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The theory of real functions is a relatively young chapter of mathematical analysis. In
fact, in the 19th century, the expression \function theory" was applied to mean the
theory of complex-valued analytic functions of one or more complex variables. The �rst
investigations that initiated the part of analysis called today \theory of real functions"
or brie
y \real analysis" were constructions of various real-valued functions of a real
variable whose characteristic properties are very far from those of analytic functions;
as a typical example, we can mention the construction, due to Karl Weierstrass, of a
real-valued function continuous in an interval but not di�erentiable at any point of this
interval.

The investigations in this direction obtained a very powerful instrument in the theory
of sets discovered and developed by Georg Cantor. As �rst important results of the
theory, we can mention the investigations of Camille Jordan on properties of the functions
of bounded variation, or the theory of the area of plane point sets due to the same author.
However, the last discovery that �nished the acceptance of real analysis as a well-adopted
chapter of analysis was the concept and theory of a very general kind of integral, due
to Henri Lebesgue, in the �rst years of the 20th century. This acceptance was perhaps
due to the fact that Lebesgue not only developed the theory of the integral but also
reached amazing applications of his theory so that the importance of the new, general
theory of the integral convinced everybody interested in mathematical analysis. On the
other hand, Lebesgue's integration theory catalyzed the cristallization of the ideas of
functional analysis in the setting of in�nite dimensional function spaces.

There were Hungarian mathematicians who joined the investigations on real analysis
in the earliest period of its existence, i.e., in the last decades of the 19th century. We
must �rst mention Gyula [Julius] K}onig (1849{1913) who, in his courses on analysis
given at the Technical University Budapest, presented a de�nition of the integral that
included not only the classical de�nition of the Riemannian integral but also the Stieltjes
integral. Despite the fact that he did it in about 1890, he formulated these ideas not
earlier than 1897 in a paper in Hungarian language f27g so that the priority evidently
belongs to Thomas Jean Stieltjes who published his discovery in 1894.

However, K}onig was very probably the �rst researcher who constructed a real-valued
function continuous in an interval and having an extremum in every subinterval f26g.

1The authors are grateful to J�anos Horv�ath, J�ozsef Sz}ucs and L�aszl�o Zsid�o for many helpful sugges-

tions.
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This result certainly in
uenced the disciple of K}onig, Zo�ard Ge}ocze (1873{1916), who
constructed a continuous function that is not recti�able in any subinterval f10g. Many
years later, it turned out that Ge}ocze's construction yields essentially more; in fact it is
one of the simplest constructions furnishing a continuous nowhere di�erentiable function
i.e., it presents the Weierstrass singularity (see work f21g of S�andor K�antor). On the
other hand, the same method of construction, under another choice of the parameters,
furnishes a continuous function that is increasing and singular (i.e., its derivative is
equal to 0 almost everywhere, see f8g). In the last sentence, the expression \almost
everywhere" means, of course, \with the exception of a set of points of Lebesgue measure

zero". It is an imperishable merit of the history of mathematics in Hungary that we had a
researcher who, a few years after its birth, not only made himself a master of Lebesgue's
theory of measure and integral, but also added to this theory essential contributions.
This researcher is Frigyes [Fr�ed�eric] Riesz (1880{1956).

Fr�ed�eric Riesz was de�nitely the �rst mathematician in Hungary who understood the
great importance of the new theory of integration. He was born in Gy}or, a town in the
midway between Budapest and Vienna. After a two-year-study at the polytechnic in
Z�urich, he continued at the science university in Budapest. From 1904 to 1912 he was
a high-school teacher and wrote fundamental papers already in this period. Although
he published very good works also in Hungarian all his life, he was clever enough to
understand that Paris was not only the capital of France but the capital of modern
analysis as well. His publications in Comptes Rendus, the journal of the French Academy
of Sciences, earned a world fame for him very early and he became a professor of the
University of Kolozsv�ar (called Cluj-Napoca now in Roumania) in 1912.

Fr�ed�eric Riesz was one of the fathers of functional analysis. Although functional
analysis in the sense of nowadays had several roots in the 19th century, such as Fourier
expansion of functions and spectral theory of some di�erential equations, its genesis
could be put at the beginning of 20th century. Even at the end of 1800's linear algebra
was very �nite dimensional and dealt with n-tuples of real numbers, and Fr�echet's thesis
on metric spaces appeared in 1906. The cristallization of the ideas was catalyzed by
Lebesgue's integration theory. Many of the basic concepts of functional analysis were
born in the setting of in�nite dimensional function spaces. The intimate relation of the
Lebesgue integral and in�nite dimensional functional analysis is very transparent in the
work of Fr�ed�eric Riesz.

The space L2 of square integrable functions on an interval of the real line was the �rst
in�nite dimensional space on which functional analysis in the modern sense was studied.
The so-called Riesz-Fischer theorem (1907) f58g claims that the space L2 is complete,
that is, all Cauchy sequences are convergent in the L2-sense. That time it was shown
that if fn 2 L2 and

R
jfn(x) � fm(x)j

2 dx is arbitrarily small when n and m are large
enough, then there exists a function f 2 L2 such thatZ

jfn(x)� f(x)j2 dx! 0 as n!1 :

This is Fischer's version of the Riesz-Fischer theorem but Riesz was aware of the equiv-
alence. Riesz actually showed that given an orthogonal sequence f1; f2; : : : of functions
of unit length and a sequence c1; c2; : : : of scalars such that

P
i jcij

2 is �nite, there exists
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a function f in the L2 space such that hfi; fi = ci.

Another early result of Riesz, discovered independently by Fr�echet relying on an
earlier paper of Riesz, tells us that any bounded linear functional A of L2 is induced by
an element g of L2 in the form of integration of the product f54g :

A(f) =
Z
f(x)g(x) dx (f 2 L2) (1)

for some g 2 L2 if there exists a constant MA such thatZ
jf(x)j2 dx � 1 implies jA(f)j �MA (f 2 L2) :

It is still a pleasure to read the original works of Riesz. In 1910 he published a
paper in Hungarian (Integr�alhat�o f�uggv�enyek sorozatai f56g), in which he explains his
understanding of L2 and the above mentioned two results. It is remarkable that abstract
functional analysis did not exist at that time, nevertheless he understood his own (as
well as Lebesgue's, Fr�echet's and Fischer's) result in a very modern and intrinsic way.
For example, he wrote that \The extension of the concept of integral due to Lebesgue is

an indispensable condition for my theorem, similarly to the fact that validity of certain

theorems of algebra or arithmetics require the appropriate extension of the concept of

numbers". In this paper he de�ned the weak topology on the space L2 and shows that a
bounded sequence contains a weakly convergent subsequence.

In our present language, (1) describes the dual of the L2 space. The dual space was
certainly a concept that should be attributed to Riesz. He de�ned the dual of L2 in
1907 and in 1909 he dealt with the dual of the space of continuous functions, Sur les

op�erations fonctionnelles lin�eaires. Let C[a; b] denote the set of all continuous real-
valued functions on the interval [a; b]. In 1903 Hadamard wanted to describe all linear
functionals U : C[a; b]! IR such that Ufn ! Uf whenever fn ! f uniformly. He took
a function F such that

f(x) = lim
n!1

n
Z b

a
f(t)F (n(t� x)) dt

uniformly in x 2 [a; b], for example F (x) = exp(�x2) would do, and he showed that

U(f) = lim
n!1

Z b

a
f(t)�n(t) dt ;

where �n(t) is the value of the functional U at the function x 7! nF (n(t � x)). Riesz
described the continuous linear functionals of C[a; b] by means of the Stieljes integral and
removed the arbitrariness of the function F in Hadamard's theorem f55g. He proved
that there exists a function � of bounded variation such that

U(f) =
Z b

a
f(x) d�(x); (2)

moreover � is unique if �(a) = 0 and the left continuity of � are required. For any
a < t < b he considered the function

ft(x) =

(
x� a; if a � x � t;
t� a; if t � x � b:
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He showed that the function A : t 7! U(ft) satis�es a Lipschitz condition and took ��(t)
as one of the derived numbers of A at the point t. Then it was a standard procedure to
modify � to ful�l the additional requirements and to keep (2).

