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Introduction 1

Systems of Brownian balls (BM with the hard core interaction)

dX j
t = dB j

t +
X
k 6=j

(X j
t � X k

t )dLjk
t , j 2 ⇤ (SDE-⇤)

where B j
t , j 2 ⇤ are independent Brownian motions,

and Ljk
t j , k 2 ⇤ are non-decreasing functions satisfying

Ljk
t =

Z t

0
1(|X j

s � X k
s | = r)dLjk

s

and r > 0 is the diameter of hard balls.

(1) ⇤ = {1, 2, . . . , n}
Existence and uniqueness of solutions (Saisho-Tanaka [1986])

(2) ⇤ = N, equilibrium case
Existence and uniqueness of solutions (T. [1996])
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Introduction 2

Potentials:

� : Rd ! (�1,1] self-potential, free potential

 : Rd ⇥ Rd ! (�1,1) pair-interaction potential,  (x , y) =  (y , x)

In this talk we consider the case that � is smooth, and

 =  hard + sm

and

 hard(x , y) =

(
0 if |x � y | � r ,

1 if |x � y | < r ,
the hard core pair potential

 sm(x , y) =  sm(x � y) : a translation invariant smooth potential
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Introduction 3

Systems of hard balls with interaction

dX j
t = dB j

t �
1

2
r�(X j

t )dt � 1

2

X
k2⇤,k 6=j

r sm(X j
t � X k

t )dt

+
X

k2⇤,k 6=j

(X j
t � X k

t )dLjk
t , j 2 ⇤, (SDE2-⇤)

where B j
t , j 2 ⇤ are independent Brownian motions,

and Ljk
t j , k 2 ⇤ are non-decreasing functions satisfying

Ljk
t =

Z t

0
1(|X j

s � X k
s | = r)dLjk

s , i , j 2 ⇤.

We put

b(y , {x j}) = �1

2
r�(y)� 1

2

X
j

r sm(y � X j
t ).
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Introduction 4

Configuration space of unlabeled balls with diameter r > 0 in Rd :

X = {⇠ = {xj}j2⇤ : |x j � xk | � r j 6= k, ⇤ : countable}

(Exponential decay) sm is a potential of short range: For {x j} 2 X

(i)
P

k:k 6=j | sm(x j � xk)| < 1 and
P

k:k 6=j |r sm(x j � xk)| < 1.

(ii)
P

k:k 6=j |r2 sm(x j � xk)| < 1.

(iii) 9c1, c2, c3 > 0 such that for large enough R

X
k:|xj�xk |>R

|r sm(x j � xk)|  c1 exp(�c2R
c3), {x j} 2 X

(3) ⇤ = N, equilibrium case, � = cons.,  sm: (i), (ii), (iii)
Existence and uniqueness of solutions (Fradon-Roelly-T. [2000])
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Introduction 5

(Polynomial decay)  sm is a potential of long range: : For {x j} 2 X

(i)
P

k:k 6=j | sm(x j � xk)| < 1, and
P

k:k 6=j |r sm(x j � xk)| < 1.

(ii)
P

k:k 6=j |r2 sm(x j � xk)| < 1.

Examples

(2.1) Lennard-Jones 6-12 potential (d = 3,  6,12(x) = {|x |�12 � |x |�6}.)

b(y , {xk}) =
�

2

X
k

{12(y � x j)

|y � xk |14
� 6(y � xk)

|y � xk |8 }

(2.2) Riesz potentials (d < a 2 N and  a(x) = (�/a)|x |�a. )

b(y , {xk}) =
�

2

X
k

y � xk

|y � xk |a+2
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Skorohod equation

D : a domain in Rm, W (Rm) = C ([0,1) ! Rm)

For x 2 D and w 2 W0(Rm) = {w 2 W (Rm) : w(0) = 0} we consider the
following equation called Skorohod equation

⇣(t) = x + w(t) + '(t), t � 0 (Sk)

