallai) [EG39] deals with some
geometric properties of polynomials with only real zeros. One of their results states that
if f is a polynomial of the form (5), then∫ xk+1

xk

|f(x)| dx ≤ 2
3

(xk+1 − xk) max
x∈[xk,xk+1]

|f(x)| .

Some extensions of the above are proved in [E40.1]. In this paper Erdős raised a number
of questions. For example, he conjectured that if t is a real trigonometric polynomial with
only real zeros and with ‖t‖R ≤ 1, then∫ 2π

0

|t(θ)| dθ ≤ 4 .

Concerning polynomials p of degree at most n with all their zeros in (−1, 1) and with
‖p‖[−1,1] = 1, Erdős conjectured that if xk < xk+1 are two consecutive zeros of p, then∫ xk+1

xk

|p(x)| dx ≤ dn(xk+1 − xk) ,

where
dn :=

1
yk+1 − yk

∫ yk+1

yk

|Tn(y)| dy ,

Tn is the usual Čebyshov polynomial of degree n, and yk < yk+1 are two consecutive zeros
of Tn. (Note that dn is independent of k and that lim dn = 2/π.) These conjectures
and more have all been proved in 1974, see Edward B. Saff and T. Sheil-Small [SS74]
and Kristiansen [Kr74]. [Kr74] contains an error. This was corrected in [Kr76]. See also
[Sza79].

In [ET40.1] Erdős and Turán proved the following. Let {ζ(n)
ν } be a triangular sequence

of numbers such that
1 ≥ ζ

(n)
1 > ζ

(n)
2 > · · · > ζ(n)

n ≥ −1 .

Let

ζ(n)
ν = cos φ(n)

ν , 0 ≤ φ(n)
ν ≤ π , and ωn(ζ) =

n∏
ν=1

(ζ − ζ(n)
ν ) .

For (α, β) ⊂ (0, π), let Nn(α, β) denote the number of φ
(n)
ν in (α, β). Suppose |ωn(ζ)| <

2−nA(n) on (−1, 1) for every n. Then for every subinterval (α, β) of (0, π) one has∣∣∣∣Nn(α, β)− β − α

π
n

∣∣∣∣ < 8
log 3

(n log A(n))1/2 .

22



Extending the results of his paper [ET40.1] with Turán, Erdős [E42] proved that if there
are absolute constants c1, c2 > 0 and a function f such that

c2f(n)
2n

≤ max
ζ
(n)
ν+1≤ζ≤ζ

(n)
ν

|ωn(ζ)| ≤ c1f(n)
2n

, ν = 0, 1, . . . , n ,

then for (α, β) ⊂ (0, π),

Nn(α, β) =
β − α

π
n + O((logn)(log f(n))) .

This result has been extended by various people in many directions. See, for example,
Totik [To93].

Erdős [E67] gives an extension of some results of Bernstein and Antoni Zygmund. Bern-
stein had asked the question whether one can deduce boundedness of |Pn(x)| on [−1, 1] for
polynomials pn of degree at most n if one knows that |Pn(x)| ≤ 1 for m > (1 + c)n values
of x with some c > 0. His answer was affirmative. He showed that if |Pn(x(m)

i )| ≤ 1 for all

zeros x
(m)
i of the mth Čebyshov polynomial Tm with m > (1+c)n, then |Pn(x)| ≤ A(c) for

all x ∈ [−1, 1], with A(c) depending only on c. Zygmund had shown that the same con-
clusion is valid if Tm is replaced by the mth Legendre polynomial Lm. Erdős established
a necessary and sufficient condition to characterize the system of nodes

−1 ≤ x
(m)
1 < x

(m)
2 < · · · < x(m)

n ≤ 1

for which
|Pn(x(m)

i )| ≤ 1 , i = 1, 2, . . . , m , m > (1 + c)n ,

imply |Pn(x)| ≤ A(c) for all polynomials Pn of degree at most n and for all x ∈ [−1, 1],
with A(c) depending only on c. His result contains both that of Bernstein and of Zygmund
as special cases. Note that such an implication is impossible if m ≤ n+1, by a well-known
result of Georg Faber.