Extending his work on the space L2, Riesz devoted a fundamental paper to Lp spaces
in 1910, Untersuchungen �uber Systeme integrierbarer Funktionen f57g. Lp is the set
of all complex valued measurable functions such that jf jp is integrable. He restricted
himself to the case p > 1 and extended the H�older and Minkowski inequalities

��� nX
k=1

akbk
��� � � nX

k=1

jakj
p
�1=p� nX

k=1

jbkj
q
�1=q

; where
1

p
+

1

q
= 1;

� nX
k=1

jak + bkj
p
�1=p

�
� nX
k=1

jakj
p
�1=p

+
� nX
k=1

jbkj
p
�1=p

to measurable functions. If f 2 Lp and g 2 Lq, then fg is integrable and

��� Z f(x)g(x) dx
��� � � Z

jf(x)jp dx
�1=p� Z

jg(x)jq dx
�1=q

:

Moreover, if f; g 2 Lp, then f + g 2 Lp and

� Z
jf(x) + g(x)jp dx

�1=p
�
� Z

jf(x)jp dx
�1=p

+
� Z

jg(x)jp dx
�1=p

:

He extended several de�nitions and results from the theory of L2 spaces. He de�ned
strong convergence in Lp as fn ! f if and only if

R
jfn(x) � f(x)jp dx ! 0. His �rst

de�nition of weak convergence was di�erent from today's usual one. He said that fn ! f
weakly if Z t

a
fn(x) dx!

Z t

a
f(x) dx

for all t in the interval on which the functions are de�ned. He showed that this is
equivalent to Z

(f(x)� fn(x))g(x) dx! 0 for all g 2 Lq:

He proved the weak compactness of the unit ball of Lp and he was particularly interested
in the solution of the in�nite system of linear equations

Z b

a
fi(x)�(x) dx = ci ; (3)

where �(x) is the unknown and the fi(x)'s belong to Lq. (The subscript i can run over
an arbitrary set, countable, or not.) One cannot give an easy condition for the existence
of the solution. He claimed that the condition is the existence of a constantM such that

���X
i2I

�ici
���q �M q

Z b

a

���X
i2I

�ifi(x)
���q dx (4)

holds for all �nite subsets I of the index set and for all complex numbers �i. Riesz was
aware of the importance of the case where the fi's are all the functions in L

q. Then (4)
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is exactly the boundednes of the functional L de�ned as L(fi) = ci and he discovered
that the dual of Lq can be identi�ed with Lp. He achieved the �rst example of what we
call today re
exive Banach space.

The system of equations (3) is related to the moment problem. This means that
given the continuous functions fi on an interval [a; b] and a sequence ci of real numbers
(i = 1; 2; : : :), an increasing function � should be found such that

ci =
Z b

a
fi(x) d�(x) (i = 1; 2; : : :) (5)

( cf. (2)). In the original moment problem fi(t) = ti. A trivial necessary condition for
the existence of � is the property that

Pn
j=1 �jfj � 0 should imply

Pn
j=1 �jcj � 0. If this

is ful�lled then

U0

0
@ nX

j=1

�jfj

1
A =

nX
j=1

�jcj

de�nes a positive functional on the linear span of the functions fi and this functional
should be extended to all continuous functions. The representation theorem (2) could be
used. The moment problem belonged to the circle of ideas Fr�ed�eric Riesz worked on. His
brother, Marcell [Marcel] Riesz (1886{1969), considered the moment problem as the
question of extension of a positive functional. His method works in a very general setting,
where a linear functional is de�ned on a subspace and the positivity is determined by a
convex cone. His beautiful method is applicable not only to the power moment problem
but many related problems in function theory (see Section II.6 in f1g).

In 1920 Fr�ed�eric Riesz published a detailed paper dedicated to an elementary pre-
sentation of Lebesgue's integral (B4 in [156]). The method is based on a completely
elementary particular case of Lebesgue measure, namely on the de�nition and simplest
properties of the sets of measure zero (brie
y null sets): A set A � R is a null set if
it can be covered, for an arbitrary " > 0, with a sequence of intervals [an; bn] such thatP1

n=1(bn � an) < ". A statement is true a.e. if it is true everywhere with the exception
of the points of a null set.

The starting point is the, still quite elementary, de�nition of the integral of simple
functions, i.e., functions in [a; b] such that there is a decomposition of [a; b] into �nitely
many pairwise disjoint subintervals in each of which the function is constant. For simple
functions, the (Riemann) integral can be given by a �nite sum.

Now a function f , bounded in [a; b], is said to be integrable if there exists a bounded
sequence of simple functions fn (i.e., jfnj � M for some M) such that fn ! f a.e. in
[a; b]. It can be shown that, under these conditions, the integrals

R b
a fn(x) dx converge

to a limit depending only on f (i.e., independent of the sequence); this limit de�nesR b
a f(x) dx.

In order to de�ne the integral of an unbounded function, let us �rst say that a
(bounded or unbounded) function is measurable in [a; b] if it is the pointwise limit of
an a.e. convergent sequence of simple functions. The integral

R b
a f(x) dx of a measurable

function f is de�ned as the limit of the sequence
R b
a fcn;dn(x) dx, where (cn) is an arbitrary

sequence tending to �1 and (dn) is one tending to +1, while fcn;dn is the truncation
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of f : it is equal to f(x) if cn � f(x) � dn, to cn if f(x) < cn, and to dn if f(x) > dn; the
function f is said to be integrable if the above limit exists, is �nite and independent of
the choice of the sequences (cn) and (dn).

Based on these de�nitions, it is not di�cult to deduce the usual properties of the
integral (linearity, theorems on the integration of sequences of functions, etc.) It can be
easily shown that, for a function integrable in the sense of Riemann, the new integral
exists and is equal to the Riemann integral.

Riesz presented his exposition of the theory of the Lebesgue integral in his courses
on analysis. A detailed exposition can be found in the monograph [157] which was later
translated into several languages.

In two papers (B5 and B6 in [156]) Riesz analyzes the role of Egoro�'s theorem, which
states that a convergent sequence of measurable functions is uniformly convergent elim-
inating a subset of arbitrarily small measure f9g, in the theory of the Lebesgue integral.
In particular, he indicates the modi�cations necessary for extending the theorem for
applications in the theory of the Lebesgue-Stieltjes integral. The Stieltjes integral appar-
ently captured Riesz's attention because it played a decisive role in his result concerning
the integral representation of bounded linear operations on the function space C(a; b) of
continuous functions (see (2)).

In three short papers (B7, B8 and B9 of [156]) and in his letters to G.H. Hardy, Riesz
gives simple proofs for some integral inequalities in particular, the celebrated maximal
inequality of Hardy and Littlewood; in general, arguments are based on the use of the
distribution function m(y) = m(fx 2 [a; b] : f(x) < yg) associated with a function f
measurable in [a; b], where m denotes Lebesgue measure. In B9, he uses the so called
Riesz lemma to furnish an elementary proof of Lebesgue's theorem: every monotone
function is almost everywhere di�erentiable (see B10, B11 and B12 in [156]). In its
simplest form, i.e., for continuous functions, the Riesz lemma is so elementary that its
proof can be included here.