A solution is a pair (⇣,') satisfying (Sk) with the following two conditions

(1) ⇣ 2 W (D)

(2) ' is an Rm-valued continuous function with bounded variation on
each finite time interval satisfying '(0) = 0 and

'(t) =

Z t

0
n(s)dk'ks , k'kt =

Z t

0
1@D(⇣(s))dk'ks

where n(s) 2 N⇣(s) if ⇣(s) 2 @D, k'kt denotes the total variation of
' on [0, t].
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Conditions(A) and (B)

Nx = Nx(D) is the set of inward normal unit vectors at x 2 @D,

Nx =
[
`>0

Nx ,` Nx ,` = {n 2 Rm : |n| = 1,U`(x � `n) \ D = ;}

(A) (Uniform exterior sphere condition) There exists a constant ↵0 > 0
such that

8x 2 @D, Nx = Nx ,↵0 6= ;
(B) There exists constants �0 > 0 and �0 2 [1,1) such that for any

x 2 @D there exists a unit vector lx verifying

8n 2
[

y2U�0
(x)\@D

Ny , hlx ,ni �
1

�0

Under (A) and (B), the unique solution of (SK) exists (Saisho[1987]).
(Ref. Tanaka[1979], Lions-Sznitman[1984])
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(i) The configuration space of n balls with diameter r > 0:

Dn = {x = (x1, x2, . . . , xn) 2 (Rd)n : |x j � xk | > r , j 6= k}

satisfies conditions (A) and (B) (Saisho-Tanaka [1986])

(ii) Suppose that D satisfies conditions (A) and (B).
Let ⇣(i) is the solution of (Sk) for x (i) and w (i), i = 1, 2. Then there
exists a constant C = C (↵0,�0, �0) such that

|⇣(1)(t)� ⇣(2)(t)|  (kw (1) � w (2)kt + |x (1) � x (2)|)eC(k'(1)kt+k'(2)kt)

and for each T > 0

k'(i)kt  f (�0,T ,·(w), kw (i)kt), 0  t  T , i = 1, 2,

where f is a function on W0(R+)⇥ R+ depending on ↵0,�0, �0 and
�0,T ,�(w) denote the modulus of continuity of w in [0,T ].
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Prelimiary 1

Configuration space of unlabeled particle in Rd :

M = M(Rd) =
n

⇠(·) =
X
j2⇤

�xj (·) : ⇠(K ) < 1, 8K ⇢ Rd compact
o

The index set ⇤ is countable.
M is a Polish space with the vague topology.

N ⇢ M is relative compact , sup
⇠2N

⇠(K ) < 1, 8K ⇢ Rd compact

Configuration space of unlabeled balls with radius r > 0 inRd :

X = {⇠ = {xj}j2⇤ : |x j � xk | � r j 6= k, ⇤ : countable}

X is compact with the vague topology, and the space of probability
measures on X is also compact with the weak topology.
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Polynomial functions

A function f on M (or X) is called a polynomial function if it is
represented as

f (⇠) = Q (h'1, ⇠i, h'2, ⇠i, . . . , h'`, ⇠i)

with a polynomial function Q on R`, and smooth functions �j , 1  j  `,
with compact supports, where

h', ⇠i =

Z
Rd

'(x)⇠(dx).

We denote by P the set of all polynomial functions on M. A polynomial
function is local and smooth: 9K compact s.t.

f (⇠) = f (⇡K (⇠)) and f (⇠) = f (x1, . . . , xn) is smooth

where n = ⇠(K ) and ⇡K (⇠) is the restriction of ⇠ on K .
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Square fields

For f 2 P we introduce the square field on M defined by

D(f , g)(⇠) =
1

2

Z
Rd

⇠(dx)rx f (⇠) ·rxg(⇠).

