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Free Probability

Free probability is a twofold theory. Namely, it is

a useful toolkit to analyze the natural operator algebra L(Fr) arising
from a free group Fr and its relatives (including free products of
operator algebras);

a framework to capture and investigate the large N limit of the
“empirical distribution” (in what sense ?) of an independent family of
RMs.

The key concept of free probability is the so-called free independence,
which is the large N limit of “independence” through RMs.

My objective is to obtain a better understanding of free independence
through the study of free probability analogs of mutual information.
More precisely, we want a correct quantity measuring the “degree” of
free independence, and it should be a free probability analog of mutual
information. My tools are a matrix-valued stochastic process as well as
large deviations techniques following the idea due to Guionnet et al.
dealing with indep. Matrix BMs.
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Unitary BM

Msa
N

= the N × N selfadjoint matrices (� RN2
)

B(t) = an N2-dimensional standard BM

We regard B(t)/
√

N as an N × N matrix-valued stochastic process
HN(t) via RN2

� Msa
N

as Euclidean spaces. Then the SDE

dUN(t) =
√
−1 dHN(t)UN(t) −

1
2

UN(t) dt, UN = IN

defines a (unique) BM on the unitary group U(N).

Known fact.

UN(t) converges to a Haar distributed unitary RM UN in distribution as
t → ∞.
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Matrix liberation process

Given data: (XN(0), YN(0)) ∈ (Msa
N

)2.

We call the following pair of matrix-valued stochastic processes

t 7→ (XN(t), YN(t)) := (UN(t)XN(0)UN(t)∗, YN(0))

the matrix liberation process starting at (XN(0), YN(0)).

Facts.

the spectral information of each of XN(t) and YN(t) is independent
of time t.
the limit (XN(∞), YN(∞)) in the weak convergence sense as t → ∞
is given by (UN XN(0)UN

∗, YN(0)).
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SDE for (XN(t), YN(t))

dXN(t) =
√
−1

[
dHN(t), XN(t)

]
−

(
XN(t) − trN(XN(0))

)
dt,

dYN(t) = 0.

If we write HN(t) =
∑N
α,β=1

(Bαβ(t)/
√

N) Cαβ with an orth. basis Cαβ

(1 ≤ α, β ≤ N) of Msa
N

(w.r.t. HS), then

d〈XN(t),Cαβ〉HS =

N∑
γ,δ=1

〈√
−1

[ 1
√

N
Cγδ, XN(t)

]
,Cαβ

〉
HS

dBγδ(t)

−
〈(

XN(t) − trN(XN(0))
)
,Cαβ

〉
HS

dt

This expression enables us to use the analysis of Gaussian space like
Malliavin calculus.
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Motivations

(1) We want to unify two approaches to possible mutual information in
free probability.
[V1999] Voiculescu, The analogue of entropy and of Fisher’s information
measure in free probability theory, VI: Liberation and mutual free
information, Adv. Math., 149 (1999), 101–166.
[OA level: use only macrostates]

[HMU2009] Hiai, Miyamoto and U., Orbital approach to microstate free
entropy, IJM, 20 (2009), 227–273.
Followup: [Biane–Dabrowski2013], [U2014].
[S = k log W approach: use matricial microstates]�� ��Macrostates = operators vs Microstates = (Random) matrices

(2) We want to investigate the large N limit of “adjoint actions” of (indep.)
unitary BMs on matrices.

Yoshimichi UEDA Matrix Liberation Process and A Free Probability Question



Framework of free probability

(Ω, P) { (L∞(Ω), τ);

τ(X) := E[X] =

∫
Ω

X(ω) P(dω), X ∈ L∞(Ω).

�� ��X, Y independent⇔ τ[( f (X) − τ( f (X))(g(Y) − τ(g(Y)))] = 0

(L∞(Ω), τ) { (vN alg. M, (faithful normal) tracial state τ).

Free independence

x, y ∈ M freely independent if

τ(w(x, y)) = 0

whenever w(x, y) is an alternating words of two kinds of elements
p(x) − τ(p(x)) and q(y) − τ(q(y)).
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Specht’s criterion 1940/Free probability

Theorem. (Specht 1940)

Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be n-tuples of N × N
matrices. TFAE:

A and B are unitarily equivalent, that is, there exists an N × N
unitary matrix U such that Bi = UAiU∗ for all 1 ≤ i ≤ n.

TrN(Aε1

i1
Aε2

i2
· · · Aεm

im
) = TrN(Bε1

i1
Bε2

i2
· · · Bεm

im
) for all possible

(i1, i2, . . . , im) and ε j ∈ {·, ∗}.