Riesz lemma: If f is continuous in the interval [a; b], then the set H of points x 2
[a; b] for which there exists some point x < x0 � b such that f(x) < f(x0) is open:
H =

S
k(ak; bk) and f(ak) � f(bk) for each k.

The set H can be empty; in this case we have nothing to prove. If H 6= ;, it is
evidently open by the continuity of f so that the representation H =

S
(ak; bk) is clearly

possible. Fix a k and consider ak < x < bk. Let x0 be one of the points in the interval
[x; b] where the value of f is maximal. Then x � x0 < bk is impossible since it would
imply x0 2 H and the existence of an x0 < x0 � b satisfying f(x0) < f(x0). Thus
bk � x0 � b and then f(bk) � f(x0) as bk =2 H. On the other hand, f(x) � f(x0)
by the choice of x0, hence f(x) � f(bk) and, from the continuity of f , x ! ak yields
f(ak) � f(bk).

Using the Riesz lemma, the proof of Lebesgue's theorem becomes almost completely
elementary. The Riesz lemma quite automatically provides coverings of the exceptional
set by systems of intervals of arbitrarily small total length in the proof of Lebesgue's
theorem on the a.e. di�erentiability of a monotone function.

Riesz himself was aware that his lemma can be used for proving further interesting
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theorems of measure theory (B9 and B13 of [156]) and ergodic theory (G5, G7 and G8
in [156]). Much later, the lemma was generalized to several variables (cf. f5g and [166]).

The fact that Lebesgue's theorem on the di�erentiability of monotone functions ob-
tained an elementary proof through the Riesz lemma, suggested to Riesz a new approach
to Lebesgue's integral theory, based on the di�erentability of monotone functions. He
presents his ideas in two papers (B14 and B15 of [156]) The starting point is the following
observation: Let f � 0 in the interval [a; b] and suppose that there exists a function F ,
increasing in [a; b] and satisfying F 0(x) = f(x) a.e. in (a; b). Then there exists, among
these F , one for which the di�erence F (b)� F (a) is the smallest possible.

After having proved this, we say that f � 0 is integrable in [a; b] if there is an F as
above, and de�ne

R b
a f as the minimum of F (b) � F (a). A function f of arbitrary sign

is said to be integrable if f+ = max(f; 0) and f� = �min(f; 0) are integrable and then
we de�ne

R b
a f =

R b
a f

+ �
R b
a f

�. From these de�nitions, one can deduce without any
di�culty the usual properties of the integral, e.g., the theorems on the integration of
sequences of functions.

In the years after World War II, Riesz wrote some big expository papers on the
evolution of the concept of the integral (B16, B17 in [156]) and on the role of null sets
in real analysis (B18 in [156]). It is natural that his own ideas played a central role in
all these summaries.

The original proof of the Riesz lemma due to Fr�ed�eric Riesz, was slightly more com-
plicated; the idea of applying the above point x0 is due to his brotherMarcell [Marcel]
Riesz (1886{1969). Marcel Riesz was also an outstanding mathematician, he lived most
of his life in Sweden and had a wide scienti�c interest, including functional analysis,
partial di�erential equations and algebra. Assume that a linear operator A is de�ned on
a set of measurable functions and its values are also measurable functions on a di�erent
space. Assume that A has a �nite norm C(p; q) when it is regarded as a map from Lp to
Lq (1 � p � 1; 1 � q � 1). The Riesz convexity theorem of Marcel Riesz tells us that
logC(p; q) is a convex function of the variables (p�1; q�1) 2 [0; 1]� [0; 1]. The convexity
theorem became a starting point of abstract interpolation theorems. The spaces Lp and
Lp0

are connected by a path of Banach spaces (namely the Lq spaces, when q is between
p and p0). Under some conditions a construction works for any two Banach spaces, this
is a very concise description of the interpolation theory due Calder�on, Lions and Peetre
which has its roots in the work of Marcel Riesz.

A considerable part of the work of several Hungarian mathematicians in the �rst
part of the 20th century was devoted to an important application of Lebesgue integral,
namely to the calculation of the area of surfaces. Surface area is only seemingly an easy
two-dimensional analogue of arc length. Since the work of Hermann Amandus Schwarz,
we know that the theory of surface area is essentially more complicated. Recall that if,
say,

x = '(t); y =  (t); z = �(t) (a � t � b)

is the parametric representation of a continuous curve in R3 (i.e., ';  ; � are continuous in
[a; b]) then the length of the curve can be de�ned as the least upper bound of the lengths
of polygons inscribed in the curve, namely obtained with the help of a subdivision of
[a; b] by points a = t0 < t1 < t2 < ::: < tn = b and taking as vertices of the polygon the
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points of the curve with parameters ti; the curve is recti�able i� this least upper bound
is �nite.

Schwarz discovered that the area of a surface cannot be de�ned in a similar way.
Even for very simple surfaces, e.g., for a circular cylinder, it can happen that the areas
of all inscribed polyhedra are unbounded from above, and the surface can be uniformly
approximated by inscribed polyhedra so that their area tends to an arbitrary limit not
less than the usual (elementary) area of the surface.

Consider, for the sake of simplicity, a surface having an equation z = f(x; y) where f
is continuous in a rectangle R = [a; b]� [c; d]. In this case, an idea due to Lebesgue again
produces a suitable de�nition of the area of the surface. Consider a subdivision of R into
pairwise non-overlapping triangles T1; :::; Tn and a function g continuous in R and linear
in each of the triangles Ti. The equation z = g(x; y) corresponding to the piecewise linear
function g can be considered as representing a polyhedron P having an elementary area
a(P ). Let us consider a sequence of subdivisions having the property that the functions
gn converge uniformly to f and the areas a(Pn) have a limit l; this limit may depend on
the sequence (gn) and then the smallest possible limit can be considered as the area of
the surface; we shall call it the Lebesgue area L(f) of z = f(x; y).

In the case of a good function f (e.g. if f has continuous partial derivatives fx and fy
in R) it is not di�cult to show that the Lebesgue area can be computed with the help
of the classical formula

L(f) =
ZZ q

f 2x + f 2y + 1 dxdy ; (6)

however, in the general case of a continuous f , the de�nition of L(f) does not directly
involve any method for calculating it.

This was the motivation for Zo�ard Ge}ocze, in one of his �rst papers on the theory of
surfaces, presented as a Thesis to the Sorbonne in Paris in 1908 (Quadrature des surfaces
courbes, Ungar. Ber., 26 (1910), 1{88), to introduce the following expressions:

G1(f; I) =
Z �

�
jf(x; �)� f(x; 
)j dx;

G2(f; I) =
Z �



jf(�; y)� f(�; y)j dy;

G(f; I) = (G1(f; I)
2 +G2(f; I)

2 + jIj)1=2 ;

where I = [�; �] � [
; �] is a subinterval of R and jIj denotes the area (� � �)(� � 
)
of I. He considered further the limit that we call nowadays the Burkill integral of the
interval function G; in order to de�ne it, let us consider a subdivision I = fI1; :::; Ing of
R into pairwise non-overlapping subintervals Ii, then take the sum

s(I) =
nX
1

G(f; Ii)

and the (always existing) limit H(f;R) of s(I), i.e., a (�nite or in�nite) number to
which (s(In)) converges whenever the subdivision In is in�nitely re�ning (i.e., varies
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such a manner that the maximum of the diameters of the intervals belonging to In tends
to 0).