For a RPF (a probability measure µ on M), we introduce the bilinear form
on L2(µ) defined by

Eµ(f , g) =

Z
M

D(f , g)(⇠)µ(d⇠), f , g 2 Dµ
�

Dµ
� = {f 2 P :k f k1< 1}.

where
k f k2

1=k f k2
L2(µ) +Eµ(f , f ).
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Quasi Gibbs state

Hamiltonian for �,  on S` = {x 2 Rd : |x |  `}

H`(⇣) =
X

x2supp⇣\S`

�(x) +
X

x ,y2supp⇣\S`,x 6=y

 (x , y),

Def.(Quasi Gibbs state)
A RPF µ is called a (�, )-quasi Gibbs state, if

µm
`,⇠(d⇣) = µ(d⇣|⇡Sc

`
(⇠) = ⇡Sc

r
(⇣), ⇣(S`) = m),

satisfies that for `,m, k 2 N, µ-a.s. ⇠

c�1e�H`(⇣)⇤m
` (d⇣)  µm

`,⇠(⇡S`
2 d⇣)  ce�H`(⇣)⇤m

` (d⇣)

where c = c(`,m, ⇠) > 0 is a constant depending on `,m, ⇠,
⇤m

` is the rest. of PRF with int. meas. dx on Mm
` = {⇠(S`) = m}.
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Systems of unlabeled particles

We make assumptions on RPF µ

(A1) µ is a (�, )-quasi Gibbs state, and � : Rd ! R [ {1} and
 : Rd ⇥ Rd ! R [ {1} satisfy

c�1�0(x)  �(x)  c �0(x)

c�1 0(x � y)   (x , y)  c  0(x � y)

for some c > 1 and locally bounded from below and lower semi-continuous
function �0, 0 with {x 2 Rd :  0(x) = 1} being compact.

Let k 2 N.

(A2.k)
1X

k=1

knµ(Mk
r ) =

Z
M

⇠(Sr )µ(d⇠) < 1, 8r , n 2 N.
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Systems of unlabeled particles 2

Th. (Osada 13)
Suppose that (A1)-(A2.1). Then (Eµ,Dµ

� ) is closable on L2(M, µ), and
the closure (Eµ,Dµ) is a quasi-regular Dirichlet form. Moreover the
associated di↵usion process (⌅t , P⇠) can be constructed.

Remark

1) For a RPF µ on X, (A2.k) is always satisfied. If  =  hard + sm

and  sm is continuous, we can construct di↵usion process on X if µ is
a quasi-Gibbs state.

2) Gibbs states of Ruelle class are quasi-Gibbs state. Then for
Lennard-Jones 6-12 potential :  sm =  6,12(x) = {|x |�12 � |x |�6}.
and Riesz potential :  sm =  a(x) = (�/a)|x |�a., d < a 2 N
we can apply the above theorem.
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Systems of labeled particles

Suppose that µ(X1) = 1, where

X1 = {⇠ = {x j}j2N : |x j � xk | � r j 6= k}.

We call a function l : X1 ! (Rd)N is called a label function, if

l(⇠) = (x j)j2N ⌘ x, if ⇠ =
P

j2N �xj ⌘ u(x).

We make the following assumption.

(A3) ⌅t is an X-valued di↵usion process in which each tagged particle
never explodes

Under (A3) we can label particles, l(⌅)t = (X i
t )i2N ⌘ Xt , such that

⌅t =
X
j2N

�Xj
t
, l(⌅0) = (X j

0)j2N.
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ISDE representation

Let µx , x 2 Rd be the Palm measure and µ[1] be teh Campbell measure of
PPF µ. Then µ[1](dxd⌘) = µx(d⌘)⇢1(x)dx , where ⇢1(x) is the correlation
function of the first order. We make the following assumption:

