Limiting eigenvalue distribution for the non-backtracking matrix of an Erdős-Rényi random graph

Ke Wang

Department of Mathematics
Hong Kong University of Science and Technology

$$
\text { May 22, } 2018
$$

Joint work with Philip Matchett Wood (University of Wisconsin-Madison).

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.

Original graph
Edge graph (connects to next allowed edge)

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.

Original graph
Edge graph (connects to next allowed edge)

$$
12 \longrightarrow 23
$$

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

$12 \longrightarrow 23 \longrightarrow 31$
34

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

$12 \longrightarrow 23 \longrightarrow 31$
$41 \longleftarrow 34$

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

Non-backtracking walks on graphs

Consider a graph G. The non-backtracking random walk traverses edges, with the constraint that most recently traversed edge may not be again traversed in the opposite direction.

Example. Key: red is current position, blue is last position.
Original graph
Edge graph (connects to next allowed edge)

- Alon, Benjamini, Lubetzky and Sodin (2006): Non-backtracking walks mix faster than simple random walks on regular expander graphs.
- Ben-Hamou, Lubetzky and Peres (2018): Non-backtracking walks mix faster than simple random walks on graphs with minimum degree 3 and degree distribution has exponential tails.
- Cut-off phenomena of non-backtracking walks: Berestycki, Lubetzky, Peres and Sly (2015), Ben-Hamou and Salez (2015) etc.
- Alon, Benjamini, Lubetzky and Sodin (2006): Non-backtracking walks mix faster than simple random walks on regular expander graphs.
- Ben-Hamou, Lubetzky and Peres (2018): Non-backtracking walks mix faster than simple random walks on graphs with minimum degree 3 and degree distribution has exponential tails.
- Cut-off phenomena of non-backtracking walks: Berestycki, Lubetzky, Peres and Sly (2015), Ben-Hamou and Salez (2015) etc.

Non-backtracking matrix B

A simple undirected graph $G=(V, E)$.

- Adjacency matrix $A: A_{i j}=1$ if $(i, j) \in E$ and 0 otherwise.
- Non-backtracking matrix: for each $(i, j) \in E$, form two directed edges $i \rightarrow j$ and $j \rightarrow i$. The non-backtracking matrix B is a $2|E| \times 2|E|$ matrix such that

$$
B_{i \rightarrow j, k \rightarrow I}= \begin{cases}1 & \text { if } j=k \text { and } i \neq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Non-backtracking matrix is first introduced by Hashimoto (1989).

- Entries of A^{k} : the number of walks of length k from one vertex to another.
- Entries of B^{k} : the number of non-backtracking walks of length k from one directed edge to another.

Non-backtracking matrix B

A simple undirected graph $G=(V, E)$.

- Adjacency matrix $A: A_{i j}=1$ if $(i, j) \in E$ and 0 otherwise.
- Non-backtracking matrix: for each $(i, j) \in E$, form two directed edges $i \rightarrow j$ and $j \rightarrow i$. The non-backtracking matrix B is a $2|E| \times 2|E|$ matrix such that

$$
B_{i \rightarrow j, k \rightarrow I}= \begin{cases}1 & \text { if } j=k \text { and } i \neq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Non-backtracking matrix is first introduced by Hashimoto (1989).

- Entries of A^{k} : the number of walks of length k from one vertex to another.
- Entries of B^{k} : the number of non-backtracking walks of length k from one directed edge to another.

Spectrum of the non-backtracking matrix B

Goal: Understand the eigenvalues of B.

Theorem (Ihara's formula)

$\operatorname{det}(I-u B)=\left(1-u^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-u A+u^{2}(D-/)\right)$.
Here D is the diagonal degree matrix, $D_{i i}=$ degree of vertex i.

- A simple relationship between spectrum of A and B when G is regular.

Spectrum of the non-backtracking matrix B

Goal: Understand the eigenvalues of B.
Theorem (Ihara's formula)

$$
\operatorname{det}(I-u B)=\left(1-u^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-u A+u^{2}(D-I)\right) .
$$

Here D is the diagonal degree matrix, $D_{i i}=$ degree of vertex i.