Now Ge}ocze proposes to consider the value H(f;R) as the area of the surface z =
f(x; y). This is motivated by the result that H(f;R) = L(f) whenever the function f
satis�es a Lipschitz condition (i.e., there is a constant M such that jf(x0; y0)� f(x; y)j <
M(jx0 � xj + jy0 � yj) whenever (x; y); (x0; y0) 2 R). This proposal is well-motivated
because Tibor Rad�o (1895{1967) proved later that the equality H(f;R) = L(f) is
valid for any continuous function f f47g. Thus Ge}ocze found in fact a method for
calculating the Lebesgue area of an arbitrary continuous surface de�ned by an equation
z = f(x; y) ((x; y) 2 R).

Ge}ocze found also a necessary and su�cient condition for the value H(f;R) to be
�nite, i.e., by Rad�o's theorem, for the continuous surface z = f(x; y) to have a �nite
Lebesgue area. This is the following: let the function f be of bounded variation as a
function of x in the interval [a; b] for almost every �xed y 2 [c; d] and as a function
of y in the interval [c; d] for almost every �xed x 2 [a; b]; let us denote by V1(y) the
total variation of f(x; y) as a function of x over the interval [a; b] and by V2(x) the total
variation of f(x; y) as a function of y over the interval [c; d]; the condition postulates
that V1 should be (Lebesgue) integrable in [c; d] and V2 be integrable in [a; b].

This condition due to Ge}ocze was rediscovered by Leonida Tonelli f64g; a function
satisfying this condition is said to be of bounded variation in the Tonelli sense. Tonelli
found also a necessary and su�cient condition for the classical formula (6) to give the
Lebesgue area of the continuous surface z = f(x; y). A function f satisfying this condi-
tion is said to be absolutely continuous in the Tonelli sense. This theory �lls Chapter
V of the brilliant monograph f61g of Stanislaw Saks, where works due to Ge}ocze and
Rad�o are often quoted.

The problem of calculation of the area of surfaces is essentially more complicated if
we consider continuous surfaces having a parametric representation; suppose the surface
S is given in the form

x = f(u; v); y = g(u; v); z = h(u; v) ;

where f; g; h are continuous in a rectangle R = [a; b]�[c; d] of the uv-plane. Ge}ocze made
a few �rst steps in this direction in f12g and in the works \A recti�abilis fel�uletr}ol" f14g
\A fel�ulet ter�ulet�enek Peano-f�ele de�niti�oj�ar�ol" f15g written in Hungarian. However,
the thorough discussion of this problem was mainly accomplished by Rad�o who not
only published a long series of papers on this subject but is also the author of a great
monograph [144] containing a deep analysis of the serious di�culties of the problem.

Besides the Lebesgue area L(S) of the surface S, de�ned with the help of sequences of
polyhedra quite similarly as in the case of surfaces represented in the form z = f(x; y),
it is convenient to introduce another kind of area a(S) playing a role similar to the
expression H(f;R) in the theory of surfaces z = f(x; y). This is done, based on ideas of
Ge}ocze f12g by Rad�o in f48, 49, 50g and in [144]. The concept of a(S) can be used in
examining the properties of the surfaces of zero area f13, 52g.

The role of the surface area a(S) in calculating the Lebesgue area L(S) is emphasized
by the fact that, in many cases, we have a(S) = L(S) and, at the same time, a(S) is
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often equal to the value of the classical integral formulaZZ
R
W (u; v) dudv ; (7)

where
W (u; v) = (J1(u; v)

2 + J2(u; v)
2 + J3(u; v)

2)1=2

and

J1(u; v) =
@(g; h)

@(u; v)
; J2(u; v) =

@(h; f)

@(u; v)
; J3(u; v) =

@(f; g)

@(u; v)

are Jacobians. Rad�o f51g has shown that the value of (7) is always � L(S), whenever
the partial derivatives fx; fy; gx; gy; hx; hy exist a.e. in R.

In the general case, Rad�o has shown in f53g that, instead of the concept of functions
of bounded variation and absolutely continuous in the Tonelli sense, it is possible to
introduce the concept of a surface S of essential bounded variation and essentially ab-

solutely continuous, respectively, further instead of the ordinary Jacobians Ji, essential
generalized Jacobians and, with the help of them, a generalized function We(u; v). Now
if L(S) is �nite, then S is of essential bounded variation, We(u; v) exists a. e. on R and
we have the inequality ZZ

R
We(u; v) du dv � L(S):

The sign of equality holds if S is essentially absolutely continuous. Moreover, if the
partial derivatives fx; :::; hy exist a.e. inR, thenWe(u; v) can be replaced here byW (u; v).
As to the equality a(S) = L(S), it holds whenever L(S) is �nite and also if a(S) = 0.

Rad�o's results in the theory of surface area play, of course, an important role in
his monograph on a famous question in di�erential geometry [142]. He also published a
monograph together with Reichelderfer [145], where the methods developed in the theory
of surface area play an essential role. In his last papers, he combines the methods of
this theory with methods of general measure theory f51g and of three papers written in
collaboration with E.J. Mickle f31, 32, 33g.

Ge}ocze and Rad�o were determining personalities in the theory of surface area and their
works are quoted everywhere in the literature of this important chapter of Analysis.

Gy�orgy [George] Alexits (1899{1978) became later a famous researcher in the the-
ory of orthogonal series; however, one of his early papers f2g is an essential contribution
to an important chapter of real analysis, namely to the theory of Baire functions. A
paper of P�al [Paul] Veress (1893{1945) f65g is concerned with the same theory. Both
papers are quoted in the monograph of Hans Hahn (Reelle Funktionen, Leipzig, 1932).
Veress was the author of the �rst textbook on real analysis in Hungarian .

At the beginnings of functional analysis integral equations enjoyed a lot of attention.
They are of the form

'(s) = f(s) + �
Z b

a
K(s; t)f(t) dt ;

where ' is a continuous function on [a; b], � is some complex parameter, K(s; t) is
continuous on [a; b]� [a; b] and f(t) is the unknown function. For example, the Dirichlet
problem could be reduced to such an integral equation. David Hilbert, in his very famous
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and fundamental paper of 1906, replaced the integral equation by an older concept of
an in�nite system of linear equations. Let un be a complete orthonormal sequence of
continuous functions on [a; b]. If f is a solution of the equation, then we can consider
the generalized Fourier coe�cients

kij =
Z b

a

Z b

a
k(s; t)ui(s)uj(t) dsdt;

xi =
Z b

a
'(s)ui(s) ds and yi =

Z b

a
f(s)ui(s) ds:

In this way we arrive at the in�nite system of linear equations

yi + �
1X
j=1

kijyj = xi ;

where the sequences xi and yi are square summable and kij is an in�nite matrix (of
a certain bilinear form). Hilbert himself worked with square integrable sequences and
introduced the important concepts of continuity and complete continuity, mostly for
symmetric bilinear forms. It is not our aim to give more details about Hilbert's work
on integral operators, we want to turn to the work of Riesz on completely continuous

operators.

His lecture delivered in a session of the Hungarian Academy of Sciences in 1916
appeared in the journal Mathematikai �es Term�eszettudom�anyi �Ertes��t}o with the title
Line�aris f�uggv�enyegyenletekr}ol in Hungarian f59g in 1917, and the German translation
�Uber lineare Funktionalgleichungen f60g was published in 1918. The subject of this paper
is the invertibility of certain transformations and Riesz gave the de�nition and spectral
theory of completely continuous transformations. He works on the space of all continuous
functions on an interval, but he notes that similar methods work on other function spaces,
i.e. on L2, where they are even simpler . He uses the norm of a function f : kfk, which
is the maximal value of the function jf(x)j. The same concept and the same notation is
standard today. He carried over Hilbert's de�nition of a completely continuous bilinear
form (based on the weak topology) to the new situation. He de�ned a linear mapping
as completely continuous if the image of a bounded sequence is compact. (In today's
language one would replace \compact" by \precompact" or by \relative compact".) The
novelty of his paper is that he realized that Fr�echet's concept of compactness is the
proper tool to deal with completely continuous operators and he uses only the axiomatic
de�nition of norm years before it was introduced under the name of \Banach space". He
gives in an entirely geometric language what is known nowadays as the Riesz-Fredholm
theory of compact operators.