Conclusion

The noncomm. moments trN(w(XN, YN)) with matrices XN, YN form a
complete invariant for unitary equivalence.

Free probability deals with the large N limit of those invariants
(=distributions) when XN, YN are random.
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Noncomm. notion on distributions

X: n-dim. RV { µX ∈ P(Rn) = S(C0(Rn))

f ∈ C0(Rn) 7→ µX( f ) =

∫
R

d
f dµX = E[ f (X)].

(x, y): a pair of (self-adjoint) RVs in M {

f 7→ τ( f (x, y)).�� ��What are f ? → noncomm. polyn. in x, y→ universal C∗-alg.
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Large N limit – Free probability

(M, τ): tracial W∗-probability space, that is,
M is a vN algebra,
τ : M→ C a f.n.tracial state.

u(t): a unitary operator-valued process inM,
called a free unitary BM.

Assume that there exists (x(0), y(0)) ∈ (Msa)2 such that

trN(P(XN(0), YN(0))) → τ(P(x(0), y(0))), ∀P

and (x(0), y(0)) is freely independent of {u(t), u(t)∗}.

Define
(x(t), y(t)) := (u(t)x(0)u(t)∗, y(0))

for every t ≥ 0, which should be called the liberation process.
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Large N limits – Free probability

Theorem (essentially due to Biane).

The finite dimensional distribution of t 7→ (XN(t), YN(t)) converges to that
of t 7→ (x(t), y(t)), that is,

lim
N
E

[trN(P({XN(t), YN(t′)}t,t′ ))
]

= τ
(P({x(t), y(t′)}t,t′ )

)
, ∀P.

The same proof with more recent results on unitary BMs shows that the
above convergence can be strengthened to the almost sure sense:

lim
N

trN(P({XN(t), YN(t′)}t,t′ )) = τ
(P({x(t), y(t′)}t,t′ )

)
, ∀P.

(NB: the event of convergence depends on time parameters tk appearing
in P.)�� ��Q. Is there an appropriate LDP for the above convergence ?
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Our objects

(XN(t),YN(t)):=
(UN(t)XN(0)UN(t)∗, YN(0))

t→∞
−→

(XN(∞),YN(∞)):=
(UN XN(0)UN

∗, YN(0))

↓N→∞ ↓N→∞

(x(t), y(t)) := (u(t)x(0)u(t)∗, y(0))
t→∞
−→ FREE(x(0), y(0))

Vertical limits: almost surely.
Horizontal limits: in distribution.
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State space cTS

Assume that R := supN(‖XN(0)‖∞ ∨ ‖YN(0)‖∞) < +∞.
Consider the universal free product C∗-algebra

C := Ft≥0
( a(t) b(t)
C[−R, R] ? C[−R, R]),

that is, the universal C∗-algebra generated by

a(t) = a(t)∗, b(t) = b(t)∗ (t ≥ 0)

with subject to ‖a(t)‖∞, ‖b(t)‖∞ ≤ R. Let cTS be the tracial states ϕ on C
such that

(t1, . . . , tm) 7→ ϕ(c1(t1) · · · cm(tm)) with ci = a or b

are all continuous, or other words, a(t), b(t) are strongly continuous in t
in the GNS repn. associated with ϕ.
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Topology on cTS

The metric d(ϕ, ψ) with ϕ, ψ ∈ cTS defined to be

∞∑
l,m=1

1
2l+m

max
ci=a or b

max
0≤t1,...,t l≤m

|(ϕ − ψ)(c1(t1) · · · cl(t l))| ∧ 1

makes cTS a complete metric space.

ϕN, ϕ∞ ∈ cTS are defined by

ϕN(P) := trN(P({XN(t), YN(t′)}t,t′ )),
ϕ∞(P) := τ(P({x(t), y(t′)}t,t′ ))

with P = P({a(t), b(t′)}t,t′ ), a polynomial in C.�� ��ϕN are random, but ϕ∞ is deterministic.

d(ϕN, ϕ∞) → 0 corresponds to (XN(t), YN(t)) → (x(t), y(t)) as
continuous processes.
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Prospective LDP

For any open subset Γ and any closed subset Λ of (cTS, d),

lim inf
N→∞

1
N2

log P(ϕN ∈ Γ) ≥ − inf
ψ∈Γ

I(ψ),

lim sup
N→∞

1
N2

log P(ϕN ∈ Λ) ≤ − inf
ψ∈Λ

I(ψ),

where I : cTS → [0,∞] is a lower semicountinuous function whose level
sets {I ≤ α} are all compact (I is called a good rate function). Moreover,
it is preferable that

I(ψ) = 0 ⇐⇒ ψ = ϕ∞,

that is, ϕ∞ is a unique minimizer for I.
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Rate function

For a given ψ ∈ cTS, construct a new ψs ∈ cTS depending on time s as
follows.