- A simple relationship between spectrum of A and B when G is regular.

Spectrum of the non-backtracking matrix B

Goal: Understand the eigenvalues of B.
Theorem (Ihara's formula)

$$
\operatorname{det}(I-u B)=\left(1-u^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-u A+u^{2}(D-I)\right) .
$$

Here D is the diagonal degree matrix, $D_{i i}=$ degree of vertex i.

- A simple relationship between spectrum of A and B when G is regular.

Previous results on the spectrum of B

- Angel, Friedman and Hoory (2015): spectrum of B on tree cover of a finite graph.
- Bordenave, Lelarge and Massoulié (2015): top eigenvalues of B on (very sparse) stochastic block model and Erdős-Rényi $G\left(n, \frac{c}{n}\right)$.
- Gulikers, Lelarge and Massoulié (2016): top eigenvalues of B on generalized stochastic block models.
- Benaych-Georges, Bordenave and Knowles (2017): spectral radius of B on inhomogeneous Erdős-Rényi random graph.

Ihara's formula: $\operatorname{det}(I-u B)=\left(1-u^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-u A+u^{2}(D-I)\right)$.

$$
\text { eigenvalues of } B=\{ \pm 1\} \cup\left\{\text { eigenvalues of } H:=\left(\begin{array}{cc}
A & I-D \\
I & 0
\end{array}\right)\right\} \text {. }
$$

We will call H the non-backtracking spectrum operator for the graph.

Non-backtracking matrix of Erdős-Rényi random graphs

Erdős-Rényi random graph $G(n, p)$: edges are drawn independently with probability p. Adjacency matrix A and non-backtracking spectrum operator

$$
H=\left(\begin{array}{cc}
A & I-D \\
I & 0
\end{array}\right)
$$

Partial derandomization: replace D by its average, rest of H unchanged. Let $\alpha=(n-1) p-1$, and define

$$
H_{0}=\left(\begin{array}{cc}
A & I-\mathbb{E} D \\
I & 0
\end{array}\right)=\left(\begin{array}{cc}
A & -\alpha I \\
I & 0
\end{array}\right)
$$

Heuristic: if $p \gg \log n / n$, an Erdős-Rényi graph \approx a regular graph.

Figure: Spectrum of $H_{0}($ red $\cdot)$ and $H($ blue +) for $G(n, p)$.

Spectrum of partly averaged matrix H_{0}

Eigenvalues of H_{0} can be quantified by the eigenvalues of A.

Theorem (combining FK81,KS03,Vu07, BGBK17)

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of A. If $p \gg \frac{\log n}{n}$, then the following two facts hold a.a.s.:

$$
\begin{gathered}
\lambda_{1}=n p(1+o(1)) \\
\max _{2 \leq i \leq n}\left|\lambda_{i}\right| \leq 2 \sqrt{n p(1-p)}(1+o(1)) .
\end{gathered}
$$

Theorem (W.-Wood 2018; spectrum of H_{0})

If $p \gg \frac{1}{\sqrt{n}}$, then almost surely for large n, the matrix H_{0} has 2 real eigenvalues

$$
\mu_{1}=n p(1+o(1)) \quad \text { and } \quad \mu_{2}=1+o(1)
$$

All other eigenvalues μ are complex with magnitude

$$
|\mu|=\sqrt{\alpha}=\sqrt{(n-1) p-1}=\sqrt{n p}(1+o(1)),
$$

and have real parts distributed according to the semi-circular law.
Explicit diagonalization: $\operatorname{det}\left(x I-H_{0}\right)=\prod_{i=1}^{n}\left(x^{2}-\lambda_{i} x+\alpha\right)$. Roots are
$\frac{1}{2}\left(\lambda_{i} \pm \sqrt{\lambda_{i}^{2}-4 \alpha}\right)$. Cases: $\left|\lambda_{i}\right| \geq 2 \sqrt{\alpha}$ (real eigenvals) or $\left|\lambda_{i}\right|<2 \sqrt{\alpha}$. Compare $2 \sqrt{\alpha}=2 \sqrt{(n-1) p-1}$ with $2 \sqrt{n p(1-p)}$.