In 1918 Riesz left Kolozsv�ar, after the World War I the town became part of Rouma-
nia. For two years Riesz lived in Budapest and in 1922 he became professor of the newly
founded university at Szeged.

A partially ordered real linear space L has an order structure which is compatible
with the linear structure. This means, that for any pair of elements f and g in L
satisfying f � g it follows that f + h � g + h holds for all h 2 L and af � ag
holds for all real numbers a � 0. If, in addition, the order structure in L is a lattice
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structure, then L is called a Riesz space. In the present language Fr�ed�eric Riesz was
interested in the ordered dual of an ordered vector space and the basic example was the
space of continuous functions. His lecture at the International Mathematical Congress
at Bologna in 1928 was devoted to this subject and he returned to it in an 1940 Annals
of Mathematics paper (which was the translation of his 1937 inaugural lecture at the
Hungarian Academy of Science). Riesz put emphasis on the following decomposition
property: If f1 + f2 = g1 + g2, then there are elements f11; f12; f21 and f22 such that
f1 = f11 + f12 , f2 = f21 + f22, g1 = f11 + f21 and g2 = f12 + f22. In the space of
continuous functions one can choose f11 := min(f1; g1) and f22 = f1 + f2 �max(f1; g1).

Between 1938 and 1948 Riesz dealt in eight papers with ergodic theorems. The ergodic
and quasi-ergodic hypothesis were born in statistical mechanics and von Neumann gave
the following mathematical formulation. Let H be a Hilbert space and T be a bounded
linear transformation on H. According to von Neumann's mean ergodic theorem the
averages

sn(f) :=
1

n
(f + Tf + : : :+ T n�1f)

converge to a T -invariant vector for every vector f 2 H, when T is a unitary opera-
tor. Riesz gave a very elegant proof for von Neumann's result. Riesz showed that the
orthogonal complement of the set

ff � sn(f) : n 2 IN; f 2 Hg

is the �xed point set of T . From this fact one can prove the convergence of the averages
and the proof requires only the hypothesis kTfk � kfk for every f 2 H, that is T
is a contraction. The Hilbert space version of the mean ergodic theorem corresponds
to L2 spaces and Riesz considered other Lp spaces as well. Much later ergodic theory
appeared again in Hungarian functional analysis in the context of operator algebras:
Istv�an Kov�acs and J�ozsef Sz}ucs obtained the �rst mean ergodic theorem in von
Neumann algebras f25g.

Their result implies that if � is an automorphism of a von Neumann algebra admitting
a faithful normal invariant state, then the averages

sn :=
1

n
(I + � + : : :+ �n�1)

converge to a conditional expectation onto the �xed point algebra, pointwise in the strong
operator topology.

John von Neumann was born Neumann J�anos in 1903 in Budapest. He was a child
prodigy, a prodigious student and he left his mark not only on pure mathematics but on
theoretical physics, on meteorology, on economics, on digital computers and on more.
He was the mathematician admired by most scholars outside of his own discipline. In
its December 24 issue in 1999, The Financial Times has declared John von Neumann to
be \Man of the Century".

In the years 1914-21 von Neumann studied in Budapest's Lutheran Gymnasium. In
1921 he went to become a chemical engineer �rst to Berlin University and then in 1923
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he took the entrance examination for the prestigious course in the chemical engineer-
ing department of the famous Eidgen�ossische Technische Hochschule in Z�urich. When
Hermann Weyl was absent from Z�urich, the undergraduate chemist von Neumann took
over the teaching of some of his classes. During his university years at the ETH, von
Neumann was passing courses in Budapest University (which he never attended) from
where received his Ph.D. with highest honors in 1925.

In early autumn of 1926 von Neumann arrived in G�ottingen. He immediately learnt
quantum theory from Heisenberg's lectures. Von Neumann became an axiomatizer of
quantum mechanics on behalf of the so-called Copenhagen school (which did not include
Schr�odinger.) To Hilbert's delight, von Neumann's mathematical exposition made much
use of Hilbert's own concept of Hilbert space. However, it is not sure that axiomatization
of the Hilbert space and its linear operators (as a substitute for in�nite matrices) by the
twenty-three-year-old von Neumann was to Hilbert's delight. Our present concept of
Hilbert space, in�nite dimensional complex vector space endowed with an inner product
whose metric is complete and separable, was formulated by von Neumann. The rigorous
quantum mechanics required the use of unbounded operators de�ned only on a subspace
of a Hilbert space. Von Neumann developped several technicalities concerning such oper-
ators. The role of the graph, the di�erence between symmetric and selfadjoint operators,
the spectral decomposition of unbounded selfadjoint operators were discovered by him.
In his excellent textbook f29g Peter Lax makes the following historical comment: In
the 1960s Friedrichs met Heisenberg, and used the occasion to express to him the deep

gratitude of the community of mathematicians for having created quantum mechanics,

which gave birth to the beautiful theory of operators in a Hilbert space. Heisenberg allowed

that this was so; Friedrichs then added that the mathematicians have, in some measure,

returned the favor. Heisenberg looked noncommittal, so Friedrichs pointed out that it

was a mathematician, von Neumann, who clari�ed the di�erence between a selfadjoint

operator and one is merely symmetric. \What's the di�erence," said Heisenberg.

After some earlier work on single operators, von Neumann turned to families of op-
erators. He initiated the study of rings of operators, which are commonly called von

Neumann algebras today. The papers which constitute the series \Rings of operators"
opened a new �eld in mathematics and in
uenced research for half a century (or even
longer). In the standard theory of modern operator algebras, many concepts and ideas
have their origin in von Neumann's work.

A von Neumann algebra consists of bounded linear Hilbert space operators. The
characteristic feature of the concept of von Neumann algebra is its very rich structure.
A von Neumann algebra contains the spectral projections of all selfadjoint operators
belonging to the algebra. In particular, there are many orthogonal projections in the
algebra itself. Roughly speaking, the point in the concept of von Neumann algebra is that
formation of product and spectral diagonalization of selfadjoint elements are posssible
within the algebra. It turns out that the projections of a von Neumann algebra form a
lattice in the sense that any two of them have a least upper bound and a greatest lower
bound with respect to an appropriate and natural ordering. The lattice of projections
is the starting point in the classi�cation of von Neumann algebras and a ground for
quantum logic. Von Neumann algebras are classi�ed in terms of the range of a dimension

13



function de�ned on the lattice of projections. The dimension function is the extension
of the simple concept of rank (for matrices) and the peculiarity of the subject begins
with the observation that in nontrivial cases this \rank" can be noninteger. Below the
classi�cation of von Neumann algebras is described. Also, the in
uence of measure theory
on early operator algebra theory is demonstrated by a comparison of a measure-theoretic
construction of Alfr�ed Haar with the dimension function of Murray and von Neumann.
This example shows that the connection with measure theory and ergodic theory has
been very important for operator algebras since the very beginning.