Step 1 Construct a tracial W∗-probability space (Mψ, τψ), which includes
aψ(t), bψ(t) of processes whose joint distribution is ϕ (via
(a(t), b(t)) 7→ (aψ(t), bψ(t))) and a free unitary BM u(t) such that
(aψ(·), bψ(·)) and u(·) are freely independent.

Step 2 Consider a new pair (aψs (t), bψs (t)):

(aψ
s
(t), bψ

s
(t)) = (u((t − s)+)aψ(t ∧ s)u((t − s)+)∗, bψ(t)).

Step 3 (a(t), b(t)) 7→ (aψs (t), bψs (t)) gives ψs ∈ cTS, that is, ψs is the
“distribution” of t 7→ (aψs (t), bψs (t)).�� ��ψs is the liberation of ψ starting at time s.
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Rate function

LetA be the ∗-subalgebra of C algebraically generated by the a(t), b(t)
and Ã be the universal ∗-algebra generated byA and a “unitary”
indeterminate v(t) in addition.

Consider the derivations δs : A → Ã ⊗ Ã determined by

δsa(t) = 1[0,t](s)
×

(a(t)v(t − s) ⊗ v(t − s)∗ − v(t − s) ⊗ v(t − s)∗a(t)),
δsb(t) = 0.

With the mapping θ : c ⊗ d 7→ dc we define a linear map

Ds := θ ◦ δs : A → Ã.

Via (a(t), b(t), v(t)) 7→ (aψs (t), bψs (t), u(t)) we may regard Ã as a
∗-subalgebra ofMψ.
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Rate function

Let Es = Eτψ

s be the τψ-conditional expectation fromMψ onto the
W∗-subalgebra generated by all

(aψ(t), bψ(t)) = (aψ
s
(t), bψ

s
(t)), 1 ≤ t ≤ s.

Our rate function I(ψ) of ψ ∈ cTS is defined to be

sup
t≥0

P=P∗∈A

{
ψt(P) − ϕ∞(P) −

1
2

∫ t

0
‖Es(Ds P)‖2

τψ,2
ds

}
.

Proposition.

I : cTS → [0,∞] is a good rate function such that

I(ψ) = 0 ⇐⇒ ψ = ϕ∞.
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Main Result (LD upper bound)

Theorem. [U16]

The LD upper bound holds with the good rate function I above, that is, for
any closed Λ ⊂ cTS, we have

lim sup
N→∞

1
N2

log P(ϕN ∈ Λ
)
≤ − inf

ψ∈Λ
I(ψ).

Moreover, I(ψ) = 0⇐⇒ ψ = ϕ∞.

Corollary.

lim
N→∞

d(ϕN, ϕ∞) = 0 almost surely.

Namely, the matrix liberation process converges to the corresponding
liberation process as continuous processes almost surely.
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Proof of Theorem

Use the same strategy as in Biane–Capitaine–Guionnet for self-adjoint
matrix BMs.

Choose P = P∗ ∈ A, and consider the martingale

MP
N(t) = E

[trN(P({XN(t1), YN(t2)}t1,t2 )
∣∣∣Ft

]
− E

[trN(P({XN(t1), YN(t2)}t1,t2 )]
= E

[
ϕN(P) | Ft

]
− E

[
ϕN(P)]

−→ ϕt(P) − ϕ∞(P) as N → ∞,

where Ft is the (natural) filtration of σ-subalgebras for the given matrix
BM HN(t).

Apply the Clark–Ocone formula to MP
N

(t). (Need some techniques on
SDEs in relation with Malliavin calculus.) Then we can find the integrant
for an integral representation of the quadratic variation 〈MP

N
〉(t) in terms

of P: Find the new cyclic derivation Ds in this way.
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Proof of Theorem

Lemma.

The exponential function of

N2
(

MP
N(t) −

1
2

∫ t

0
ds

∥∥∥E[(Ds P)({XN(t1), YN(t2),UN(t3 + s)UN(s)∗}t1,t2,t3 )
∣∣∣Fs

]∥∥∥2
trN ,2

−→ ‖Es(Ds P)‖2
τψ,2

)

defines a martingale EP
N

(t); hence E[EP
N

(t)] = E[EP
N

(0)] = 1.