Theorem (W.-Wood 2018; spectrum of H_{0})

If $p \gg \frac{1}{\sqrt{n}}$, then almost surely for large n, the matrix H_{0} has 2 real eigenvalues

$$
\mu_{1}=n p(1+o(1)) \quad \text { and } \quad \mu_{2}=1+o(1) .
$$

All other eigenvalues μ are complex with magnitude

$$
|\mu|=\sqrt{\alpha}=\sqrt{(n-1) p-1}=\sqrt{n p}(1+o(1)),
$$

and have real parts distributed according to the semi-circular law.
Explicit diagonalization: $\operatorname{det}\left(x I-H_{0}\right)=\prod_{i=1}^{n}\left(x^{2}-\lambda_{i} x+\alpha\right)$. Roots are $\frac{1}{2}\left(\lambda_{i} \pm \sqrt{\lambda_{i}^{2}-4 \alpha}\right)$. Cases: $\left|\lambda_{i}\right| \geq 2 \sqrt{\alpha}$ (real eigenvals) or $\left|\lambda_{i}\right|<2 \sqrt{\alpha}$.
Compare $2 \sqrt{\alpha}=2 \sqrt{(n-1) p-1}$ with $2 \sqrt{n p(1-p)}$.

Are spectra of H_{0} and H close in bulk?

For a matrix M_{n} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, the function

$$
\mu_{M_{n}}(z)=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}}(z)
$$

is the empirical spectral measure.

Theorem (W.-Wood 2018; bulk convergence)

Assume np/ $\log n \rightarrow \infty$. Then

$$
\mu_{\frac{1}{\sqrt{\alpha}} H}-\mu_{\frac{1}{\sqrt{\alpha}} H_{0}} \rightarrow 0 \quad \text { a.s. } \quad \text { as } n \rightarrow \infty .
$$

Sketch of proof: perturbative approach

View H as a perturbation of H_{0} where

$$
E=\frac{1}{\sqrt{\alpha}} H-\frac{1}{\sqrt{\alpha}} H_{0}=\left(\begin{array}{cc}
0 & I+\frac{1}{\alpha}(I-D) \\
0 & 0
\end{array}\right) .
$$

Warning: eigenvalue perturbation of non-normal matrices can be tricky.
Idea: anply the Tao- $1 / 4$ renlacement princinle as a perturbation result, comparing

Sketch of proof: perturbative approach

View H as a perturbation of H_{0} where

$$
E=\frac{1}{\sqrt{\alpha}} H-\frac{1}{\sqrt{\alpha}} H_{0}=\left(\begin{array}{cc}
0 & I+\frac{1}{\alpha}(I-D) \\
0 & 0
\end{array}\right) .
$$

Warning: eigenvalue perturbation of non-normal matrices can be tricky.
Idea: apply the Tao-Vu replacement principle as a perturbation result, comparing
with

Sketch of proof: perturbative approach

View H as a perturbation of H_{0} where

$$
E=\frac{1}{\sqrt{\alpha}} H-\frac{1}{\sqrt{\alpha}} H_{0}=\left(\begin{array}{cc}
0 & I+\frac{1}{\alpha}(I-D) \\
0 & 0
\end{array}\right) .
$$

Warning: eigenvalue perturbation of non-normal matrices can be tricky.
Idea: apply the Tao- Vu replacement principle as a perturbation result, comparing

$$
\frac{1}{\sqrt{\alpha}} H_{0} \quad \text { with } \quad \frac{1}{\sqrt{\alpha}} H=\frac{1}{\sqrt{\alpha}} H_{0}+E .
$$

The Tao-Vu replacement principle for perturbations

Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If $\frac{1}{n}\left\|M_{n}\right\|_{F}^{2}+\frac{1}{n}\left\|M_{n}+P_{n}\right\|_{F}^{2}$ bounded a.s. and if for almost every $z \in \mathbb{C}$

$$
\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}-z l\right)\right|-\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}+P_{n}-z I\right)\right| \rightarrow 0
$$

almost surely,

1) Note that M_{n} and $M_{n}+P_{n}$ can be dependent (internally, too)
2) Determinant is a product of singular values.
3) In fact, the following conditions imply converging log determinants: There exists $f(z, n) \geq 1$, a function of n and z so that