(A4) A PPF µ on X has the log derivarive dµ(x , ⌘) 2 L1
loc(Rd ⇥X, µ[1])：

for any f 2 C10 (Rd)⇥ P

�
Z

Rd⇥M
rx f (x , ⌘)µ[1](dxd⌘) =

Z
Rd⇥M

dµ(x , ⌘)f (x , ⌘)µ[1](dxd⌘)

+

Z
{(x ,⌘):⌘2X,x2S⌘}

S⌘(dx)µx(d⌘)n⌘(x)f (x , ⌘),

where S⌘ is the surface measure of

S⌘ = {x 2 Rd : |x � y | = r for some y 2 ⌘ },

and n⌘(x) is the normal vector of S⌘ at x .
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We can extend the notion of log derivative in the distribution and write

dµ(x , ⌘) = 1Sc
⌘
(x)dµ(x , ⌘) + 1S⌘(x)n⌘(x)�x .

If the log derivative exists, we put b(x , ⌘) = 1
2dµ(x , ⌘).

Th.(A modification of the result in Osada 12)
Assume the conditions (A1), (A3) and (A4). Then (Xt ,Px) satisfies the
following ISDE:

dX j
t = dB j

t + b

✓
X j

t ,
X
k 6=j

�Xk
t

◆
dt +

X
k 6=j

✓
X j

t � X k
t

◆
dLjk

t

Ljk
t =

Z t

0
1(|X j

s � X k
s | = r)dLjk

s j 2 N. (ISDE)

where Ljk
t is a non-decreasing function.
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ISDE representation

Ex. 1.
Let  sm be a potential such that
(i)

P
k 6=j | sm(x j � xk)| < 1, and

P
kk 6=j |r sm(x j � xk)| < 1,

and µ is a canonical Gibbs state with potential (�, ). Then the log
derivative of µ exists and

dµ(x , ⌘) = �r�(x)�
X
y2⌘

r sm(x � y).

If |r�| is of linear growth, (A3) holds and (Xt ,Px) has the following
ISDE representation

dX j
t = dB j

t �
1

2
r�(X j

t )dt � 1

2

X
k2N,k 6=j

r sm(X j
t � X k

t )dt

+
X

k2⇤,k 6=j

(X j
t � X k

t )dLjk
t , j 2 N. (ISDE2)
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Uniqueness of solutions

Let X be a solution of (ISDE). We consider the following SDE for m 2 N:

dY m,j
t = dB j

t + bm,j
X (Y m,j

t ,Ym
t )dt +

1X
`=m+1

(Y m,j
t � X `

t )dLm,j`
t

+
X
k 6=j

(Y m,j
t � Y m,k

t )dLm,jk
t , (SDE-m)

Lm,jk
t =

Z t

0
1(|Y m,j

s � Y m,k
s | = r)dLjk

s , j , k = 1, 2, . . . ,m,

Lm,j`
t =

Z t

0
1(|Y m,j

s � X `
s | = r)dLj`

s , ` = m + 1, . . . ,

Y m,j
0 = X j

0, j = 1, . . . ,m,

where bm,j
X (t, y) = b

✓
y j ,

mX
k 6=j

�yk +
1X

k=m+1

�Xk
t

◆
.

Hideki Tanemura (Keio Univ.) Systems of hard balls RMT 20 / 34



Uniqueness of solutions 2

We make the following assumption.

(IFC) 8m 2 N, a solution of (SDE-m) exists and is pathwise unique.

We also introduce the conditions on the process (X,Ps).✓
⌅t = u(Xt), Pu(x) = Px � u�1, Pµ =

Z
X

P⇠ µ(d⇠)

◆

(µ-AC) (µ-absolutely continuity condition): 8t > 0

Pµ � ⌅�1
t � µ 8t > 0

(NBJ) (No big jump condition): 8r ,8T 2 N
Pµ � l�1(mr ,T (X) < 1) = 1,

where

mr ,T (X) = inf{m 2 N ; |X n(t)| > r ,8n > m,8t 2 [0,T ]}.
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Uniqueness of solutions 3

The tail �-field on X is defined as

T (X) =
1\

r=1

�(⇡Sc
r
)

We introduce the following condition on a RPF µ.