This suggests that the formula of our rate function.
We need to compute the large N limit of the red part above, and the keys
are: the left increment property for UN(t), the asymptotic freeness for
several indep. GUEs, and Thierry Lévy’s method for unitary BMs (which
plays a key role to give a uniform estimate in time).
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Proof of Theorem

For a given P ∈ A, define

(Ds P)N := (Ds P)({XN(t1), YN(t2),UN(t3 + s)UN(s)∗}t1,t2,t3 ),

(Ds P)ψ := (Ds P)({aψ
s
(t1), bψ

s
(t2), u(t3)}t1,t2,t3 ).

Key proposition.

For any given P1, . . . , Pn ∈ A, the limε↘0 limN→∞ of the supremum over
s ≥ 0 of the essential sup-norm of

trN(E[(Ds P1)N | Fs
]
· · ·E

[(Ds Pn)N) | Fs
])

− τψ(Es((Ds P1)ψ) · · · Es((Ds Pn)ψ))

over the event (d(ϕN, ψ) < ε) becomes 0.

These altogether enable us to prove

1
N2

log P(d(ϕN, ψ) < ε) - −
(
ψt(P) − ϕ∞(P) −

1
2

∫ t

0
‖Es(Ds P)‖2

τψ,2
ds

)
as N → ∞ and ε ↘ 0.
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Works in progress toward (UN XN(0)UN
∗, YN(0))

Let C0 be the universal C∗-algebra generated by a = a∗, b = b∗ with
‖a‖∞, ‖b‖∞ ≤ R. Let πT : C0 → C be the injective ∗-hom. sending
(a, b) 7→ (a(T), b(T)). Let TS be the tracial states on C, and
π∗

T
: cTS → TS be defined as the dual map, that is,

π∗T(ϕ) := ϕ ◦ πT , ϕ ∈ cTS.

Fact: π∗
T

(ϕN) ∈ TS is the distribution of (XN(T), YN(T)) with fixed T (the
marginal distribution at time T). This is random.

When T = ∞, we define π∗
∞

(ϕN) to be the distribution of
(XN(∞), YN(∞)) := (UN XN(0)UN

∗, YN(0)) with the unitary RM UN under
Haar prob. on U(N). This is also random.
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Works in progress

The contraction principle implies:

lim sup
N→∞

1
N2

log P(π∗T(ϕN) ∈ Λ
)
≤ − inf

σ∈Λ
IT(σ)

with
IT(σ) := inf

π∗
T

(ϕ)=σ
I(ϕ).

�� ��Q. Does the above LD upper bound still hold at T = ∞ ?

It seems to me that this type of question is usually treated with the
concept of ‘exponential convergence’, but it seems (at least to me)
difficult to use the concept in this setting. However, this question itself
can be reduced to a question on the “large N and T limit” of the heat
kernel on U(N).
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Works in progress

Lemma.

Let pt(U) be the Heat kernel on U(N) that is the density of UN(t) wrt. the
Haar prob. Then

lim
T→∞

lim inf
N→∞

1
N2

log min
U

pT(U) = lim
T→∞

lim sup
N→∞

1
N2

log max
U

pT(U) = 0.

Theorem.

lim sup
N→∞

1
N2

log P(π∗∞(ϕN) ∈ Λ
)
≤ − inf

σ∈Λ
J(σ),

where
J(σ) := lim

m→∞
δ↘0

lim sup
T→∞

inf
π∗

T
(τ)∈Om,δ(σ)

I(σ)

with a standard nbd basis Om,δ(σ) at σ.
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Works in progress

Intermediate Questions.

Q1. Does J have a unique minimizer ?
Q2. Find a ‘closed formula’ of J (the unification problem).

(Q1) is a test for the full LDP for (UN XN(0)UN
∗, YN).

(Q2) is a major question toward the unification between Voiculescu’s and
our approaches to “mutual information” in free probability.

Proposition.

The rate function J admits a unique minimizer, which is the empirical
distribution of the freely independent copies of x(0) and y(0). Therefore, it
characterizes free independence.

This also means that the rate function J becomes the “third” candidate
for “mutual information” in free probability.
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Comments

The orbital free entropy χorb(X,Y) of given noncomm. random
multi-variables X,Y has been established with all the expected
properties that the prospective ‘free probabilistic mutual information’
should possesses. However, its definition still involves two
‘drawbacks’:

Is there a canonical selection of approximating seq. of deterministic
matrices (like XN(0), YN(0)) to define χorb ?
Can lim supN be replaced with lim infN ?

These drawbacks would be resolved in the affirmative (or more
precisely, χorb = −J) if the full large deviation principle for the matrix
liberation process were established !

Of course, the main problems are the LD lower bound for the matrix
liberation process as well as (Q2). The main issues are all free
probabilistic/operator algebraic, though usual stochastic analysis
aspects have been already established well.

Thank you for your attention !
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