$f(z, n)\left\|P_{n}\right\| \rightarrow 0$ almost surely, and

(ii) $\left\|\left(M_{n}-z l\right)^{-1}\right\| \leq f(z, n)$ almost surely, for all suff. large n

The Tao-Vu replacement principle for perturbations

Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If $\frac{1}{n}\left\|M_{n}\right\|_{F}^{2}+\frac{1}{n}\left\|M_{n}+P_{n}\right\|_{F}^{2}$ bounded a.s. and if for almost every $z \in \mathbb{C}$

$$
\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}-z l\right)\right|-\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}+P_{n}-z I\right)\right| \rightarrow 0
$$

almost surely, then $\mu_{M_{n}}-\mu_{M_{n}+P_{n}} \rightarrow 0$ almost surely.

1) Note that M_{n} and $M_{n}+P_{n}$ can be dependent (internally, too)
2) Determinant is a product of singular values.
3) In fact, the following conditions imply converging log determinants: There exists $f(z, n) \geq 1$, a function of n and z so that

(ii) $\left\|\left(M_{n}-z l\right)^{-1}\right\| \leq f(z, n)$ almost surely, for all suff. large n.

The Tao-Vu replacement principle for perturbations

Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If $\frac{1}{n}\left\|M_{n}\right\|_{F}^{2}+\frac{1}{n}\left\|M_{n}+P_{n}\right\|_{F}^{2}$ bounded a.s. and if for almost every $z \in \mathbb{C}$

$$
\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}-z l\right)\right|-\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}+P_{n}-z I\right)\right| \rightarrow 0
$$

almost surely, then $\mu_{M_{n}}-\mu_{M_{n}+P_{n}} \rightarrow 0$ almost surely.

1) Note that M_{n} and $M_{n}+P_{n}$ can be dependent (internally, too)
2) Determinant is a product of singular values.

The Tao-Vu replacement principle for perturbations

Theorem (Tao-Vu, with appendix by Krishnapur, 2010)

If $\frac{1}{n}\left\|M_{n}\right\|_{F}^{2}+\frac{1}{n}\left\|M_{n}+P_{n}\right\|_{F}^{2}$ bounded a.s. and if for almost every $z \in \mathbb{C}$

$$
\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}-z I\right)\right|-\frac{1}{n} \log \left|\operatorname{det}\left(M_{n}+P_{n}-z I\right)\right| \rightarrow 0
$$

almost surely, then $\mu_{M_{n}}-\mu_{M_{n}+P_{n}} \rightarrow 0$ almost surely.

1) Note that M_{n} and $M_{n}+P_{n}$ can be dependent (internally, too)
2) Determinant is a product of singular values.
3) In fact, the following conditions imply converging log determinants:

There exists $f(z, n) \geq 1$, a function of n and z so that
(i) $f(z, n)\left\|P_{n}\right\| \rightarrow 0$ almost surely, and
(ii) $\left\|\left(M_{n}-z I\right)^{-1}\right\| \leq f(z, n)$ almost surely, for all suff. large n.

Sketch of proof

Apply with $M_{n}=\frac{1}{\sqrt{\alpha}} H_{0}$ and $P_{n}=E$. We verify the following conditions.

- Both $\frac{1}{2 n}\left\|M_{n}\right\|_{F}^{2}$ and $\frac{1}{2 n}\left\|M_{n}+P_{n}\right\|_{F}^{2}$ are almost surely bounded.
- $\left\|P_{n}\right\| \rightarrow 0$ almost surely.
- Construct a constant $C(z)>0$ such that $\left\|\left(M_{n}-z I\right)^{-1}\right\| \leq C(z)$ almost surely.