(TT)（tail trivial） µ(A) 2 {0, 1} for any A 2 T (X),.

Th. (A modification of the result in Osada-T. arXiv:1412.8674v8)
(i) Suppose that (A1), (A3), (A4) and (TT). Then there exists a strong
solution (X,B) of (ISDE) satisfying (IFC), (µ-AC) and (NBJ).

(ii) Solutions of (ISDE) satisfying (IFC), (µ-AC) and (NBJ) are pathwise
unique.
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Non tail trivial case

Remark In case condition (TT) is not satisfied, we can discuss the
uniqueness by using the decomposition

µ =

Z
X

µ(d⌘)µ⌘
Tail

where µ⌘
Tail = µ(·|T (X))(⌘) : the regular conditional distribution with

respect to the tail �-field. In this case the uniqueness is derived if
(µTail-AC) for µ-a.s. ⌘

µ⌘
Tail � ⌅

�1
t � µ⌘

Tail 8t > 0

is satisfied instead of ( µ-AC). This means that there is no A 2 T (M)
such that for µ⌘

Tail-a.s. ⇠

P⇠(⌅s 2 A) 6= P⇠(⌅t 2 A)

for some 0  s < t.
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Applications

Let X be the process in Ex.1, that is X is a solution of

dX j
t = dB j

t �
1

2
r�(X j

t )dt � 1

2

X
k2N,k 6=j

r sm(X j
t � X k

t )dt

+
X

k2⇤,k 6=j

(X j
t � X k

t )dLjk
t , j 2 N (ISDE2)

Theorem 1.
1) Suppose that  sm satisfies

P
k 6=j |r2 sm(x j � xk)| < 1 and r� is

of Linear growth. Then (IFC) holds.
2) Moreover, assume that (TT) is satisfied. Then there exists a unique
strong solution (X,B) of (ISDE2) satisfying (IFC), (µ-AC) and (NBJ).
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Outline of the proof of Theorem 1

The domain of configurations of n balls

Dn = {x = (x1, . . . , xn) 2 (Rd)n : |x j � xk | > r , j 6= k}

Domains of configurations of n balls with moving boundary

Dn(Xt) = {x 2 Dn : |x j � X k
t | > r , 1  j  n, n + 1  k}

Dn(Xt), t � 0 do not always satisfy conditions (A) and (B).

The point x 2 Dn(Xt) that does not satisfies Conditions (A) or (B) for
any ↵0 > 0, �0 > 0 and �0 2 [1,1) is included in

�t,n = {x 2 Dn : 9j s.t. ]{k : |x j � xk | = r or |x j � X k
t | = r} � 2}

The set of configurations of triple collision.
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We introduce the hitting time

⌧m = inf{t > 0 : Y m
t 2 �t,n}.

For t < ⌧m solutions of (SDE-m) is pathwaise unique, and

(Y m,1
t , . . . ,Y m,m

t ,Xm+1
t , . . . ) = Xt , t < ⌧.

On the othere hand we see that

Capµ(�) = 0,

where Capµ is the capacity associated with the Dirichlet form (Eµ,Dµ)
and

� = {⇠ =
X
j2N

�xj 2 X : 9k s.t. ]{k : |x j � xk | = r} � 2}.