Erdős wrote a paper [E46] on the coefficients of the cyclotomic polynomials. The cy-
clotomic polynomial Fn is defined as the monic polynomial whose zeros are the primitive
nth roots of unity. It is well known that

Fn(x) =
∏
d|n

(xn/d − 1)µ(d) ,

where µ is the Möbius function. For n < 105, all coefficients of Fn are ±1 or 0. For
n = 105, the coefficient 2 occurs for the first time. Denote by An the maximum over
the absolute values of the coefficients of Fn. Schur proved that lim supAn = ∞. Emma
Lehmer proved that An > cn1/3 for infinitely many n. In his paper [E46], Erdős proved
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that for every k, An > nk for infinitely many n. This is implied by his even sharper
theorem to the effect that

An > exp [c (logn)4/3]

for n = 2 · 3 · 5 · · · · pk with k sufficiently large, where pk denotes the kth prime number.
Recent improvements and generalizations of this can be explored in [M90], [M93], and
[M96].

Erdős [E49] has a note on the number of terms in the square of a polynomial. Let

fk(x) = a0 + a1x
n1 + · · ·+ ak−1x

nk−1 , 0 6= ai ∈ R ,

be a polynomial with k terms. Denote by Q(fk) the number of terms of f2
k . Let Qk :=

minQ(fk), where the minimum is taken over all fk of the above form. László Rédei posed
the problem whether Qk < k is possible. Rényi, László Kalmár, and László Rédei proved
that, in fact, lim infk→∞ Qk/k = 0, and also that Q(29) ≤ 28. Rényi further proved that

lim
n→∞

1
n

n∑
k=1

Qk

k
= 0 .

He also conjectured that limk→∞ Qk/k = 0. In his short note [E49], Erdős proves this
conjecture. In fact, he shows that there are absolute constants c1 > 0 and 0 < c2 < 1 such
that Qk < c2k

1−c1 . Rényi conjectured that limk→∞ Qk = ∞. He also asked whether or
not Qk remains the same if the coefficients are complex. These questions remained open
(at least in this paper).

Erdős [E62] proved a significant result related to his conjecture about polynomials with
±1 coefficients. He showed that if

fn(θ) :=
n∑

k=1

(ak cos kθ + bk sin kθ)

is a trigonometric polynomial with real coefficients,

max
1≤k≤n

{max {|ak|, |bk|}} = 1 and

n∑
k=1

(a2
k + b2

k) = An ,

then there exists a c = c(A) > 0 depending only on A for which limA→0 c(A) = 0 and

max
0≤θ≤2π

|fn(θ)| ≥ 1 + c(A)√
2

(
n∑

k=1

(a2
k + b2

k)

)1/2

.

Closely related to this is a problem for which Erdős offered $100 and which has become
one of my favorite Erdős problems (see also Problem 22 in [E57]): i Is there an absolute
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constant ε > 0 such that the maximum norm on the unit circle of any polynomial p(x) =∑n
j=0 ajx

j with each aj ∈ {−1, 1} is at least (1 + ε)
√

n? Erdős conjectured that there is
such an ε > 0. Even the weaker version of the above, with (1 + ε)

√
n replaced by

√
n + ε

with an absolute constant ε > 0, looks really difficult. (The lower bound
√

n + 1 is obvious
by the Parseval formula.) These problems are unsettled to this date.

Let D be the open unit disk of the complex plane. Let ∂D be the unit circle of the
complex plane. Let

Kn :=

{
p : p(z) =

n∑
k=0

akzk, ak ∈ C , |ak| = 1

}
.

The class Kn is often called the collection of all (complex) unimodular polynomials of
degree n. Given a sequence (εnk

) of strictly positive numbers tending to 0, we say that a
sequence (Pnk

) of polynomials Pnk
∈ Knk

is (εnk
)-ultraflat if

(1− εnk
)
√

nk + 1 ≤ |Pnk
(z)| ≤ (1 + εnk

)
√

nk + 1 , z ∈ ∂D ,

or equivalently
max
z∈∂D

∣∣|Pnk
(z)| −

√
nk + 1

∣∣ ≤ εnk

√
nk + 1 .

The existence of an ultraflat sequence of unimodular polynomials (for some sequence
(εnk

) of positive real numbers tending to 0) seemed very unlikely, in view of an extended
version of the above mentioned Erdős conjecture to polynomials P ∈ Kn with n ≥ 1.

Yet, refining a method of Thomas W. Körner, Jean-Pierre Kahane [Ka80] proved that
there exists a sequence (Pn) with Pn ∈ Kn which is (εn)-ultraflat, where

εn = O
(
n−1/17

√
log n

)
.

Thus this extended version of the above mentioned Erdős conjecture was disproved for the
classes Kn.