We denote by B(H) the set of all bounded operators acting on the Hilbert space H.
For a subset S � B(H), its commutant S 0 is de�ned as the set of operators commuting
with S:

S 0 = fK 2 B(H) : KS = SK for all S 2 Sg :

Note that S � (S 0)0 holds obviously for any S � B(H). A family of operators acting on a
Hilbert space and containing the identity operator is called a von Neumann algebra if it
contains the adjoint, the linear combinations and the products of its elements and forms
a closed subspace of the space of all bounded operators with respect to the topology of
pointwise convergence. A von Neumann algebra is linearly spanned by its selfadjoint
elements and the spectral resolution of the latter ones lies conveniently in the algebra.
One of the �rst results of von Neumann, the von Neumann's double commutant theorem,
was an equivalent algebraic de�nition of von Neumman algebras. Von Neumann's double
commutant theorem asserts that a family of operators is a von Neumann algebra if and
only if it contains the adjoint of its elements and coincides with its second commutant
(that is, the commutant of its commutant). The remarkable point in the double commu-
tant theorem is the lack of any topological requirement. In the concept of von Neumann
algebra, topology and pure algebra are in great harmony.

The selfadjoint idempotents, called (orthogonal) projections, of a von Neumann al-
gebra form an orthomodular, complete lattice with respect to the lattice operations
^;_;? and the partial ordering �. Below we describe how these operations are de�ned
in terms of the algebaric operations. The projections are in natural correspondence with
the closed subspaces of the underlying Hilbert space and the set theoretical inclusion of
subspaces induces a partial ordering on the projections. This ordering is equivalently
de�ned as

p � q if pq = p : (8)

The smallest projection with respect to this ordering is 0 and the largest one is the
identity. For projections p and q, their meet (that is, greatest lower bound) p ^ q is the
orthogonal projection onto the intersection of the range spaces of p and q. The projection
p ^ q may be obtained as the strong limit of (pq)n as n ! 1. The projection p _ q is
de�ned as the smallest upper bound in the lattice of projections. (p _ q projects onto
the closed subspace spanned by the range spaces of p and q.)

The orthocomplementation ? is de�ned as p? = I � p. The orthomodularity of the
lattice of projections means that the following so-called orthomodularity condition is
ful�lled in the lattice:

q = p _ (p? ^ q) for p � q: (9)
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This relation is a weakening of the distributivity condition and is an essential property
of the lattice of projections.

Let p and q be two projections in a von Neumann algebra M. The projections p and
q are called equivalent (with respect to M), p � q in notation, if there is an operator
x in M such that p = x�x and q = xx�. In terms of the underlying Hilbert space,
the equivalence of p and q means that there exists a partial isometry x in the given
von Neumann algebra which sends the range space of p isometrically onto the range of
q. An extended positive-valued function D : P(M) ! [0;1] on the set P(M) of all
projections ofM is called a dimension function if it satis�es the following requirements:

(a) D(p) > 0 if p 6= 0 and D(0) = 0.

(b) D(p) = D(q) if p and q are equivalent projections.

(c) D(
P

i pi) =
P

iD(pi) if pipj = 0 whenever i 6= j.

It is fundamental in the theory of von Neumann algebras that the dimension function is
determined up to a positive multiple if the center of the algebra is trivial, that is, the
algebra is a factor.

We sketch how the dimension function was obtained in f34g . A nonzero projection
is called �nite if it is not equivalent to a smaller projection. \Smaller" is understood
here in the sense of the partial ordering (8). Murray and von Neumann proved in f34g
that if f is a �nite and e is an arbitrary projection in a factor then there exists a unique
integer k such that

f = q1 + q2 + : : :+ qk + p ;

where q1; q2; : : : ; qk are pairwise orthogonal projections equivalent to e, p is a projection
orthogonal to all qi and equivalent to a subprojection of f . This integer k is denoted by

"
f

e

#
(10)

and this is the number of projections equivalent to e which may be packed into f in a
pairwise orthogonal way. (10) is an integer and is only an approximate measure of the
ratio of the subspaces corresponding to f and e. Now we �x a �nite non-zero projection
e0 and a sequence en of non-zero �nite projections converging to 0. The limit

lim
n!1

h
f
en

i
h
e0
en

i =
 
f

e0

!
(11)

forms a quantitative ratio of relative dimensionality, when the sequence en converges
to 0 strongly. (Heuristically, the projection e0 will have dimension 1, �rst we estimate
the dimension en by comparison with e0 and then the dimension of f is estimated by
comparison with en.)

15



The relative dimension was de�ned in f34g as

D(e) =

8>><
>>:

0 if e = 0;�
e

e0

�
if e is �nite,

+1 if e is not �nite.

The use of the relative dimension in the classi�cation of factors will be discussed
below. Now we make a detour and compare the construction of the dimension function
with that of the Haar measure on a locally compact topological group. The existence of a
measure on an abstract locally compact group which is invariant under right translations
was proven in 1932 by the Hungarian mathematician Alfr�ed Haar f17g. Von Neumann
was in contact with Haar and knew his celebrated result before it was published. It is
instructive to trace back the dimension function of a ring of operators to Haar's beautiful
idea for the construction of the invariant measure.

Let G be a locally compact topological group and for a relatively compact B � G
and an open U � G denote by h(B;U) the number which gives at least how many right-
translates of the set U are needed to cover the set B. This is an integer showing the
size of B compared to U . h(B;U) is translation invariant by construction. Of course,
the smaller the U , the larger the h(B;U). The latter one may increase to in�nity when
U runs over the neighbourhoods of a point. We need a normalization of h(B;U). A
compact set S of nonempty interior is chosen to normalize the measure. (S will be a set
of unit measure.)

lim
n

h(B;Rn)

h(S;Rn)
= �(B) (12)

gives the measure of a compact set B if (Rn) is the �lter of neighbourhoods of a point.
The set function � is right-translation invariant and additive on disjoint compact sets.
After the measure � of compact sets is obtained, measure-theoretic arguments are used
to extend � to a larger class of sets.

It is di�cult to refrain from comparing Haar's idea with the construction of dimension
function of projections in a von Neumann algebra: the similarity between the formulas
(12) and (11) is striking. (12) yields the right-translation invariant size of subsets of
a group G and (11) de�nes an invariant under partial isometries for projections in a
von Neumann algebra. This example demonstrates how measure-theoretic arguments
can survive in the apparently di�erent discipline of operator algebras. Von Neumann
devoted two papers to Haar measure. In f39g, he gave another proof for the existence
and uniqueness in the compact case and in f40g he obtained uniqueness in the general
locally compact case. Von Neumann presented several courses on measure theory and
invariant measures at the Institute for Advanced Study. For him operator algebra theory
was a noncommutative outgrowth of measure theory.

Now we continue the comparison of the relative dimension and Haar measure. The
objective of integration theory is to construct a linear functional, called integral, from a
certain measure. Murray and von Neumann extended the relative dimension functional
to arbitrary selfadjoint elements of the given von Neumann algebraM. Let A = A� 2M
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and let
R
� dE(�) be its spectral resolution with a projection-valued measure E on the

real line. Then by property (c) of the relative dimension, D(E) is an ordinary measure
and

TrM(A) =
Z
� dD(E)(�) (13)

determines a real number when the integral on the right-hand side exists. The incon-
veniency of de�nition (13) is in the fact that for noncommuting self-adjoint operators
A and B one cannot say much about the spectral resolution of A + B in terms of the
spectral resolutions of A and B. Murray and von Neumann expected that

TrM(A+B) = TrM(A) + TrM(B)

but this was proven in f34g only for commuting A and B. The general case was post-
poned to the subsequent paper f35g. It was established there that the abstract trace
functional TrM is linear. TrM yields an analogue of an integral. (This analogy has de-
veloped into an operator-algebraic integration theory, including Lp spaces, measurable
operators and so on. For this Segal proposed the term \noncommutative integration" in
f62g since a commutative von Neumann algebra admits representations by functions.)