Hence, we have ⌧m = 1 a.s.
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Logarithmic potentials

Consider the logarithmic potentail:

 log(x) = � log |x |
If  =  log, that is the hard core does not exists, there is a quasi-Gibbs
state related to the pair potential  . [Osada 2012, 2013]
(i) Sine-� RPF µsin,� (d = 1, � = 1, 2, 4) is a  log-quasi-Gibbs state and

the log derivative is given by

d(y , {xk}) = � lim
L!1

( X
k:|xk |<L

1

y � xk

)

(ii) Ginibre RPF µGin (d = 2, � = 2) is a  log-quasi-Gibbs state and the
log derivative is given by

d(y , {xk}) = 2 lim
L!1

X
k:|y�xk |<L

y � xk

|y � xk |2
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Logarithmic potentials 2

The existence and uniqueness of solutions has been shown for the
following ISDEs [Osada 2012, Osada-T. arXiv:1412.8674v8]

(i) Dyson model（d = 1, � = 1, 2, 4）

dX j
t = dB j

t + lim
L!1

(
�

2

X
k 6=j ,|Xk

t |<L

1

X j
t � X k

t

)
dt, j 2 N

(ii) Ginibre interacting Brownian motions（d=2）

dX j
t = dB j

t + lim
L!1

X
k 6=j , |Xj

t�Xk
t |<L

X j
t � X k

t

|X j
t � X k

t |2
dt, j 2 N
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Logarithmic potentials 3

Suppose that
 =  hard + log.

We may consider the following problems:
(1) Are there  -quasi Gibbs states having log derivatives

(i) � = 1, 2, 4, d = 1

d(y , {xk}) = � lim
L!1

( X
k:|xk |<L

1

y � xk

)

(ii) � = 2, d = 2

d(y , {xk}) = 2 lim
L!1

X
k:|y�xk |<L

y � xk

|y � xk |2

(2) Moreover,
(iii) For general � > 0
(iv) For general dimension
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Logarithmic potentials d = 1, � = 1, 2, 4.

Eigenvalues distribution of N ⇥ N Gaussian ensemble :

m̌N
� (dxN) =

1

Z
hN(xN)�e�

�
4 |xN |2dxN , hN(xN) =

Y
j<k

|xj � xk |

(� = 1 GOE, � = 2 GUE, � = 4 GSE.)
Under the scaling yj =

p
Nxj , the distribution of {yj}N

j=1 under m̌N
� (dxN)

is given by

µ̌N
bulk,�(dyN) =

1

Z
hN(yN)�e�

�
4N |yN |2dyN .

Sine � RPF µsin,� is obtained by the limit:

µN
bulk,� ! µsin,�, N !1.
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Logarithmic potentials d = 1, � = 1, 2, 4.

 =  log + �hard (with hard core)

µ̌N,r
bulk,�(dyN) =

1

Z
hN,r (yN)�e�

�
4N |yN |2dyN ,

hN,r (yN) =
Y
j<k

|x j � xk |1(|x j � xk | � r)

Since X is compact there exists a sequence {N`}`2N such that

µN`,r
bulk,� ! µr

sin,�, ` !1.

Lemma 1.
There exists r0(�) > 0 such that if r 2 (0, r0), µr

sin,�, is a quasi-Gibbs state
whose log derivative

d(y , {xk}) = � lim
L!1

( X
k:|xk |<L

1

y � xk

)
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Logarithmic potentials with the hard core

Then we have the following ISDE representation: (� = 1, 2, 4)

dX j
t = dB j

t + lim
L!1

(
�

2

X
k 6=j ,|Xk

t |<L

1

X j
t � X k

t

)
dt

+
X

k2N,k 6=j

(X j
t � X k

t )dLjk
t , j 2 N. (ISDE3)

Theorem 2.
There exists a unique strong solution (X,B) of (ISDE3) satisfying (IFC),
(µTail-AC) and (NBJ).
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Problems

(1) Are there  -quasi Gibbs states having log derivatives
(i) � = 1, 2, 4, d = 1

d(y , {xk}) = � lim
L!1

( X
k:|xk |<L

1

y � xk

)

(ii) � = 2, d = 2

d(y , {xk}) = 2 lim
L!1

X
k:|y�xk |<L

y � xk

|y � xk |2

(2) Moreover,
(iii) For general � > 0
(iv) For general dimension
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Thank you for your attention
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