The structure of ultraflat sequences of unimodular polynomials is beautiful. The fol-
lowing uniform distribution theorem for the angular speed, conjectured by Saffari [Sa92],
is proved in [Er01]. Suppose (Pn) is an ultraflat sequence of unimodular polynomials
Pn ∈ Kn. We write

Pn(eit) = Rn(t)eiαn(t) , Rn(t) = |Pn(eit)| , t ∈ R .

It is a simple exercise to show that αn can be chosen so that it is differentiable in t on
R. Then in the interval [0, 2π], the distribution of the normalized angular speed α′n(t)/n
converges to the uniform distribution as n →∞. That is, we have

m({t ∈ [0, 2π] : 0 ≤ α′n(t) ≤ nx}) = 2πx + γn(x)
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for every x ∈ [0, 1], where limn→∞ γn(x) = 0 for every x ∈ [0, 1]. As a consequence,
|P ′

n(eit)|/n3/2 also converges to the uniform distribution as n →∞. That is, we have

m({t ∈ [0, 2π] : 0 ≤ |P ′
n(eit)| ≤ n3/2x}) = 2πx + γn(x)

for every x ∈ [0, 1], where limn→∞ γn(x) = 0 for every x ∈ [0, 1] (m(·) denotes the one-
dimensional Lebesgue measure). In both statements the convergence of γn(x) is uniform
on [0, 1] by Dini’s Theorem.

For higher derivatives, the following result is proved in [Er01]. Suppose (Pn) is an
ultraflat sequence of unimodular polynomials Pn ∈ Kn. Then(

|P (m)
n (eit)|
nm+1/2

)1/m

converges to the uniform distribution as n →∞. More precisely, we have

m
({

t ∈ [0, 2π] : 0 ≤ |P (m)
n (eit)| ≤ nm+1/2xm

})
= 2πx + γm,n(x)

for every x ∈ [0, 1], where limn→∞ γm,n(x) = 0 for every fixed m = 1, 2, . . . and x ∈ [0, 1].
For every fixed m = 1, 2, . . . , the convergence of γn,m(x) is uniform on [0, 1] by Dini’s
Theorem.

Several topics from Erdős’s problem paper [E76] have already been discussed before.
Here is one more interesting group of problems. Let (zk)∞k=1 be a sequence of complex
numbers of modulus 1. Let

An := max
|z|=1

n∏
k=1

|z − zk| .

What can one say about the growth of An? Erdős conjectured that lim supAn = ∞. In
my copy of [E76] that Erdős gave me, there are some handwritten notes (in Hungarian)
saying the following. “Wagner proved that lim sup An = ∞. It is still open whether or not
An > nc or

∑n
k=1 Ak > n1+c happens for infinitely many n (with an absolute constant

c > 0). These are probably difficult to answer.” See [W80].

Erdős was famous for anticipating the “right” results. “This is obviously true; only a
proof is needed” he used to say quite often. Most of the times, his conjectures turned out
to be true. Some of his conjectures failed for the more or less trivial reason that he was
not always completely precise with the formulation of the problem. However, it happened
only very rarely that he was essentially wrong with his conjectures. If someone proved
something that was in contrast with Erdős’ anticipation, he or she could really boast to
have proved a really surprising result. Erdős was always honest with his conjectures. If
he did not have a sense about which way to go, he formulated the problem “prove or
disprove”. Erdős turned even his “ill fated” conjectures into challenging open problems.
The following quotation is a typical example of how Erdős treated the rare cases when
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a conjecture of his was disproved. It is from his problem paper [E76] entitled “Extremal
problems on polynomials”. For this quotation, we need to recall the following notation.
Associated with a monic polynomial f(z) =

∏n
j=1 (z − zj), where zj are complex numbers,

let En(f) := {z ∈ C : |f(z)| ≤ 1}. In his problem paper Erdős writes (in terms of the
notation employed here): “In [7] we made the ill fated conjecture that the number of
components of En(f) with diameter greater than 1 + c (c > 0) is less than δc, δc bounded.
Pommerenke [14] showed that nothing could be farther from the truth, in fact he showed
that for every ε > 0 and k ∈ N , there is an En(f) which has more than k components
of diameter greater than 4− ε. Our conjecture can probably be saved as follows: Denote
by Φn(c) the largest number of components of diameter greater than 1 + c (c > 0) which
En(f) can have. Surely, for every c > 0, Φn(c) = o(n), and hopefully Φn(c) = o(nε) for
every ε > 0. I have no guess about a lower bound for Φn(c), also I am not sure whether
the growth of Φn(c), (1 < c < 4) depends on c very much.”