Distance between eigenvalues of H and H_{0}

Theorem (Wang-W. 2018)

Let $p \gg \frac{\log ^{3 / 2} n}{n^{1 / 6}}$. Then with probability $1-o(1)$, every eigenvalue of $\frac{1}{\sqrt{\alpha}} H$ is within $R=40 \sqrt{\frac{\log n}{n p^{2}}}$ of an eigenvalue of $\frac{1}{\sqrt{\alpha}} H_{0}$.

Eigenvalues of $\frac{1}{\sqrt{\alpha}} H$ and $\frac{1}{\sqrt{\alpha}} H_{0}$ when $n=100$ and $p=0.3$

Sketch of Proof

Apply the Bauer-Fike theorem.

Theorem (Bauer-Fike theorem)

If H_{0} is diagonalizable by the matrix Y, then

$$
\max _{j} \min _{i}\left|\mu_{j}\left(H_{0}+E\right)-\mu_{i}\left(H_{0}\right)\right| \leq\|E\| \cdot\|Y\| \cdot\left\|Y^{-1}\right\|
$$

For eigenvalue λ_{i} of $A, \mu_{2 i-1}$ and $\mu_{2 i}$ solutions of $\mu^{2}-\lambda_{i} \mu+\alpha=0$. v_{i} be the eigenvector of A. Then $Y^{-1} H_{0} Y=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{2 n}\right)$ where

The eigenvalues of $Y^{*} Y$ are unions of eigenvalues of $Y_{i}^{*} Y_{i}$ Also we show $\|E\| \leq 20 \sqrt{\frac{\log n}{n p}}$ w.h.p.

Sketch of Proof

Apply the Bauer-Fike theorem.

Theorem (Bauer-Fike theorem)

If H_{0} is diagonalizable by the matrix Y, then

$$
\max _{j} \min _{i}\left|\mu_{j}\left(H_{0}+E\right)-\mu_{i}\left(H_{0}\right)\right| \leq\|E\| \cdot\|Y\| \cdot\left\|Y^{-1}\right\|
$$

For eigenvalue λ_{i} of $A, \mu_{2 i-1}$ and $\mu_{2 i}$ solutions of $\mu^{2}-\lambda_{i} \mu+\alpha=0$. Let v_{i} be the eigenvector of A. Then $Y^{-1} H_{0} Y=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{2 n}\right)$ where

$$
Y=\left(Y_{1}, \ldots, Y_{n}\right) \quad \text { and } \quad Y_{i}=\left(\begin{array}{cc}
\mu_{2 i-1} v_{i} & \mu_{2 i} v_{i} \\
v_{i} & v_{i}
\end{array}\right) .
$$

The eigenvalues of $Y^{*} Y$ are unions of eigenvalues of $Y_{i}^{*} Y_{i}$.
Also we show $\|E\| \leq 20 \sqrt{\frac{\log n}{n p}}$ w.h.p.

Future questions

- Mixing rate of non-backtracking walks on random graphs Consider the transition probability matrix P of size $2|E| \times 2|E|$ of the non-backtracking walks.

$$
P_{i \rightarrow j, k \rightarrow I}= \begin{cases}\frac{1}{d(j)-1} & \text { if } j=k \text { and } i \neq I \\ 0 & \text { otherwise }\end{cases}
$$

Top eigenvalues of P contain information of the mixing rate of non-backtracking walks.

Future questions

- Spectrum of B for very sparse random graphs

For $G\left(n, \frac{c}{n}\right)$, Bordenave, Lelarge and Massoulié (2015): $\lambda_{1}=c+o(1)$ and $\max _{i \neq 1}\left|\lambda_{i}\right| \leq \sqrt{c}+o(1)$. Plot of eigenvalues of B of $G(n, p)$ with $n=500$ and $p=\frac{10}{500}$.

Future questions

- Properties of eigenvectors of B

Observed: top eigenvectors of B are usually robust against localization.

- Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang (2013): "spectral redemption conjecture" for stochastic block model. The second eigenvector of B contains information on the global block structure.

Figure: taken from T. Kawamoto (2016) "Localized eigenvectors of the non-backtracking matrix". IPR $=\frac{\sum_{i} v_{i}^{4}}{\left(\sum_{i} v_{i}^{2}\right)^{2}}$.

THANK YOU!