In f37g von Neumann established the structure of commutative von Neumann alge-
bras: The selfadjoint part of a commutative von Neumann algebra consists of all bounded
measurable functions of a certain selfadjoint operator. The classi�cation of nonabelian
algebras was carried out in f34g. Murray and von Neumann recognized that the center
of the algebra plays an important role in the structure problem. The center of a von
Neumann algebra M is a von Neumann algebra again and if it contains a projection z,
thenM becomes the direct sum of zM and (I�z)M. Hence to decrease the complexity
of an algebra, one may assume that its center does not contain a nontrivial projection.
A von Neumann algebra is called a factor if its center is trivial, that is, if it contains
the multiples of the identity operator only. On a von Neumann factor, the dimension
function is unique up to a scalar multiple. Murray and von Neumann proved that there
are the following possibilities for the range of the dimension function of projections:

(In) f0; 1; : : : ; ng, where n is a natural number.

(I1) f0; 1; : : : ; n; : : : ;1g.

(II1) The interval [0; 1].

(II1) The interval [0;+1].

(III) The two-element set f0;+1g.

In this classi�cation all von Neumann factors were found to belong to the classes type I,
type II or type III. (However, it is worth mentioning that at the time of the discovery
of the classi�cation it was not known whether type III factors exist.)

Factors are the building blocks of von Neumann algebras, hence the understanding of
their structure has primary interest. According to the range of the dimension function
of projections, a factor might be \trivial", \regular" or \singular". The trivial or type
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I is characterized by integer dimension, in the regular or type II case the dimension
function has a continuous range and the singular or type III case is free of �nite nonzero
projections. To investigate the type I and type II cases Murray and von Neumann
could utilize the dimension function; however, that tool was insu�cient for type III
factors. To have a feeling about the \singularity" of type III factors, one can think
of a measure space in which all nonempty measurable sets have in�nite measure. The
full understanding of the type III case needed half a century. Ergodic theory was the
�rst source of factors. Classi�cation of von Neumann algebras is strongly related to
conjugacy classes of transformations of measure spaces. The Tomita-Takesaki theory

provided the new tools and revolutionized operator algebras in the 1970's. (The book
f63g by Serban Str�atil�a and L�aszl�o Zsid�o is a suggested introductory reading about
von Neumann algebras.)

Factors of type I are characterized by the existence of minimal projections. If a
maximal pairwise orthogonal family of minimal projections has cardinality n, then the
factor is isomorphic to B(H), where H is a Hilbert space of dimension n. In particular,
for every s 2 IN[f+1g, there exists only one factor of type Is up to isomorphism. The
existence of factors of type II and type III is not at all apparent, however. Murray and
von Neumann constructed factors of type II1 and type II1 by means of ergodic theory
in f34g. Below we describe a method called \group measure space construction". This
construction yields factors of di�erent type.

Let (X;B; �) be a measure space and let G be a countable group of measure-preserving
transformations of X. The group measure space construction yields a von Neumann
algebra acting on the Hilbert space L2(�)
 l2(G), which is regarded as a set of functions
� de�ned on G and with values in L2(�). (In this identi�cation �g 
 f corresponds to
�g � f for g 2 G and f 2 L2(�). ) For every f 2 L1(�) de�ne a bounded operator Mf

acting on L2(�)
 l2(G) as

((Mf�)(g))(x) = f(g�1x)(�(g)(x)) (� 2 L2(�)
 l2(G); g 2 G ) (14)

and for every g 2 G we de�ne a unitary Vg by the formula

Vg(�)(g
0)(x)) = �(g�1g0)(x) (� 2 L2(�)
 l2(G); g0 2 G ): (15)

Let M(�;G) be the von Neumann algebra generated by the operators

fMf : f 2 L
1(�)g [ fVg : g 2 Gg :

Then the choice of the unit circle with Lebesgue measure and (the powers of) an irra-
tional rotation yields a factor of type II1. The real line with Lebesgue measure and the
rational translations give a factor of type II1. A factor of type III was constructed
only in the third paper of the \Rings of Operators" series f42g. Von Neumann modi�ed
the above measure theoretic procedure by allowing measurable transformations preserv-
ing measure 0, nowadays they are called nonsingular transformations. In this way he
produced a factor of type III from the Lebesgue measure of the real line and the group
of all rational linear transformations. (Although Murray and von Neumann used the
group measure space construction for the production of factors, which are called Krieger
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factors nowadays, the di�cult question of isomorphism of factors that arose from dif-
ferent actions was clari�ed only 40 years later f28g. Krieger proved that two ergodic
nonsingular transformations of a Lebesgue space give rise to isomorphic factors if and
only if the two transformations are orbit equivalent.)

Von Neumann believed that among all factors the case II1 has the strongest interest
and expected that not all factors of type II1 are isomorphic to each other. Von Neumann
preferred the type II1 case for two main reasons. One of these is the nice behavior of the
unbounded operators a�liated with a type II1 factor. It is well-known that addition and
multiplication of such operators are particularly troublesome. The crux of the di�culty
lies in the unrelatedness of the domain and range of such an operator with the domain
of another one. Much of the di�culties evaporates, however, if one considers selfadjoint
operators with spectral resolution in a factor of type II1. The other reason why von
Neumann attributed great importance to continuous �nite factors is that he interpreted
this lattice as the proper logic of a quantum system. The lattice of projections of such a
factor is modular, that is, in addition to the orthomodularity property (9), the stronger
condition

p _ (p0 ^ q) = (p _ p0) ^ q for p � q

holds for every p0 (and not only p0 = p?). (Non-modularity of the projection lattice of an
in�nite dimensional factor of type I was considered by von Neumann as a pathology of
the usual Hilbert space quantum mechanics as a non commutative probability theory.)

The paper \Rings of Operators IV" f36g has two important achievements concerning
type II1 factors. It is proved that there exist nonisomorphic type II1 factors, and that
there is only one hyper�nite type II1 factor. A von Neumann factor is called hyper�nite

if it is generated by an increasing sequence of �nite dimensional subalgebras. (Nowadays
such algebras are preferably called approximately �nite dimensional, or AFD for short.)
The hyper�nite type II1 factor R may be produced in many di�erent ways; for example,
the above group measure space construction yields R. The uniqueness of R reminds
us of the uniqueness of a �nite, atomless separable measure space. Factors of type II1
did not play much role in the theory of von Neumann algebras until recent years. After
Jones founded his index theory f19g, the study of subfactors of type II1 factors has
received much interest. Even a concise review of index would require a lot of space (cf.
f23g) but its 
avour is given below.

Let N be a von Neumann algebra acting on a Hilbert space H and having commutant
N 0. Assume that both N and N 0 are type II1 factors and let TrN and TrN 0 be the
canonical normalized traces. For any vector � 2 H the projection [N �] onto the closure
of N � belongs to N 0 and similarly [N 0�] 2 N . The quotient

dimN (H) �
TrN 0([N �])

TrN ([N 0�])
(16)

is known to be independent of the vector � and is called the coupling constant since
the work of Murray and von Neumann. In a certain sense the coupling constant is
the dimension of the Hilbert space H with respect to the von Neumann algebra N .
(When N � CI, the coupling constant is the usual dimension of H, hence the notation
dimN (H).) V. Jones used the coupling constant to de�ne the size of a subfactor of a
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�nite factor. He was inspired by the notion of the index of a subgroup of a group, he
therefore called this the relative size index.

Let N be a subfactor of a type II1 von Neumann factor M possessing a unique
canonical normalized trace TrM. The index is obtained as the quotient

[M : N ] =
dimN (H)

dimM(H)
: (17)

The number [M : N ] is not always an integer, and the possible values of the index form
the following set:

ft 2 IR : t � 4g [ f4 cos2(�=p) : p 2 IN; p � 3g: (18)

This is the fundamental result of Jones which in
uenced a huge amount of subsequent
research and renewed the almost forgotten coupling constant. Vaughan F.R. Jones was
awarded the Fields Medal in 1992 for discovering a surprising relationship between von
Neumann algebras and geometric topology (see f4g for a review). The index theorem
was the �rst step towards his discovery.