If p(x) =
∑n

j=0 ajx
j , then we introduce l1(p) :=

∑n
j=0 |aj| . An interesting problem of

Erdős and György Szekeres is to minimize l1(p) over all polynomials

p(x) =
N∏

k=1

(1− xαk) ,

where N is a fixed positive integer, while the positive integers α1, α2, . . . , αN vary. Let
E∗

N := min l1(p), where the minimum is taken for all p of the above form. It is conjectured
by Erdős and Szekeres that E∗

N ≥ NK for any fixed K and sufficiently large N . Erdős
and Szekeres [ESz52] proved a sub-exponential upper bound for E∗

N . The best known
upper bound for E∗

N today is exp(O(logn)4) given by A.S. Belov and Sergei V. Konyagin
[BK96], that improves weaker bounds given earlier by Andrew Odlyzko and Mihail N.
Kolountzakis.

For a fixed z ∈ C and a Borel measure µ on [−π, π) the Christoffel function ωn(µ, z) is
defined to be the minimum of

1
2π

∫ π

−π

|p(eiθ)|2 dµ(θ)

taken over all polynomials p of degree less than n with p(z) = 1. Szegő [Sze15] studied
ωn(µ, 0) for absolutely continuous measures µ in 1915. Later, in 1922, Szegő [Sze22a]
showed that

lim
n→∞nωn(µ, eit) = µ′(t) , t ∈ (−π, π) ,

assuming that µ is absolutely continuous and µ′ > 0 is twice continuously differentiable.
This result is very important for applications in orthogonal polynomials, probability the-
ory, and statistics (linear prediction), and other areas. It gives a useful and numerically
adaptable method of computing the weight function for orthogonal polynomials. In their
paper [MNT91], Máté, Nevai, and Totik show that

lim
n→∞nωn(µ, eit) = µ′(t)

27



holds almost everywhere on every interval I ⊂ [−π, π) for which∫
I

log µ′(θ) dθ > −∞ .

In an earlier paper [MN80] Máté and Nevai showed that∫ π

−π

log µ′(θ) dθ > −∞

implies
2e−1µ′(t) ≤ lim inf

n→∞ nωn(µ, eit) ≤ lim sup
n→∞

nωn(µ, eit) = µ′(t)

for almost every real t.
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[EG39] P. Erdős and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939),

537–548.
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absoluten Betrage einer algebraischen Gleichung, Mat. és Fiz. Lapok 17 (1908), 308–324; [Ar-
beiten] No. 24, I, pp. 334–361.

[Fej30] L. Fejér, Über einen S. Bernsteinschen Satz über die Derivierte eines trigonometrischen Poly-
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[Lax44] P. Lax, Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Amer. Math.
Soc. 50 (1944), 509–513.

[LL87.1] A.L. Levin and D.S. Lubinsky, Canonical products and weights exp(−|x|α), α > 1, with appli-

cations, J. Approx. Theory 49 (2) (1987), 149–169.

[LL87.2] A.L. Levin and D.S. Lubinsky, Weights on the real line that admit good relative polynomial

approximation with applications, J. Approx. Theory 49 (2) (1987), 170–195.

[Lo86] G.G. Lorentz, Approximation of Functions, 2nd ed., Chelsea, New York, NY, 1986.

[LGM96] G.G. Lorentz, M. von Golitschek, & Y. Makovoz, Constructive Approximation: Advanced Prob-
lems, Springer-Verlag, New York, NY, 1996.

[M90] H. Maier, The coefficients of cyclotomic polynomials, in Analytic Number Theory (Allerton

Park IL, 1989), Progr. Math. 85, Birkhäuser Boston, Boston MA (1990), 349–366.
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[MN80] A. Máté and P. Nevai, Bernstein’sinequality in Lp for 0 < p < 1 and (C, 1) bounds for orthogonal

polynomials, Annals of Math. 111 (1980), 145–154.
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[Sze15] G. Szegő, Ein Grenzwertsatz b̈er die Toeplitzschen Determinanten einer reellen positiven funk-
tion, Math. Ann. 76 (1915), 590–603 [Papers] I, 54–67.
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[Sze34] G. Szegő, Bemerkungen zu einem Satz von E. Schmidt uber algebraische Gleichungen, Sitz.

Preuss. Akad. Wiss., Phys.-Math. Kl. (1934), 86–98; [Papers] II, 529–542.
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