Construction of factors was the main activity in the �eld of operator algebras after
the papers \Rings of operators" for many years. It is out of the scope of this survey
to summarize the constructions that were used to get more and more factors. Instead,
we turn to the very end of the story. By the time the paper \Rings of Operators IV"
was published (year 1943) it was known that the classes of type In, II1 contain a unique
(up to algebraic isomorphism) hyper�nite von Neumann factor. However, the types II1
and III remained unclear for many years. In 1956 Lajos Puk�anszky constructed two
di�erent factors of type III f46, 24g. After his breakthrough in�nitely many factors
were constructed but the �nal classi�cation was not achieved until the discovery of new
invariants. Operator algebras achieved a revolutionary development in the late 60's after
a relative isolation of 30 years.

Type III factors may be produced by means of in�nite tensor product. Let M2(C)
be the algebra of 2-by-2 matrices. Fixing 0 < � < 1 we can de�ne a state ' on this
algebra as follows.

'(A) = Tr(AD); where D =

 
1

�+1
0

0 �
�+1

!
:

(The matrixD is called the density matrix inducing '.) A representation of the inductive
limit of the n-fold tensor product of copies of M2(C) can be constructed by means of
tensor product states of copies of '. (The so-called Gelfand-Naimark-Segal construction
is involved here, but we do not give more details.) The generated von Neumann algebra
is a hyper�nite factor. For � = 1, the type II1 factor shows up, for � = 0 we obtain
a type I1 factor and for 0 < � < 1 a type III� factor R� appears. In fact, R� is
the only hyper�nite type III� factor. Con�ned to hyper�nite type III� factors with
0 < � < 1 the Connes spectrum is a complete invariant due to the results of Alain
Connes. He received the Fields Medal in 1983 for his work on von Neumann algebras
including the classi�cation of type III factors, approximately �nite dimensional factors
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and automorphisms of the hyper�nite type II1 factor f3g. After the work of Connes, the
uniqueness of the hyper�nite type III1 factor remained undecided. This question was
answered positively somewhat later by U�e Haagerup f16g. (In the case of type III0,
there are in�nitely many nonisomorphic hyper�nite factors.)

Quantum mechanics in
uenced von Neumann to develop several ideas. He was the
�rst person who summarized quantum theory in a comprehensive and mathematical
form, his monograph [119] has been a standard reference in mathematical physics. Op-
erator algebras consist of bounded operators but quantum mechanics needs unbounded
ones. Von Neumann understood the importance of maximal symmetric operators on
Hilbert spaces and introduced the entropy of statistical operators ([119] and f45g). The
von Neumann entropy got a new information theoretic interpretation recently.

B�ela Sz}okefalvi-Nagy was born in Kolozsv�ar in Transylvania on July 29, 1913.
His father was also a mathematician and his mother was a high school teacher. In his
scienti�c papers he did not use his full name but the abbreviation B. Sz.-Nagy. Native
Hungarians have always been surprised about the strange pronunciation of his name by
foreigners. After World War I, the family moved to Szeged (Hungary).

During his university studies Sz.-Nagy was deeply in
uenced by Frigyes Riesz, B�ela

Ker�ekj�art�o and Alfr�ed Haar. Von Neumann's book on the foundations of quantum
mechanics [119] and van der Waerden's book on group theory and quantum mechanics
were his favorite readings. This was the time when quantum theory revolutionized both
physics and mathematics. Between 1937 and 1939 Sz.-Nagy spent some time in Leipzig,
Grenoble and Paris. From 1939 he worked for the University of Szeged; he became full
professor in 1948.

Sz.-Nagy had rather wide mathematical interests. In one of his �rst papers he gave a
new proof for Stone's theorem about the spectral representation of a strongly continuous
one-parameter semigroup of unitary Hilbert space operators. Such a semigroup U(t) is
obtained in the form

U(t) =
Z 1
�1

ei�t dE(�) ;

by means of a projection-valued measure E on the real line. Later he extended this
result to semigroups of normal operators. He also wrote a very concise book on spectral
theory. Generations learnt the spectral theorem from [177] published in 1942 by Springer
Verlag.

Although Sz.-Nagy contributed to the theory of Fourier series and to approximation
theory, the center of his interest was the Hilbert space and its linear operators. The
basic example of a Hilbert space is the L2 space, the space of square integrable functions
over a measure space. On top of the standard Hilbertian structure L2 has an order
structure which is determined by the cone of positive functions. In an early paper Sz.-
Nagy gave an abstract characterization of the positive cone. In other words, he listed
the requirements of a cone of an abstract Hilbert space under which an isomorphism of
the space with an L2 space exists, such that the positive cones correspond to each other.
He also proved that an invertible Hilbert space operator whose positive and negative
powers are uniformly bounded is similar to a unitary operator.
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The analysis of Hilbert space operators mostly concerns some particular classes of
operators such as self-adjoint, unitary etc. The highlight of the scienti�c activity of
Sz.-Nagy was the theory of contractions. It started with the unitary dilation theorem
obtained in 1953. Let H be a Hilbert space and let T be a general bounded linear
operator. Hence kTk is �nite and multiplying T by some constant we can achieve that
kTk � 1. (Such a T is called a contraction.) The dilation theorem says that there exist
a Hilbert space K � H and a unitary operator U on K such that

T nf = PUnf and (T �)nf = PU�nf (f 2 H)

for any n 2 IN, where P denotes the orthogonal projection from K onto H. The space
K could be the direct sum of in�nitely many copies of H and U can be written in the
form of an in�nite matrix (with operator entries) as follows:

U =

2
6666666666666666664

� � � �
� � � �
� � � �

� � � I 0 0 0 � � �
� � � 0 D� T 0 � � �
� � � 0 �T � D 0 � � �
� � � 0 0 0 I � � �

� � � �
� � � �
� � � �

3
7777777777777777775

;

where D = (I�T �T )1=2 and D� = (I�TT �)1=2. Since the structure of a unitary operator
is rather well-understood, the contractions could be investigated through the dilation.

In the study of contractions Sz.-Nagy had a longstanding cooperation with Ciprian

Foia�s from 1956 to the end of his life. They wrote together 50 papers and the mono-
graph [44]. An interesting class of operators is formed by the completely non-unitary
contractions, they do not act unitarily on any subspace. The class C0 is formed by the
completely non-unitary contractions T for which there exists a function 0 6= w 2 H1

such that w(T ) = 0. An operator T 2 C0 has the following remarkable properties:

(1) For every vector f , T nf ! 0 and (T �)n ! 0 as n!1.

(2) T has a nontrivial invariant subspace.

Recall that a linear operator T of a �nite dimensional space always admits a polynomial
p such that p(T ) = 0. The de�nition and several properties of the class C0 resemble the
�nite dimensional scenario. Sz.-Nagy and Foia�s found a quasisimilarity model for the
C0-contractions and a unitary equivalence model for arbitrary completely non-unitary
contractions. Their lifting theorem is connected with the minimal isometric dilation of
a contraction T . Let Ti be a contraction acting on a Hilbert space Hi and let Vi be the
minimal isometric dilation of Ti acting on the space Ki, i = 1; 2. If a bounded linear
operator X from the space H1 to H2 has the property T2X = XT1, then there exist an
operator Y from the space K1 to K2 such that V2Y = Y V1. The lifting theorem of Sz.-
Nagy and Foia�s extends earlier results of T. Ando and D. Sarason. Many applications
are known, in particular to interpolation problems.
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